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Topic: time-space tradeoff lower bounds in the quantum query model.

Very few existing results:

[Klauck et al.’07] Sorting N numbers requires T2S ≥ Ω(N3). 

[Ambainis et al.’09] Evaluating Ax ≥ (t,…,t) requires T2S ≥ Ω(tN3) when S < N/t.

[Klauck et al.’07] Boolean Matrix-Matrix Multiplication requires T2S ≥ Ω(N5). 

[Klauck et al.’07] Boolean Matrix-Vector Multiplication requires T2S ≥ Ω(N3). 

TS ≥ Ω(N2) when S > N/t.

Our contribution: a new tradeoff for the Collision Pairs Finding problem.

Any algorithm with ≤ S qubits of memory 

must use a number T of queries such that…



The Collision Pairs Finding Problem

1



4Collision Pairs

Collision pair: xi = xj

x8 = 1

x4 = 2
x6 = 8

x7 = 2x2 = 4
x5 = 7

x1 = 3

x3 = 6

x12 = 3

x9 = 2

x10 = 4
x11 = 4



5Collision Pairs

Collision pair: xi = xj

x8 = 1

x4 = 2
x6 = 8

x7 = 2x2 = 4
x5 = 7

x1 = 3

x3 = 6

x12 = 3

x9 = 2

x10 = 4
x11 = 4



6Collision Pairs

Collision pair: xi = xj

x8 = 1

x4 = 2
x6 = 8

x7 = 2x2 = 4
x5 = 7

x1 = 3

x3 = 6

x12 = 3

x9 = 2

x10 = 4
x11 = 4



7Collision Pairs Finding

K-Collision Pairs 

Find K collision pairs in a random input x1, …, xN ~ [N].



7Collision Pairs Finding

K-Collision Pairs 

Find K collision pairs in a random input x1, …, xN ~ [N].

→ A random input contains ~ Θ(N) collision pairs with high probability.



7Collision Pairs Finding

• preimage attacks on hash functions


• meet-in-the-middle attacks


• computing discrete logarithms


• …

→ Finding collisions is an important problem in cryptanalysis:

← requires to find many collisions

K-Collision Pairs 

Find K collision pairs in a random input x1, …, xN ~ [N].

→ A random input contains ~ Θ(N) collision pairs with high probability.
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Quantum BHT algorithm

T = O(N1/3)
S = O(N1/3)

x4 = 2

x6 = 8

x7 = 2
x2 = 4

x5 = 7

x1 = 3

x3 = 6

x9 = 6
x10 = 4

x11 = 4

N1/3 stored elements
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Grover’s search

x12 = 3

x8 = 1

Open problem: 

Is there a quantum algorithm 


with                   and                     ?             T ≤ o( N) S = O(log N)
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T2S ≤ Õ(K2N) 
when
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Adaptation of the BHT algorithm

Lower bound
T2S ≥ Ω̃(K2N) 

[Chakrabarti,Chen’17]

[Dinur’20]

T3S ≥ Ω(K3N) 

Our result

12Finding K collision pairs

→ T ≥ Ω̃(KN1/3) when S = log(N)

→ T = Õ(K2/3N1/3) at best→ T = Õ(K1/2N1/2) at best



Lower Bound Method
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⋮

Q Q

Q|p, i⟩ ωp⋅xi
N |p, i⟩• The quantum “Query Operator” Q is:

x

• The memory is made of S qubits, initially set to |0⟩.

• The computation alternates between T quantum queries and T quantum  
    operations on the memory.

|0⟩

|0⟩

|0⟩

(when )xi ∈ [N ]

S

T
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x

⋮

Q Q
|0⟩

|0⟩

H

T = O( N)
S = O(log N)

2H |0⟩⟨0 |H
−I

2H |0⟩⟨0 |H
−I

|0⟩

Example: Grover’s Search
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Two main methods for proving such lower bounds:

Polynomial Method
The acceptance probability of a T-query algorithm 


is a polynomial in x of degree at most 2T.

Adversary Method

x

⋮

Q
…

|0⟩
|0⟩
|0⟩

|ψT
x ⟩

Bound the progress Wt = ∑x,y
wx,y⟨ψ t

x |ψ t
y⟩ .

It is impossible to find K collisions 

with success probability ≥ 2-O(K) 


in time .τ(K ) = O(K2/3N1/3)

+  We don’t care about space anymore.


–  We must deal with the exponentially 

    small success probability regime.

Our approach: a refined version of Zhandry’s recording technique
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Input: x = (x1, …, xN) where xi = y ∈ [N] with probability 1/N.

Algorithm Input
Strategy: sample each entry only when it is queried, and record its value.

x = ( ⊥ , ⊥ , ⊥ , ⊥ )
x2?

x = ( ⊥ , 4 , ⊥ , ⊥ )x2 = 4

x1?

x1 = 7 x = ( 7 , 4 , ⊥ , ⊥ )

Progress measure: probability to have recorded at least k collisions after t queries

→ the algorithm must force the recording of many collisions to succeed with high probability

x2?

x2 = 4 x = ( 7 , 4 , ⊥ , ⊥ )

⋮

x4?

x4 = 4 x = ( 7 , 4 , ⊥ , 4)
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• Recent work for non-product distributions [Czajkowski’21, Rosmanis’21]

• Conjecture: T2S ≥ Ω(K2N) for finding K collisions.


