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Any algorithm with < S qubits of memory
must use a number T of queries such that...

Very few existing results:
[Klauck et al.’07] Sorting N numbers requires T2S = Q(N3).
[Klauck et al.’07] Boolean Matrix-Matrix Multiplication requires T2S = Q(N5).
[Klauck et al.’07] Boolean Matrix-Vector Multiplication requires T2S = Q(N3).

[Ambainis et al.’09] Evaluating Ax = (t,...,1) requires T2S = Q(tN3) when S < N/.
TS = Q(N2?) when S > N/i.

Our contribution: a new tradeoff for the problem.
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Collision Pairs Finding

Find K collision pairs in a random input x1, ..., xy ~ [N].

— A random input contains ~ O(N) collision pairs with high probability.

— Finding collisions Is an important problem in cryptanalysis:
e preimage attacks on hash functions

* meet-in-the-middle attacks « requires to find many collisions

e computing discrete logarithms
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N — N3 elements

Open problem:
Is there a quantum algorithm
with T < o(y/N) and S = O(log N)?
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Classical Tradeoff

Quantum Tradeoff

Upper bound

when
Q(log N) < S < O(K)

Parallel Collision Search
[van Oorschot and Wiener’99]

> T=0(K"2N"2) at best |

when
Q(log N) < S < O(K2/3N1/3)

Adaptation of the BHT algorithm

— T = O(K2/3N1/3) at best

Lower bound

[Chakrabarti,Chen’17]
[Dinur’20]

T3S > Q(K3N)

Our result

> T = O(KN"3) when S = log(N)
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Lower Bound Method
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Quantum Query Model

 The memory is made of S qubits, initially set to |0).

X

* The quantum “Query Operator” Q is: . px; ,
(when x; € [N]) ‘P, l> O)N ‘pa l>

* The computation alternates between T guantum gueries and T guantum
operations on the memory.
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* A method to deduce Time-Space lower bounds from

* Introduced by [Borodin et al.’81], and by [Klauck’03] for the quantum version.

* Applicable when the problem has a large (= decision problem).
Time lower bound | Time-Space lower bound
[Borodin et al.’81] .
For all K, it is impossible to compute a0l K
K parts of the output with success : I =L <T(S ) - E)
probability in time . K>§ -

It is impossible to find ; ;
with success probability > 2-0K) : . T > Q(KNIB/SIB) :
in time ‘ ;
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Two main methods for proving such lower bounds:

The acceptance probability of a T-query algorithm Bound the progress W' = Z wxy(l//; | l,U;,) ,
is a polynomial in x of degree at most 2T. Xy
T 'l X T
7N 1 |

T TR T

O e

_ AN

| > (&)
. |

’ 1 \ .". | O> : = — ]

-
AR 1
e -
L X

-




Time Lower Bounds

13

It is impossible to find
with success probability = 2-0K)
in time

Two main methods for proving such lower bounds:

The acceptance probability of a T-query algorithm
is a polynomial in x of degree at most 2T.

+ We don’t care about space anymore.

— We must deal with the exponentially
small success probability regime.
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Input: x = (x1, ..., xn) Where x; =y € [N] with probability 1/N.

Strategy: sample each entry only when it is queried, and record its value.

x=(Ll,L,1,1)

X7
>

X, =4 x=(L,4,1,1)
<

x? R

X1=7 X=(7,4,J_,J_)
<

X7 X
< x2=4 X:(7,4,J_,J_)

xX4? X

X4=4 x:(7949J—,4)

probability to have recorded at least k collisions after t queries

— the algorithm must force the recording of many collisions to succeed with high probability
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for finding K collisions.



