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PART 1

What Iis a quantum computer?



Quantum devices

Stimulated Tunnelling Magnetic Photoelectric &
emission resonance Photovoltaic effect
- Laser - Flash memory - Magnetic Resonance - Solar panel
- Atomic clock, GPS - Scanning tunneling Imaging - CCD sensor

microscope - NMR spectroscopy




What is a guantum computer?

A physical device that exploits the laws of quantum
mechanics to perform computational tasks

Input data —»| Quantum computer
—> Computation result

Program —

Example of tasks: find integer solutions to x* — 511y = 1, simulate the FeMoco

molecule, find the prime decomposition of 2120019073 _ 1



Do we have quantum computers yet?

Very neat mathematical models of quantum computation
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Q. Turing machine : Q. circuit 1 Q. finite automaton
(~1980-85) : (~1989-93) : (~1997-2000)

... but no scalable, physical realizations of these models yet.

Lots of errors / noise In practice, due to quantum effects



Why do we want quantum computers?

Properties predicted by mathematical models:

1. Faster at solving certain problems

2. New cryptographic tasks that are impossible to achieve with
classical computers (g. key distribution, unforgeable g. money...)

3. Computer networks with enhanced properties (more secure
communications, better distributed algorithms...)

More detalls In part 2 of the lecture



What quantum computers will not do”

- Speedup every task done by today’s computers

o Relatively few domains of applications in which QC are known to be superior
o0 Forecasted as industry/research devices (same as supercomputers, GPU architectures...)
o QOverhead in implementation cost (error correction...) will cancel certain advantages of QC

- Try all solutions to a problem at once / in parallel

o Properties of guantum mechanics (superposition, interferences,...) are more subtle than that
o NP-hard problems are believed to remain hard for QC (in complexity-theory terms: NP ¢ BQP)

- Break all existing encryption protocols

o Post-quantum cryptography: study of quantum-safe protocols (lattice-based crypto...)
o Current attacks (e.g. breaking RSA with Shor’s factoring) are out of reach of near term QC



How to (mathematically) construct
a quantum computer?



Models of computation

Quantum

Randomized

Deterministic




Deterministic computation

A classical (deterministic) computer can be modeled as a
sequence of logic gates operating on a memory of binary cells

Input Output

0 U 0
Each wire |

P
represents.a
memory bit I 0 0

State 011 State 01 0 State 01 O




Randomized computation

0
1 The output
Randomized Is random
gate ¢’
Flip the bit with i
probability 1/2
! : T |
011 010  1(1/2,010), {(1/2,010),

(172, 011) } (1/2, 011) }

Hard to simulate by a deterministic computer when humber of & grows



Randomized computation

Linear algebra perspective

Basis: {|000),|001),...,|111)}

State: probability vector
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Randomized computation
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Randomized computation

Any stochastic transformation can be achieved using a universal gate set

Set 1 Set 2

+ | ano

Challenge: find circuits of small complexity (depth,size,...) that
Implement the desired stochastic transformation



Quantum computation

Principle 1: A quantum state is a vector of length 1 in Euclidean norm

Example: : |0110) — \ﬁ |0101) “superposition of 0110 and 0101”
\/5 3 *amplitudes 1/\/5 and —y/2/3”

Principle 2: A quantum gate is a transformation represented by a unitary matrix

All reversible gates Hadamard gate
Examples: _ _ 1 0 0 0 0 0o 0 o
® 1 0 0 0 ® 0 1 O O O O o0 ©o©
01 0 0 . 6 o o 1 o o o o 1 T
AN o0 0 A —H— 551 =
\Ll/ 0 0 1 0 H o o 0o 0o 0 0 0 1 - -
i 0 0 O O O O 1 o0

CNOT Toffoll



Quantum computation

Each wire
~~._ represents a
e quantum bit

(qubit)
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Quantum computation
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Quantum computation

T

1
[11) \/5(\1())—\11))

T

V2

How to interpret

that state?

T

|
11) —]10 11) — |01
([11) = 110) \/5(\ ) = 101))

Principle 3: A quantum state can be downgraded into a classical (random) state

by doing a measurement s

(= observation). The probabilities are

given by the amplitudes squared.

\/7\0())
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\11) — A

— {(2/3, 00), (1/6, 01), (1/6, 11) }




Quantum computation

T
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: ([11) = [10}) : (|11) = |01)) { (172, 11),
2 2

(172, 01) }

Principle 3: A quantum state can be downgraded into a classical (random) state

by doing a measurement s

(= observation). The probabilities are

given by the amplitudes squared.
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Quantum computation

Any unitary can be achieved using a universal guantum gate set

Set 1 Set 2 (Solovay-Kitaev theorem)
CNOT All unitaries CNOT Had J
on 1 qubit adamar S gate
@
¢ 1 0
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How to (physically) construct
a quantum computer?



Digital computer

Lots of possible technologies (e.g. transistors)
that match very closely the mathematical model

NOT gate
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Quantum computation

We don’t have yet the technologies to
construct large-scale quantum computers

Some major challenges:

- Imperfections in qubits/gates implementations (noise accumulation)
- decoherence effects (uncontrolled transition from quantum to classical state)

— Both theoretical and engineering questions

(finding efficient quantum error correcting codes, constructing qubits and gates
of good quality, ...)



Candidates technologies for physical qubits

Superconductors GO gle EE:_:_"E_E_ amazon u
Trapped ions Q \I
QUANTINUUM
Photons @ WY PsiQuantum
XANADU

N
Neutral atoms “ \:f PASQAL



PART 2

Some applications of
quantum computing



Area

Simulation of quantum systems
Cryptographic attacks
Cryptographic protocols
Optimization

Learning

Example

Hamiltonian simulation
Factoring
Key distribution
Semidefinite programming

State tomography



Simulation of quantum systems



Simulation of quantum systems

Simulating a system that evolves according to the laws
of quantum mechanics and predicting Its properties

The grand motivation for constructing a quantum computer:

“If you want to make a simulation of Nature,
you’d better make it quantum mechanical.”
Feynman, 1981

Lots of use cases: chemistry (designing new drugs or battery materials...),
condensed matter physics, high-energy physics...



Schrodinger equation

The state | (7)) of a quantum system evolving under the dynamic
described by a Hamiltonian H is governed by the Schrédinger equation:

dy(@)
— = H | y(1))

l solution

-----

Unitary operator \

State after ¢ / that we want to Initial state of
| : the system
time steps simulate



Task: Hamiltonian simulation

Given the description of a Hamiltonian /{, construct a quantum circuit
that takes as input | w(0)) and that outputs | (7)) = e~ | y(0))

< . .
Example H = ‘?ZJ 10 —Q)Z 0]0] i (1D transverse field Ising model)
2" x 2" Hermltlan constant / /

Paull matrices
matrix numbers




Task: Hamiltonian simulation

Given the description of a Hamiltonian /{, construct a quantum circuit
that takes as input | w(0)) and that outputs | (7)) = e~ | y(0))

Example: H=-gJ Z 0 —J 2 GJZ ] (1D transverse field Ising model)

external magnetic interaction
magnetic field

(7 qubits on a line)

1 i i+l L



Task: Hamiltonian simulation

Given the description of a Hamiltonian /{, construct a quantum circuit
that takes as input | w(0)) and that outputs | (7)) = e~ | y(0))

Example: H = —gJZ g —JZ

Toxs

(1D transverse field Ising model)

How to simulate ¢ '° How to simulate e_mj Oy 1 e o' and 0] 0+1 don’t commute

j-th qubit

(j + 1)-th qubit

—th;é I I —10; thI I —zaajH

Q Trotter-Suzukl product formulas

o I — (I I —10; gJAI I —100+1JA)t/A
A—0

j=1




Task: Hamiltonian simulation

Given the description of a Hamiltonian /{, construct a quantum circuit
that takes as input | w(0)) and that outputs | (7)) = e~ | y(0))

n
Example: H=-gJ Z . 0 —J ijl (ffcfﬁrl (1D transverse field Ising model)

How to simulate e ' How to simulate e "% %+! Simulation method

Q Trotter-Suzuki product formulas

o I — (I I —10; gJAI I —100+1JA)t/A
A—0

j=1

j-th qubit

(j + 1)-th qubit




Task: Hamiltonian simulation
The product formulas method can simulate e " onn qubits
with accuracy € (in op. norm) at a cost proportional to nt*l e

(exponential speedup over best known classical algos)

More advanced methods with even better cost:

e Quantum Walks
e Linear Combination of Unitaries
e Quantum Singular Value Transformation



Cryptographic attacks



Task 1: Factoring

Find the prime factors of an integer

Large fraction of crypto built on the assumption that Factoring is hard

Breakthrough in 1994 by Peter Shor: an efficient quantum algorithm
— Factoring-based protocols (e.g. RSA) are not safe against qguantum computers

— Triggered a lot of research on quantum computing and cryptography

Part of a larger family of quantum attacks for Hidden Subgroup Problems
(discrete log, Simon’s problem, Dihedral Coset Problem...)



Task 2: Simon’s problem

A toy problem invented in 1994 that displays an exponential
quantum speedup and inspired Shor’s algorithm

Find the secret s € {0,1}" hidden into a function f: {0,1}" — {0,1}"
promised to be f(x) = f(y) ifand only if y = x @ ».

(Scenario: s is obfuscated into a program P;that evaluates f)

Classical algorithm: 1/ evaluate Pron random x,, x,, ;... until finding f(x;) = f(x;)

zn/ 2

Birthday paradox: ~ evaluations before it succeeds

Quantum algorithm: only ~ n evaluations (in superposition)



Task 2: Simon’s problem

'How IS the random-
-output dlstrlbuted’?'

! T T \
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x,y=0
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Task 2: Simon’s problem

Key property

Linear equation in §

Overall algorithm

 Repeat the procedure & n times to obtain a

system of 7 linear independent equations,
and solve it by Gaussian elimination



Further readings

Quantum computing 40 years later
John Preskill

Forty years ago, Richard Feynman proposed harnessing quantum physics to build a

more powerful kind of computer. Realizing Feynman's vision is one of the grand
challenges facing 21st century science and technology. In this article, we'll recall
Feynman's contribution that launched the quest for a quantum computer, and
assess where the field stands 40 years later.

https://arxiv.org/abs/2106.10522

Quantum Computing: Lecture Notes
Ronald de Wolf (QuSoft, CWI and University of Amsterdam)

This is a set of lecture notes suitable for a Master's course on quantum computation
and information from the perspective of theoretical computer science. The first
version was written in 2011, with many extensions and improvements in subsequent
years. The first 10 chapters cover the circuit model and the main quantum algorithms

(Deutsch-Jozsa, Simon, Shor, Hidden Subgroup Problem, Grover, quantum walks,
Hamiltonian simulation and HHL). They are followed by 4 chapters about complexity,
4 chapters about distributed ("Alice and Bob") settings, a chapter about quantum
machine learning, and a final chapter about quantum error correction. Appendices A
and B give a brief introduction to the required linear algebra and some other
mathematical and computer science background. All chapters come with exercises,
with some hints provided in Appendix C.

https://arxiv.org/abs/1907.09415

Quantum algorithms: A survey of applications and
end-to-end complexities

Alexander M. Dalzell, Sam McArdle, Mario Berta, Przemyslaw Bienias, Chi-
Fang Chen, Andras Gilyén, Connor T. Hann, Michael J. Kastoryano, Emil T.
Khabiboulline, Aleksander Kubica, Grant Salton, Samson Wang, Fernando G. S.
L. Brandao

The anticipated applications of quantum computers span across science and
industry, ranging from quantum chemistry and many-body physics to
optimization, finance, and machine learning. Proposed quantum solutions in these
areas typically combine multiple quantum algorithmic primitives into an overall
guantum algorithm, which must then incorporate the methods of quantum error
correction and fault tolerance to be implemented correctly on quantum hardware.
As such, it can be difficult to assess how much a particular application benefits
from quantum computing, as the various approaches are often sensitive to
intricate technical details about the underlying primitives and their complexities.
Here we present a survey of several potential application areas of quantum
algorithms and their underlying algorithmic primitives, carefully considering
technical caveats and subtleties. We outline the challenges and opportunities in
each area in an "end-to-end" fashion by clearly defining the problem being solved
alongside the input-output model, instantiating all "oracles," and spelling out all
hidden costs. We also compare quantum solutions against state-of-the-art
classical methods and complexity-theoretic limitations to evaluate possible
guantum speedups.

https://arxiv.org/abs/2310.0301 1
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