
Quantum Time-Space Tradeoff for
Finding Multiple Collision Pairs

Yassine Hamoudi, Frédéric Magniez

arXiv: 2002.08944

IRIF, Université de Paris

TQC 2021

2Quantum Time-Space Tradeoffs

Topic: time-space tradeoff lower bounds in the quantum query model.

2Quantum Time-Space Tradeoffs

Topic: time-space tradeoff lower bounds in the quantum query model.

Very few existing results:

[Klauck et al.’07] Sorting N numbers requires T2S ≥ Ω(N3).

Any algorithm with ≤ S qubits of memory

must use a number T of queries such that…

2Quantum Time-Space Tradeoffs

Topic: time-space tradeoff lower bounds in the quantum query model.

Very few existing results:

[Klauck et al.’07] Sorting N numbers requires T2S ≥ Ω(N3).

[Ambainis et al.’09] Evaluating Ax ≥ (t,…,t) requires T2S ≥ Ω(tN3) when S < N/t.

[Klauck et al.’07] Boolean Matrix-Matrix Multiplication requires T2S ≥ Ω(N5).

[Klauck et al.’07] Boolean Matrix-Vector Multiplication requires T2S ≥ Ω(N3).

TS ≥ Ω(N2) when S > N/t.

Any algorithm with ≤ S qubits of memory

must use a number T of queries such that…

2Quantum Time-Space Tradeoffs

Topic: time-space tradeoff lower bounds in the quantum query model.

Very few existing results:

[Klauck et al.’07] Sorting N numbers requires T2S ≥ Ω(N3).

[Ambainis et al.’09] Evaluating Ax ≥ (t,…,t) requires T2S ≥ Ω(tN3) when S < N/t.

[Klauck et al.’07] Boolean Matrix-Matrix Multiplication requires T2S ≥ Ω(N5).

[Klauck et al.’07] Boolean Matrix-Vector Multiplication requires T2S ≥ Ω(N3).

TS ≥ Ω(N2) when S > N/t.

Our contribution: a new tradeoff for the Collision Pairs Finding problem.

Any algorithm with ≤ S qubits of memory

must use a number T of queries such that…

The Collision Pairs Finding Problem

1

4Collision Pairs

Collision pair: xi = xj

x8 = 1

x4 = 2
x6 = 8

x7 = 2x2 = 4
x5 = 7

x1 = 3

x3 = 6

x12 = 3

x9 = 2

x10 = 4
x11 = 4

5Collision Pairs

Collision pair: xi = xj

x8 = 1

x4 = 2
x6 = 8

x7 = 2x2 = 4
x5 = 7

x1 = 3

x3 = 6

x12 = 3

x9 = 2

x10 = 4
x11 = 4

6Collision Pairs

Collision pair: xi = xj

x8 = 1

x4 = 2
x6 = 8

x7 = 2x2 = 4
x5 = 7

x1 = 3

x3 = 6

x12 = 3

x9 = 2

x10 = 4
x11 = 4

7Collision Pairs Finding

K-Collision Pairs

Find K collision pairs in a random input x1, …, xN ~ [N].

7Collision Pairs Finding

K-Collision Pairs

Find K collision pairs in a random input x1, …, xN ~ [N].

→ A random input contains ~ Θ(N) collision pairs with high probability.

7Collision Pairs Finding

• preimage attacks on hash functions

• meet-in-the-middle attacks

• computing discrete logarithms

• …

→ Finding collisions is an important problem in cryptanalysis:

← requires to find many collisions

K-Collision Pairs

Find K collision pairs in a random input x1, …, xN ~ [N].

→ A random input contains ~ Θ(N) collision pairs with high probability.

8Birthday attack (K = 1)

Birthday attack

T = O(N)
S = O(N)

x8 = 1

x4 = 2
x6 = 8

x7 = 2x2 = 4
x5 = 7

x1 = 3

x3 = 6

x12 = 3

x9 = 6

x10 = 4

N elements

x11 = 4

9Birthday attack (K = 1)

Birthday attack
Birthday attack +

Floyd’s cycle finding
T = O(N)
S = O(N)

T = O(N)
S = O(log N)

x8 = 1

x4 = 2
x6 = 8

x7 = 2x2 = 4
x5 = 7

x1 = 3

x3 = 6

x12 = 3

x9 = 6

x10 = 4

x11 = 4

10Quantum BHT algorithm (K = 1)

x12 = 3

x4 = 2

x6 = 8

x7 = 2
x2 = 4

x5 = 7

x1 = 3

x3 = 6
x8 = 1

x9 = 6
x10 = 4

x11 = 4

N1/3 stored elements

N − N1/3 elements

Grover’s search

Quantum BHT algorithm

11Quantum BHT algorithm (K = 1)

Quantum BHT algorithm

x4 = 2

x6 = 8

x7 = 2
x2 = 4

x5 = 7

x1 = 3

x3 = 6

x9 = 6
x10 = 4

x11 = 4

N1/3 stored elements

N − N1/3 elements

Grover’s search

x12 = 3

x8 = 1

11Quantum BHT algorithm (K = 1)

Quantum BHT algorithm

T = O(N1/3)
S = O(N1/3)

x4 = 2

x6 = 8

x7 = 2
x2 = 4

x5 = 7

x1 = 3

x3 = 6

x9 = 6
x10 = 4

x11 = 4

N1/3 stored elements

N − N1/3 elements

Grover’s search

x12 = 3

x8 = 1

11Quantum BHT algorithm (K = 1)

Quantum BHT algorithm

T = O(N1/3)
S = O(N1/3)

x4 = 2

x6 = 8

x7 = 2
x2 = 4

x5 = 7

x1 = 3

x3 = 6

x9 = 6
x10 = 4

x11 = 4

N1/3 stored elements

N − N1/3 elements

Grover’s search

x12 = 3

x8 = 1

Open problem:

Is there a quantum algorithm

with and ? T ≤ o(N) S = O(log N)

Classical Tradeof Quantum Tradeof

Upper bound

T2S ≤ Õ(K2N)
when

Ω̃(log N) ≤ S ≤ Õ(K)

Parallel Collision Search

[van Oorschot and Wiener’99]

T2S ≤ Õ(K2N)
when

Ω̃(log N) ≤ S ≤ Õ(K2/3N1/3)

Adaptation of the BHT algorithm

Lower bound
T2S ≥ Ω̃(K2N)

[Chakrabarti,Chen’17]

[Dinur’20]

T3S ≥ Ω(K3N)

Our result

12Finding K collision pairs

Classical Tradeof Quantum Tradeof

Upper bound

T2S ≤ Õ(K2N)
when

Ω̃(log N) ≤ S ≤ Õ(K)

Parallel Collision Search

[van Oorschot and Wiener’99]

T2S ≤ Õ(K2N)
when

Ω̃(log N) ≤ S ≤ Õ(K2/3N1/3)

Adaptation of the BHT algorithm

Lower bound
T2S ≥ Ω̃(K2N)

[Chakrabarti,Chen’17]

[Dinur’20]

T3S ≥ Ω(K3N)

Our result

12Finding K collision pairs

Classical Tradeof Quantum Tradeof

Upper bound

T2S ≤ Õ(K2N)
when

Ω̃(log N) ≤ S ≤ Õ(K)

Parallel Collision Search

[van Oorschot and Wiener’99]

T2S ≤ Õ(K2N)
when

Ω̃(log N) ≤ S ≤ Õ(K2/3N1/3)

Adaptation of the BHT algorithm

Lower bound
T2S ≥ Ω̃(K2N)

[Chakrabarti,Chen’17]

[Dinur’20]

T3S ≥ Ω(K3N)

Our result

12Finding K collision pairs

→ T = Õ(K2/3N1/3) at best→ T = Õ(K1/2N1/2) at best

Classical Tradeof Quantum Tradeof

Upper bound

T2S ≤ Õ(K2N)
when

Ω̃(log N) ≤ S ≤ Õ(K)

Parallel Collision Search

[van Oorschot and Wiener’99]

T2S ≤ Õ(K2N)
when

Ω̃(log N) ≤ S ≤ Õ(K2/3N1/3)

Adaptation of the BHT algorithm

Lower bound
T2S ≥ Ω̃(K2N)

[Chakrabarti,Chen’17]

[Dinur’20]

T3S ≥ Ω(K3N)

Our result

12Finding K collision pairs

→ T = Õ(K2/3N1/3) at best→ T = Õ(K1/2N1/2) at best

Classical Tradeof Quantum Tradeof

Upper bound

T2S ≤ Õ(K2N)
when

Ω̃(log N) ≤ S ≤ Õ(K)

Parallel Collision Search

[van Oorschot and Wiener’99]

T2S ≤ Õ(K2N)
when

Ω̃(log N) ≤ S ≤ Õ(K2/3N1/3)

Adaptation of the BHT algorithm

Lower bound
T2S ≥ Ω̃(K2N)

[Chakrabarti,Chen’17]

[Dinur’20]

T3S ≥ Ω(K3N)

Our result

12Finding K collision pairs

→ T = Õ(K2/3N1/3) at best→ T = Õ(K1/2N1/2) at best

Classical Tradeof Quantum Tradeof

Upper bound

T2S ≤ Õ(K2N)
when

Ω̃(log N) ≤ S ≤ Õ(K)

Parallel Collision Search

[van Oorschot and Wiener’99]

T2S ≤ Õ(K2N)
when

Ω̃(log N) ≤ S ≤ Õ(K2/3N1/3)

Adaptation of the BHT algorithm

Lower bound
T2S ≥ Ω̃(K2N)

[Chakrabarti,Chen’17]

[Dinur’20]

T3S ≥ Ω(K3N)

Our result

12Finding K collision pairs

→ T ≥ Ω̃(KN1/3) when S = log(N)

→ T = Õ(K2/3N1/3) at best→ T = Õ(K1/2N1/2) at best

Lower Bound Method

3

14Quantum Query Model

⋮

Q Q
|0⟩

|0⟩

|0⟩

x

14Quantum Query Model

⋮

Q Q

• The memory is made of S qubits, initially set to |0⟩.

|0⟩

|0⟩

|0⟩

S

x

14Quantum Query Model

⋮

Q Q

Q|p, i⟩ ωp⋅xi
N |p, i⟩• The quantum “Query Operator” Q is:

x

• The memory is made of S qubits, initially set to |0⟩.

|0⟩

|0⟩

|0⟩

(when)xi ∈ [N]

S

x

14Quantum Query Model

⋮

Q Q

Q|p, i⟩ ωp⋅xi
N |p, i⟩• The quantum “Query Operator” Q is:

x

• The memory is made of S qubits, initially set to |0⟩.

• The computation alternates between T quantum queries and T quantum
 operations on the memory.

|0⟩

|0⟩

|0⟩

(when)xi ∈ [N]

S

T

x

15Quantum Query Model

x

⋮

Q Q
|0⟩

|0⟩

H

T = O(N)
S = O(log N)

2H |0⟩⟨0 |H
−I

2H |0⟩⟨0 |H
−I

|0⟩

Example: Grover’s Search

16Time-Space Lower Bounds from Time Lower Bounds

• Introduced by [Borodin et al.’81], and by [Klauck’03] for the quantum version.

• A method to deduce Time-Space lower bounds from Time lower bounds.

• Applicable when the problem has a large output of size K (≠ decision problem).

Time-Space Lower Bounds from Time Lower Bounds

16Time-Space Lower Bounds from Time Lower Bounds

Time lower bound

• Introduced by [Borodin et al.’81], and by [Klauck’03] for the quantum version.

• A method to deduce Time-Space lower bounds from Time lower bounds.

For all K, it is impossible to compute

K parts of the output with success

probability ≥ 2-O(K) in time τ(K).

• Applicable when the problem has a large output of size K (≠ decision problem).

Time-Space Lower Bounds from Time Lower Bounds

16Time-Space Lower Bounds from Time Lower Bounds

Time lower bound Time-Space lower bound

⇒

• Introduced by [Borodin et al.’81], and by [Klauck’03] for the quantum version.

• A method to deduce Time-Space lower bounds from Time lower bounds.

[Borodin et al.’81]

[Klauck’03]For all K, it is impossible to compute

K parts of the output with success
probability ≥ 2-O(K) in time τ(K).

T ≥ Ω(τ(S) ⋅
K
S)

• Applicable when the problem has a large output of size K (≠ decision problem).

Time-Space Lower Bounds from Time Lower Bounds

K ≥ S

17Time-Space Lower Bounds from Time Lower Bounds

Time lower bound Time-Space lower bound

⇒

It is impossible to find K collisions

with success probability ≥ 2-O(K)

in time .τ(K) = O(K2/3N1/3)

• Introduced by [Borodin et al.’81], and by [Klauck’03] for the quantum version.

• A method to deduce Time-Space lower bounds from Time lower bounds.

[Borodin et al.’81]

[Klauck’03]For all K, it is impossible to compute

K parts of the output with success
probability ≥ 2-O(K) in time τ(K).

T ≥ Ω(τ(S) ⋅
K
S)

• Applicable when the problem has a large output of size K (≠ decision problem).

K ≥ S

17Time-Space Lower Bounds from Time Lower Bounds

Time lower bound Time-Space lower bound

⇒

It is impossible to find K collisions

with success probability ≥ 2-O(K)

in time .τ(K) = O(K2/3N1/3)
T ≥ Ω(KN1/3/S1/3)

• Introduced by [Borodin et al.’81], and by [Klauck’03] for the quantum version.

• A method to deduce Time-Space lower bounds from Time lower bounds.

[Borodin et al.’81]

[Klauck’03]

⇒

For all K, it is impossible to compute

K parts of the output with success

probability ≥ 2-O(K) in time τ(K).

T ≥ Ω(τ(S) ⋅
K
S)

• Applicable when the problem has a large output of size K (≠ decision problem).

K ≥ S

18Time Lower Bounds

It is impossible to find K collisions

with success probability ≥ 2-O(K)

in time .τ(K) = O(K2/3N1/3)

+ We don’t care about space anymore.

– We must deal with the exponentially

 small success probability regime.

18Time Lower Bounds

Two main methods for proving such lower bounds:

Polynomial Method
The acceptance probability of a T-query algorithm

is a polynomial in x of degree at most 2T.

Adversary Method

x

⋮

Q
…

|0⟩
|0⟩
|0⟩

|ψT
x ⟩

Bound the progress Wt = ∑x,y
wx,y⟨ψ t

x |ψ t
y⟩ .

It is impossible to find K collisions

with success probability ≥ 2-O(K)

in time .τ(K) = O(K2/3N1/3)

+ We don’t care about space anymore.

– We must deal with the exponentially

 small success probability regime.

18Time Lower Bounds

Two main methods for proving such lower bounds:

Polynomial Method
The acceptance probability of a T-query algorithm

is a polynomial in x of degree at most 2T.

Adversary Method

x

⋮

Q
…

|0⟩
|0⟩
|0⟩

|ψT
x ⟩

Bound the progress Wt = ∑x,y
wx,y⟨ψ t

x |ψ t
y⟩ .

It is impossible to find K collisions

with success probability ≥ 2-O(K)

in time .τ(K) = O(K2/3N1/3)

+ We don’t care about space anymore.

– We must deal with the exponentially

 small success probability regime.

Our approach: a refined version of Zhandry’s recording technique

19Classical Recording
Input: x = (x1, …, xN) where xi = y ∈ [N] with probability 1/N.

19Classical Recording
Input: x = (x1, …, xN) where xi = y ∈ [N] with probability 1/N.

Strategy: sample each entry only when it is queried, and record its value.

19Classical Recording
Input: x = (x1, …, xN) where xi = y ∈ [N] with probability 1/N.

Algorithm Input
Strategy: sample each entry only when it is queried, and record its value.

x = (⊥ , ⊥ , ⊥ , ⊥)

19Classical Recording
Input: x = (x1, …, xN) where xi = y ∈ [N] with probability 1/N.

Algorithm Input
Strategy: sample each entry only when it is queried, and record its value.

x = (⊥ , ⊥ , ⊥ , ⊥)
x2?

19Classical Recording
Input: x = (x1, …, xN) where xi = y ∈ [N] with probability 1/N.

Algorithm Input
Strategy: sample each entry only when it is queried, and record its value.

x = (⊥ , ⊥ , ⊥ , ⊥)
x2?

x = (⊥ , 4 , ⊥ , ⊥)

19Classical Recording
Input: x = (x1, …, xN) where xi = y ∈ [N] with probability 1/N.

Algorithm Input
Strategy: sample each entry only when it is queried, and record its value.

x = (⊥ , ⊥ , ⊥ , ⊥)
x2?

x = (⊥ , 4 , ⊥ , ⊥)x2 = 4

19Classical Recording
Input: x = (x1, …, xN) where xi = y ∈ [N] with probability 1/N.

Algorithm Input
Strategy: sample each entry only when it is queried, and record its value.

x = (⊥ , ⊥ , ⊥ , ⊥)
x2?

x = (⊥ , 4 , ⊥ , ⊥)x2 = 4

x1?

19Classical Recording
Input: x = (x1, …, xN) where xi = y ∈ [N] with probability 1/N.

Algorithm Input
Strategy: sample each entry only when it is queried, and record its value.

x = (⊥ , ⊥ , ⊥ , ⊥)
x2?

x = (⊥ , 4 , ⊥ , ⊥)x2 = 4

x1?

x = (7 , 4 , ⊥ , ⊥)

19Classical Recording
Input: x = (x1, …, xN) where xi = y ∈ [N] with probability 1/N.

Algorithm Input
Strategy: sample each entry only when it is queried, and record its value.

x = (⊥ , ⊥ , ⊥ , ⊥)
x2?

x = (⊥ , 4 , ⊥ , ⊥)x2 = 4

x1?

x1 = 7 x = (7 , 4 , ⊥ , ⊥)

19Classical Recording
Input: x = (x1, …, xN) where xi = y ∈ [N] with probability 1/N.

Algorithm Input
Strategy: sample each entry only when it is queried, and record its value.

x = (⊥ , ⊥ , ⊥ , ⊥)
x2?

x = (⊥ , 4 , ⊥ , ⊥)x2 = 4

x1?

x1 = 7 x = (7 , 4 , ⊥ , ⊥)

x2?

x2 = 4 x = (7 , 4 , ⊥ , ⊥)

19Classical Recording
Input: x = (x1, …, xN) where xi = y ∈ [N] with probability 1/N.

Algorithm Input
Strategy: sample each entry only when it is queried, and record its value.

x = (⊥ , ⊥ , ⊥ , ⊥)
x2?

x = (⊥ , 4 , ⊥ , ⊥)x2 = 4

x1?

x1 = 7 x = (7 , 4 , ⊥ , ⊥)

x2?

x2 = 4 x = (7 , 4 , ⊥ , ⊥)

⋮

x4?

x4 = 4 x = (7 , 4 , ⊥ , 4)

19Classical Recording
Input: x = (x1, …, xN) where xi = y ∈ [N] with probability 1/N.

Algorithm Input
Strategy: sample each entry only when it is queried, and record its value.

x = (⊥ , ⊥ , ⊥ , ⊥)
x2?

x = (⊥ , 4 , ⊥ , ⊥)x2 = 4

x1?

x1 = 7 x = (7 , 4 , ⊥ , ⊥)

Progress measure: probability to have recorded at least k collisions after t queries

x2?

x2 = 4 x = (7 , 4 , ⊥ , ⊥)

⋮

x4?

x4 = 4 x = (7 , 4 , ⊥ , 4)

19Classical Recording
Input: x = (x1, …, xN) where xi = y ∈ [N] with probability 1/N.

Algorithm Input
Strategy: sample each entry only when it is queried, and record its value.

x = (⊥ , ⊥ , ⊥ , ⊥)
x2?

x = (⊥ , 4 , ⊥ , ⊥)x2 = 4

x1?

x1 = 7 x = (7 , 4 , ⊥ , ⊥)

Progress measure: probability to have recorded at least k collisions after t queries

→ the algorithm must force the recording of many collisions to succeed with high probability

x2?

x2 = 4 x = (7 , 4 , ⊥ , ⊥)

⋮

x4?

x4 = 4 x = (7 , 4 , ⊥ , 4)

20Quantum Recording

Query Operator

x1 ∼ 𝒰[N]
x2 ∼ 𝒰[N]

xN ∼ 𝒰[N]

⋮

Q

x1
⋮

xN

xi
⋮

ωp⋅xi
N |p, i⟩|p, i⟩

⋮

Q Q Q
…|0⟩

|0⟩

|0⟩

21Quantum Recording

Query Operator

Q

x1
⋮

xN

xi
⋮

ωp⋅xi
N |p, i⟩|p, i⟩

⋮

Q Q Q
…|0⟩

|0⟩

|0⟩

N−1/2 ∑y∈[N]
|y⟩x1 :

x2 :

xN :
⋮

N−1/2 ∑y∈[N]
|y⟩

N−1/2 ∑y∈[N]
|y⟩

22Quantum Recording

⋮

Q Q Q
…|0⟩

|0⟩

|0⟩

⋮

| ⊥ ⟩
| ⊥ ⟩

| ⊥ ⟩

x1 :
x2 :

xN :

S
S

S

Q|p, i⟩

x1
⋮

xN

xi
⋮

ωp⋅xi
N |p, i⟩

| ⊥ ⟩ N−1/2 ∑y∈[N]
|y⟩S

Query Operator

22Quantum Recording

⋮

Q Q Q
…|0⟩

|0⟩

|0⟩

⋮

| ⊥ ⟩
| ⊥ ⟩

| ⊥ ⟩

x1 :
x2 :

xN :

S
S

S

Q|p, i⟩

x1
⋮

xN

xi
⋮

ωp⋅xi
N |p, i⟩

| ⊥ ⟩ N−1/2 ∑y∈[N]
|y⟩S

Query Operator

22Quantum Recording

⋮

Q Q Q
…|0⟩

|0⟩

|0⟩

⋮

| ⊥ ⟩
| ⊥ ⟩

| ⊥ ⟩

x1 :
x2 :

xN :

S
S

S

S

S

Q|p, i⟩

x1
⋮

xN

xi
⋮

ωp⋅xi
N |p, i⟩

| ⊥ ⟩ N−1/2 ∑y∈[N]
|y⟩S

S†

Query Operator

S

S†

S†

22Quantum Recording

⋮

Q Q Q
…|0⟩

|0⟩

|0⟩

⋮

| ⊥ ⟩
| ⊥ ⟩

| ⊥ ⟩

x1 :
x2 :

xN :

S
S

S

S

S

Q|p, i⟩

x1
⋮

xN

xi
⋮

ωp⋅xi
N |p, i⟩

| ⊥ ⟩ N−1/2 ∑y∈[N]
|y⟩S

S†

Query Operator

S

S†

S†

S†
S†

S†

22Quantum Recording

⋮

Q Q Q
…|0⟩

|0⟩

|0⟩

⋮

| ⊥ ⟩
| ⊥ ⟩

| ⊥ ⟩

x1 :
x2 :

xN :

S
S

S

S

S

Q|p, i⟩

x1
⋮

xN

xi
⋮

ωp⋅xi
N |p, i⟩

| ⊥ ⟩ N−1/2 ∑y∈[N]
|y⟩S

S†

Query Operator

S

S†

S†

S†
S†

S†

S

S

S

22Quantum Recording

⋮

Q Q Q
…|0⟩

|0⟩

|0⟩

⋮

| ⊥ ⟩
| ⊥ ⟩

| ⊥ ⟩

x1 :
x2 :

xN :

S
S

S

S

S

Q|p, i⟩

x1
⋮

xN

xi
⋮

ωp⋅xi
N |p, i⟩

| ⊥ ⟩ N−1/2 ∑y∈[N]
|y⟩S

S†

Query Operator

S

S†

S†

S

S

S†
S† S

S†

S†
S†

S†

S

S

S

22Quantum Recording

⋮
…|0⟩

|0⟩

|0⟩

⋮

| ⊥ ⟩
| ⊥ ⟩

| ⊥ ⟩

x1 :
x2 :

xN :
R R R

Q|p, i⟩

x1
⋮

xN

xi
⋮

ωp⋅xi
N |p, i⟩

Recording Query Operator

Q|p, i⟩

x1
⋮

xN

xi
⋮

S

S

S S†

S†

S†

R

| ⊥ ⟩ N−1/2 ∑y∈[N]
|y⟩S

Query Operator

S

S

S

22Quantum Recording

⋮
…|0⟩

|0⟩

|0⟩

⋮

| ⊥ ⟩
| ⊥ ⟩

| ⊥ ⟩

x1 :
x2 :

xN :
R R R

Q|p, i⟩

xi

ωp⋅xi
N |p, i⟩

Recording Query Operator

Q|p, i⟩

xi S S†

R

| ⊥ ⟩ N−1/2 ∑y∈[N]
|y⟩S

 If xj is not queried

 it stays unchanged.

Query Operator

S

S

S

23Quantum Recording

Recording Query Operator

|p, i⟩
| ⊥ ⟩ N−1/2 ∑y∈[N]

ωp⋅y
N |y⟩

|p, i⟩R

xi :

R R R

⋮
…

|0⟩
|0⟩

|0⟩

⋮

S
S

S

| ⊥ ⟩
| ⊥ ⟩

| ⊥ ⟩

x1 :
x2 :

xN :

23Quantum Recording

Recording Query Operator

|p, i⟩
| ⊥ ⟩ N−1/2 ∑y∈[N]

ωp⋅y
N |y⟩

|p, i⟩R

|p, i⟩
|y⟩ ≈ ωp⋅y

N |y⟩
|p, i⟩R

xi :

xi :

R R R

⋮
…

|0⟩
|0⟩

|0⟩

⋮

S
S

S

| ⊥ ⟩
| ⊥ ⟩

| ⊥ ⟩

x1 :
x2 :

xN :

23Quantum Recording

Recording Query Operator

|p, i⟩
| ⊥ ⟩ N−1/2 ∑y∈[N]

ωp⋅y
N |y⟩

|p, i⟩R

|p, i⟩
|y⟩ ≈ ωp⋅y

N |y⟩
|p, i⟩R

xi :

xi :

R R R

⋮
…

|0⟩
|0⟩

|0⟩

⋮

S
S

S

| ⊥ ⟩
| ⊥ ⟩

| ⊥ ⟩

x1 :
x2 :

xN :

Δ(t, k) = amplitude of the basis states containing

 ≥ k (disjoint) collisions after t queries.

23Quantum Recording

Recording Query Operator

|p, i⟩
| ⊥ ⟩ N−1/2 ∑y∈[N]

ωp⋅y
N |y⟩

|p, i⟩R

|p, i⟩
|y⟩ ≈ ωp⋅y

N |y⟩
|p, i⟩R

xi :

xi :

R R R

⋮
…

|0⟩
|0⟩

|0⟩

⋮

S
S

S

| ⊥ ⟩
| ⊥ ⟩

| ⊥ ⟩

x1 :
x2 :

xN :

Δ(t, k) = amplitude of the basis states containing

 ≥ k (disjoint) collisions after t queries.

Δ(0,0) = 1

Δ(0,k) = 0 for k > 0

23Quantum Recording

Recording Query Operator

|p, i⟩
| ⊥ ⟩ N−1/2 ∑y∈[N]

ωp⋅y
N |y⟩

|p, i⟩R

|p, i⟩
|y⟩ ≈ ωp⋅y

N |y⟩
|p, i⟩R

xi :

xi :

R R R

⋮
…

|0⟩
|0⟩

|0⟩

⋮

S
S

S

| ⊥ ⟩
| ⊥ ⟩

| ⊥ ⟩

x1 :
x2 :

xN :

Δ(t, k) = amplitude of the basis states containing

 ≥ k (disjoint) collisions after t queries.

Δ(t + 1,k + 1) ≤ Δ(t, k + 1)

+Δ(t, k) ⋅ O(t
N)

23Quantum Recording

Recording Query Operator

|p, i⟩
| ⊥ ⟩ N−1/2 ∑y∈[N]

ωp⋅y
N |y⟩

|p, i⟩

Record

R

|p, i⟩
|y⟩ ≈ ωp⋅y

N |y⟩
|p, i⟩R

xi :

xi :

R R R

⋮
…

|0⟩
|0⟩

|0⟩

⋮

S
S

S

| ⊥ ⟩
| ⊥ ⟩

| ⊥ ⟩

x1 :
x2 :

xN :

Δ(t, k) = amplitude of the basis states containing

 ≥ k (disjoint) collisions after t queries.

Δ(t + 1,k + 1) ≤ Δ(t, k + 1)

+Δ(t, k) ⋅ O(t
N)

23Quantum Recording

Recording Query Operator

|p, i⟩
| ⊥ ⟩ N−1/2 ∑y∈[N]

ωp⋅y
N |y⟩

|p, i⟩R

|p, i⟩
|y⟩ ≈ ωp⋅y

N |y⟩
|p, i⟩R

xi :

xi :

R R R

⋮
…

|0⟩
|0⟩

|0⟩

⋮

S
S

S

| ⊥ ⟩
| ⊥ ⟩

| ⊥ ⟩

x1 :
x2 :

xN :

Δ(t, k) = amplitude of the basis states containing

 ≥ k (disjoint) collisions after t queries.

Δ(K2/3N1/3, K /2) ≤ 2−K

23Quantum Recording

Recording Query Operator

|p, i⟩
| ⊥ ⟩ N−1/2 ∑y∈[N]

ωp⋅y
N |y⟩

|p, i⟩R

|p, i⟩
|y⟩ ≈ ωp⋅y

N |y⟩
|p, i⟩R

xi :

xi :

R R R

⋮
…

|0⟩
|0⟩

|0⟩

⋮

S
S

S

| ⊥ ⟩
| ⊥ ⟩

| ⊥ ⟩

x1 :
x2 :

xN :

Δ(t, k) = amplitude of the basis states containing

 ≥ k (disjoint) collisions after t queries.

Success
≤

Δ(K2/3N1/3, K /2)
+ O(K /N)K/2

23Quantum Recording

Recording Query Operator

|p, i⟩
| ⊥ ⟩ N−1/2 ∑y∈[N]

ωp⋅y
N |y⟩

|p, i⟩R

|p, i⟩
|y⟩ ≈ ωp⋅y

N |y⟩
|p, i⟩R

xi :

xi :

R R R

⋮
…

|0⟩
|0⟩

|0⟩

⋮

S
S

S

| ⊥ ⟩
| ⊥ ⟩

| ⊥ ⟩

x1 :
x2 :

xN :

Δ(t, k) = amplitude of the basis states containing

 ≥ k (disjoint) collisions after t queries.

Success
≤

Δ(K2/3N1/3, K /2)

≈ guess K/2 unrecorded

 collisions

+ O(K /N)K/2

23Quantum Recording

Recording Query Operator

|p, i⟩
| ⊥ ⟩ N−1/2 ∑y∈[N]

ωp⋅y
N |y⟩

|p, i⟩R

|p, i⟩
|y⟩ ≈ ωp⋅y

N |y⟩
|p, i⟩R

xi :

xi :

R R R

⋮
…

|0⟩
|0⟩

|0⟩

⋮

S
S

S

| ⊥ ⟩
| ⊥ ⟩

| ⊥ ⟩

x1 :
x2 :

xN :

Δ(t, k) = amplitude of the basis states containing

 ≥ k (disjoint) collisions after t queries.

Success
≤

Δ(K2/3N1/3, K /2)
+ O(K /N)K/2

≤ 2−Ω(K)

Conclusion

• Generalization to any product distribution

• Generalization to any product distribution

→ K-Search: find K ones in x where xi = 1 with probability K/N

• Generalization to any product distribution

→ K-Search: find K ones in x where xi = 1 with probability K/N

R

| i⟩
|1⟩ ≈ − |1⟩ + K /N(|0⟩ − | ⊥ ⟩)

| i⟩| i⟩
|0⟩ ≈ |0⟩ + K /N |1⟩

| i⟩R

| i⟩
| ⊥ ⟩ ≈ | ⊥ ⟩ − K /N |1⟩

| i⟩R
 Record a new 1

• Generalization to any product distribution

→ K-Search: find K ones in x where xi = 1 with probability K/N

R

| i⟩
|1⟩ ≈ − |1⟩ + K /N(|0⟩ − | ⊥ ⟩)

| i⟩| i⟩
|0⟩ ≈ |0⟩ + K /N |1⟩

| i⟩R

| i⟩
| ⊥ ⟩ ≈ | ⊥ ⟩ − K /N |1⟩

| i⟩R

Solving the K-Search problem with
success probability at least 2-O(K)

requires time .T ≥ Ω(NK)

Record a new 1

• Generalization to any product distribution

→ K-Search: find K ones in x where xi = 1 with probability K/N

R

| i⟩
|1⟩ ≈ − |1⟩ + K /N(|0⟩ − | ⊥ ⟩)

| i⟩| i⟩
|0⟩ ≈ |0⟩ + K /N |1⟩

| i⟩R

| i⟩
| ⊥ ⟩ ≈ | ⊥ ⟩ − K /N |1⟩

| i⟩R

Solving the K-Search problem with
success probability at least 2-O(K)

requires time .T ≥ Ω(NK)

+ Simpler proof than previous work

 [Klauck et al.’07, Ambainis’10, …]

+ Implies several quantum time-space

 tradeoffs (e.g. for Sorting).

Record a new 1

• Generalization to any product distribution

→ K-Search: find K ones in x where xi = 1 with probability K/N

R

| i⟩
|1⟩ ≈ − |1⟩ + K /N(|0⟩ − | ⊥ ⟩)

| i⟩| i⟩
|0⟩ ≈ |0⟩ + K /N |1⟩

| i⟩R

| i⟩
| ⊥ ⟩ ≈ | ⊥ ⟩ − K /N |1⟩

| i⟩R

Solving the K-Search problem with
success probability at least 2-O(K)

requires time .T ≥ Ω(NK)

+ Simpler proof than previous work

 [Klauck et al.’07, Ambainis’10, …]

+ Implies several quantum time-space

 tradeoffs (e.g. for Sorting).

Record a new 1

• Recent work for non-product distributions [Czajkowski’21, Rosmanis’21]

• Generalization to any product distribution

→ K-Search: find K ones in x where xi = 1 with probability K/N

R

| i⟩
|1⟩ ≈ − |1⟩ + K /N(|0⟩ − | ⊥ ⟩)

| i⟩| i⟩
|0⟩ ≈ |0⟩ + K /N |1⟩

| i⟩R

| i⟩
| ⊥ ⟩ ≈ | ⊥ ⟩ − K /N |1⟩

| i⟩R

Solving the K-Search problem with
success probability at least 2-O(K)

requires time .T ≥ Ω(NK)

+ Simpler proof than previous work

 [Klauck et al.’07, Ambainis’10, …]

+ Implies several quantum time-space

 tradeoffs (e.g. for Sorting).

Record a new 1

• Recent work for non-product distributions [Czajkowski’21, Rosmanis’21]

• Conjecture: T2S ≥ Ω(K2N) for finding K collisions.

