Quantum Time-Space Tradeoff for Finding Multiple Collision Pairs

Yassine Hamoudi, Frédéric Magniez

IRIF, Université de Paris

TQC 2021

arXiv: 2002.08944

Very few existing results:

[Klauck et al.'07] Sorting N numbers requires $T^2S \ge \Omega(N^3)$.

Very few existing results:

[Klauck et al.'07] Sorting N numbers requires $T^2S \ge \Omega(N^3)$.

[Klauck et al.'07] Boolean Matrix-Matrix Multiplication requires $T^2S \ge \Omega(N^5)$.

[Klauck et al.'07] Boolean Matrix-Vector Multiplication requires $T^2S \ge \Omega(N^3)$.

[Ambainis et al.'09] Evaluating $Ax \ge (t,...,t)$ requires $T^2S \ge \Omega(tN^3)$ when S < N/t.

TS \geq Ω (N²) when S > N/t.

Any algorithm with \leq S qubits of memory

must use a number T of queries such that.

Very few existing results:

[Klauck et al.'07] Sorting N numbers requires $T^2S \ge \Omega(N^3)$.

[Klauck et al.'07] Boolean Matrix-Matrix Multiplication requires $T^2S \ge \Omega(N^5)$.

[Klauck et al.'07] Boolean Matrix-Vector Multiplication requires $T^2S \ge \Omega(N^3)$.

[Ambainis et al.'09] Evaluating $Ax \ge (t,...,t)$ requires $T^2S \ge \Omega(tN^3)$ when S < N/t.

TS \geq Ω (N²) when S > N/t.

Any algorithm with \leq S qubits of memory

must use a number T of queries such that.

Our contribution: a new tradeoff for the **Collision Pairs Finding** problem.

The Collision Pairs Finding Problem

Collision pair: $x_i = x_j$

4

Collision pair: $x_i = x_j$

Collision pair: $x_i = x_j$

K-Collision Pairs

Find K collision pairs in a **random** input $x_1, ..., x_N \sim [N]$.

K-Collision Pairs

Find K collision pairs in a **random** input $x_1, ..., x_N \sim [N]$.

 \rightarrow A random input contains ~ $\Theta(N)$ collision pairs with high probability.

K-Collision Pairs

Find K collision pairs in a **random** input $x_1, ..., x_N \sim [N]$.

 \rightarrow A random input contains ~ $\Theta(N)$ collision pairs with high probability.

→ Finding collisions is an important problem in cryptanalysis:

- preimage attacks on hash functions
- meet-in-the-middle attacks ← requires to find many collisions
- computing discrete logarithms

• ...

Birthday attack (K = 1)

Birthday attack

$$T = O\left(\sqrt{N}\right)$$
$$S = O\left(\sqrt{N}\right)$$

Birthday attack (K = 1)

Birthday attack

$$T = O\left(\sqrt{N}\right)$$
$$S = O\left(\sqrt{N}\right)$$

Birthday attack + Floyd's cycle finding

$$T = O(\sqrt{N})$$
$$S = O(\log N)$$

$$T = O(N^{1/3})$$
$$S = O(N^{1/3})$$

$$T = O(N^{1/3})$$
$$S = O(N^{1/3})$$

Open problem:

Is there a quantum algorithm with $T \le o(\sqrt{N})$ and $S = O(\log N)$?

	Classical Tradeoff
Upper bound	$\begin{array}{l} \Gamma^{2}S \leq \tilde{O}(K^{2}N) \\ when \\ \tilde{\Omega}(\log N) \leq S \leq \tilde{O}(K) \end{array}$ $\begin{array}{l} Parallel \ Collision \ Search \\ [van \ Oorschot \ and \ Wiener'99] \end{array}$

	Classical Tradeoff	Quantum Tradeoff
Upper bound	$T^2S \leq \tilde{O}(K^2N)$ when $\tilde{\Omega}(\log N) \leq S \leq \tilde{O}(K)$ Parallel Collision Search [van Oorschot and Wiener'99]	$\begin{array}{l} \mathbf{T^2S} \leq \tilde{O}(K^2N) \\ \text{when} \\ \tilde{\Omega}(\log N) \leq S \leq \tilde{O}(K^{2/3N^{1/3}}) \\ \end{array}$

	Classical Tradeoff	Quantum Tradeoff
Upper bound	$T^2S \leq \tilde{O}(K^2N)$ when $\tilde{\Omega}(\log N) \leq S \leq \tilde{O}(K)$	$T^{2}S \leq \tilde{O}(K^{2}N)$ when $\tilde{\Omega}(\log N) \leq S \leq \tilde{O}(K^{2/3}N^{1/3})$
	Parallel Collision Search [van Oorschot and Wiener'99]	Adaptation of the BHT algorithm
	\rightarrow T = Õ(K ^{1/2} N ^{1/2}) at best	→ T = Õ(K ^{2/3} N ^{1/3}) at best

	Classical Tradeoff	Quantum Tradeoff
Upper bound	$\begin{array}{l} \mathbf{T}^{2}\mathbf{S} \leq \tilde{\mathbf{O}}(\mathbf{K}^{2}\mathbf{N}) \\ \text{when} \\ \tilde{\boldsymbol{\Omega}}(\log N) \leq \mathbf{S} \leq \tilde{\mathbf{O}}(\mathbf{K}) \\ \text{Parallel Collision Search} \\ [van Oorschot and Wiener'99] \\ \rightarrow \mathbf{T} = \tilde{\mathbf{O}}(\mathbf{K}^{1/2}\mathbf{N}^{1/2}) \text{ at best} \end{array}$	$\begin{aligned} \mathbf{T}^{2}\mathbf{S} \leq \tilde{\mathbf{O}}(\mathbf{K}^{2}\mathbf{N}) \\ \text{when} \\ \tilde{\mathbf{\Omega}}(\log \mathbf{N}) \leq \mathbf{S} \leq \tilde{\mathbf{O}}(\mathbf{K}^{2/3}\mathbf{N}^{1/3}) \end{aligned}$ $Adaptation of the BHT algorithm$ $\rightarrow \mathbf{T} = \tilde{\mathbf{O}}(\mathbf{K}^{2/3}\mathbf{N}^{1/3}) \text{ at best}$
Lower bound	T²S ≥ Ω̃(K²N) [Chakrabarti,Chen'17] [Dinur'20]	

	Classical Tradeoff	Quantum Tradeoff
Upper bound	$\begin{array}{l} \mathbf{T^2S} \leq \tilde{\mathbf{O}}(\mathbf{K^2N}) \\ \text{when} \\ \tilde{\Omega}(\log N) \leq S \leq \tilde{\mathbf{O}}(\mathbf{K}) \\ \text{Parallel Collision Search} \\ [van Oorschot and Wiener'99] \\ \rightarrow \mathbf{T} = \tilde{\mathbf{O}}(\mathbf{K}^{1/2}\mathbf{N}^{1/2}) \text{ at best} \end{array}$	$\begin{array}{l} \mathbf{T}^{2}\mathbf{S} \leq \tilde{\mathbf{O}}(\mathbf{K}^{2}\mathbf{N}) \\ \text{when} \\ \tilde{\mathbf{\Omega}}(\log \mathbf{N}) \leq \mathbf{S} \leq \tilde{\mathbf{O}}(\mathbf{K}^{2/3}\mathbf{N}^{1/3}) \\ \text{Adaptation of the BHT algorithm} \\ \mathbf{T} = \tilde{\mathbf{O}}(\mathbf{K}^{2/3}\mathbf{N}^{1/3}) \text{ at best} \end{array}$
Lower bound	<mark>T²S ≥ Ω̃(K²N)</mark> [Chakrabarti,Chen'17] [Dinur'20]	T³S ≥ Ω(K³N) Our result

	Classical Tradeoff	Quantum Tradeoff
	T²S ≤ Õ(K²N)	T²S ≤ Õ(K²N)
	when	when
Upper bound	$\tilde{\Omega}(\log N) \le S \le \tilde{O}(K)$	$\tilde{\Omega}(\log N) \le S \le \tilde{O}(K^{2/3}N^{1/3})$
	Parallel Collision Search [van Oorschot and Wiener'99]	Adaptation of the BHT algorithm
	→ T = Õ(K ^{1/2} N ^{1/2}) at best	→ T = Õ(K ^{2/3} N ^{1/3}) at best
Lower bound	T²S ≥ Ω̃(K²N)	T³S ≥ Ω(K³N)
	[Chakrabarti,Chen'17] [Dinur'20]	Our result $\rightarrow T \ge \tilde{\Omega}(KN^{1/3})$ when S = log(N

Lower Bound Method

• The memory is made of S qubits, initially set to $|0\rangle$.

- The memory is made of S qubits, initially set to $|0\rangle$.
- The quantum "Query Operator" Q is: (when $x_i \in [N]$)

$$\begin{array}{c|c} x & & \\ p,i \rangle & & Q & \\ \end{array} & & \omega_N^{p \cdot x_i} | p,i \rangle \end{array}$$

Quantum Query Model

- The memory is made of S qubits, initially set to $|0\rangle$.
- The quantum "Query Operator" Q is: (when $x_i \in [N]$)

$$\begin{array}{c|c} x & & \\ p,i \rangle & & Q & \\ \end{array} & & \omega_N^{p \cdot x_i} | p,i \rangle \end{array}$$

The computation alternates between T quantum queries and T quantum operations on the memory.

Example: Grover's Search

$$\begin{cases} T = O(\sqrt{N}) \\ S = O(\log N) \end{cases}$$

- A method to deduce Time-Space lower bounds from Time lower bounds.
- Introduced by [Borodin et al.'81], and by [Klauck'03] for the quantum version.
- Applicable when the problem has a large output of size K (\neq decision problem).

- A method to deduce Time-Space lower bounds from Time lower bounds.
- Introduced by [Borodin et al.'81], and by [Klauck'03] for the quantum version.
- Applicable when the problem has a large output of size K (\neq decision problem).

Time lower bound

For all *K*, it is impossible to compute *K* parts of the output with success probability $\geq 2^{-O(K)}$ in time $\tau(K)$.

- A method to deduce Time-Space lower bounds from Time lower bounds.
- Introduced by [Borodin et al.'81], and by [Klauck'03] for the quantum version.
- Applicable when the problem has a large output of size K (\neq decision problem).

- A method to deduce Time-Space lower bounds from Time lower bounds.
- Introduced by [Borodin et al.'81], and by [Klauck'03] for the quantum version.
- Applicable when the problem has a large output of size K (\neq decision problem).

Time lower bound

For all *K*, it is impossible to compute *K* parts of the output with success probability $\geq 2^{-O(K)}$ in time $\tau(K)$. [Borodin et al.'81] [Klauck'03]

 $K \ge S$

Time-Space lower bound

 $T \ge \Omega\bigg(\tau(S) \cdot \frac{K}{S}\bigg)$

- A method to deduce Time-Space lower bounds from Time lower bounds.
- Introduced by [Borodin et al.'81], and by [Klauck'03] for the quantum version.
- Applicable when the problem has a large output of size K (\neq decision problem).


```
It is impossible to find K collisions
with success probability \geq 2^{-O(K)}
in time \tau(K) = O(K^{2/3}N^{1/3}).
```

- + We don't care about space anymore.
- We must deal with the exponentially small success probability regime.
It is impossible to find **K** collisions with success probability $\geq 2^{-O(K)}$ in time $\tau(K) = O(K^{2/3}N^{1/3})$.

- + We don't care about space anymore.
- We must deal with the exponentially small success probability regime.

Two main methods for proving such lower bounds:

Polynomial Method

The acceptance probability of a T-query algorithm is a polynomial in x of degree at most 2T.

Adversary Method

Bound the progress
$$W^{t} = \sum_{x,y} w_{x,y} \langle \psi_{x}^{t} | \psi_{y}^{t} \rangle$$

$$X \longrightarrow Q \longrightarrow W^{t} = U^{t} = U^{t$$

It is impossible to find **K** collisions with success probability $\ge 2^{-O(K)}$ in time $\tau(K) = O(K^{2/3}N^{1/3})$.

- + We don't care about space anymore.
- We must deal with the exponentially small success probability regime.

Two main methods for proving such lower bounds:

Polynomial Method

Adversary Method

Our approach: a refined version of Zhandry's recording technique

Input: $x = (x_1, ..., x_N)$ where $x_i = y \in [N]$ with probability 1/*N*.

Input: $x = (x_1, ..., x_N)$ where $x_i = y \in [N]$ with probability 1/*N*.

Strategy: sample each entry only when it is queried, and record its value.

Input: $x = (x_1, ..., x_N)$ where $x_i = y \in [N]$ with probability 1/*N*.

Strategy: sample each entry only when it is queried, and record its value.

Algorithm

$$x = (\perp, \perp, \perp, \perp)$$

Input: $x = (x_1, ..., x_N)$ where $x_i = y \in [N]$ with probability 1/*N*.

Strategy: sample each entry only when it is queried, and record its value.

Algorithm

Input: $x = (x_1, ..., x_N)$ where $x_i = y \in [N]$ with probability 1/*N*.

Strategy: sample each entry only when it is queried, and record its value.

Algorithm

Input: $x = (x_1, ..., x_N)$ where $x_i = y \in [N]$ with probability 1/*N*.

Strategy: sample each entry only when it is queried, and record its value.

Algorithm

Input: $x = (x_1, ..., x_N)$ where $x_i = y \in [N]$ with probability 1/*N*.

Strategy: sample each entry only when it is queried, and record its value.

Algorithm

Input: $x = (x_1, ..., x_N)$ where $x_i = y \in [N]$ with probability 1/*N*.

Strategy: sample each entry only when it is queried, and record its value.

Algorithm

Input: $x = (x_1, ..., x_N)$ where $x_i = y \in [N]$ with probability 1/*N*.

Strategy: sample each entry only when it is queried, and record its value.

Algorithm

$$x_{2}?$$

$$x_{2} = 4$$

$$x_{1} = 7$$

$$x_{1} = 1$$

Input: $x = (x_1, ..., x_N)$ where $x_i = y \in [N]$ with probability 1/*N*.

Strategy: sample each entry only when it is queried, and record its value.

Algorithm

x_2 ?	$x = (\perp, \perp, \perp, \perp)$
$x_2 = 4$	$x = (\perp, 4, \perp, \perp)$
$x_1?$	
$x_1 = 7$	$x = (7, 4, \pm, \pm)$
$\begin{array}{c} x_2?\\ \hline \\ x_2 = 4 \end{array}$	$x = (7, 4, \bot, \bot)$

Input: $x = (x_1, ..., x_N)$ where $x_i = y \in [N]$ with probability 1/*N*.

Strategy: sample each entry only when it is queried, and record its value.

Algorithm

Input: $x = (x_1, ..., x_N)$ where $x_i = y \in [N]$ with probability 1/*N*.

Strategy: sample each entry only when it is queried, and record its value.

Algorithm

Input

Progress measure: probability to have recorded at least k collisions after t queries

Input: $x = (x_1, ..., x_N)$ where $x_i = y \in [N]$ with probability 1/*N*.

Strategy: sample each entry only when it is queried, and record its value.

Algorithm

Input

Progress measure: probability to have recorded at least k collisions after t queries
 → the algorithm must force the recording of many collisions to succeed with high probability

Query Operator

21

$$\perp \rangle - S - N^{-1/2} \sum_{y \in [N]} |y\rangle$$

Query Operator

$$\perp \rangle - S - N^{-1/2} \sum_{y \in [N]} |y\rangle$$

$$\perp \rangle - S - N^{-1/2} \sum_{y \in [N]} |y\rangle$$

Query Operator

$$\perp \rangle - S - N^{-1/2} \sum_{y \in [N]} |y\rangle$$

$$\perp \rangle - S - N^{-1/2} \sum_{y \in [N]} |y\rangle$$

Query Operator

$$\perp \rangle - S - N^{-1/2} \sum_{y \in [N]} |y\rangle$$

$$|\perp\rangle - S - N^{-1/2} \sum_{y \in [N]} |y\rangle$$

Query Operator

Recording Query Operator

Recording Query Operator

$$x_{i}: |\perp\rangle - \mathbb{R} = \frac{N^{-1/2} \sum_{y \in [N]} \omega_{N}^{p \cdot y} |y\rangle}{|p, i\rangle}$$

Recording Query Operator

$$\begin{aligned} x_{i} : & | \perp \rangle \\ | p, i \rangle \\ \hline R \\ | p, i \rangle \end{aligned}$$

Recording Query Operator

$$x_{i}: |\perp\rangle = \mathbb{R} = \frac{N^{-1/2} \sum_{y \in [N]} \omega_{N}^{p \cdot y} |y\rangle}{|p, i\rangle}$$

 $x_{i}: |y\rangle - \mathbb{R} = \approx \omega_{N}^{p \cdot y} |y\rangle$ $|p, i\rangle - \mathbb{R} = |p, i\rangle$

 $\Delta(t, k) = \text{amplitude of the basis states containing} \\ \geq k \text{ (disjoint) collisions after } t \text{ queries.}$

$$\Delta(0,0) = 1$$

$$\Delta(0,k) = 0 \text{ for } k > 0$$

Recording Query Operator

$$x_{i}: |\perp\rangle = \mathbb{R} = N^{-1/2} \sum_{y \in [N]} \omega_{N}^{p \cdot y} |y\rangle$$
$$|p, i\rangle = \mathbb{R} = |p, i\rangle$$

 $x_{i}: |y\rangle - \mathbb{R} \approx \omega_{N}^{p \cdot y} |y\rangle$ $|p, i\rangle - \mathbb{R} - |p, i\rangle$

 $\Delta(t, k) =$ **amplitude** of the basis states containing $\geq k$ (disjoint) collisions after *t* queries.

 $\begin{aligned} \Delta(t+1,k+1) &\leq \Delta(t,k+1) \\ &+ \Delta(t,k) \cdot O\left(\sqrt{\frac{t}{N}}\right) \end{aligned}$

Recording Query Operator

$$x_{i}: |\perp\rangle = \mathbb{R} = N^{-1/2} \sum_{y \in [N]} \omega_{N}^{p \cdot y} |y\rangle$$
$$|p, i\rangle = \mathbb{R} = |p, i\rangle$$

 $x_{i}: |y\rangle - \mathbb{R} = \approx \omega_{N}^{p \cdot y} |y\rangle$ $|p, i\rangle - \mathbb{R} - |p, i\rangle$

 $\Delta(t, k) =$ amplitude of the basis states containing $\geq k$ (disjoint) collisions after *t* queries.

 $\Delta(K^{2/3}N^{1/3},K/2) \leq 2^{-K}$

Recording Query Operator

$$x_{i}: |\perp\rangle - \mathbb{R} = N^{-1/2} \sum_{y \in [N]} \omega_{N}^{p \cdot y} |y\rangle$$
$$|p, i\rangle - \mathbb{R} = |p, i\rangle$$

 $x_{i}: |y\rangle - \mathbb{R} \approx \omega_{N}^{p \cdot y} |y\rangle$ $|p, i\rangle - \mathbb{R} - |p, i\rangle$

 $\Delta(t, k) = \text{amplitude of the basis states containing} \\ \geq k \text{ (disjoint) collisions after } t \text{ queries.}$

Success

 $\leq \Delta(K^{2/3}N^{1/3}, K/2) + O(K/N)^{K/2}$

Recording Query Operator

$$x_{i}: |\perp\rangle - \mathbb{R} = N^{-1/2} \sum_{y \in [N]} \omega_{N}^{p \cdot y} |y\rangle$$
$$|p, i\rangle - \mathbb{R} = |p, i\rangle$$

 $\begin{array}{c|c} x_i : & |y\rangle \\ & p,i\rangle \end{array} \begin{array}{c} \mathsf{R} \end{array} \begin{array}{c} \approx \omega_N^{p \cdot y} |y\rangle \\ & |p,i\rangle \end{array}$

 $\Delta(t, k) =$ amplitude of the basis states containing $\geq k$ (disjoint) collisions after *t* queries.

Success

Recording Query Operator

$$x_{i}: |\perp\rangle - \mathbb{R} = \frac{N^{-1/2} \sum_{y \in [N]} \omega_{N}^{p \cdot y} |y\rangle}{|p, i\rangle}$$

 $- \approx \omega_N^{p \cdot y} | y \rangle$ $- | p, i \rangle$ x_i : $|y\rangle$ R $|p,i\rangle$

 $\Delta(t, k) =$ amplitude of the basis states containing $\geq k$ (disjoint) collisions after *t* queries.

 \approx guess K/2 unrecorded collisions

Success

 $\leq \\ \Delta(K^{2/3}N^{1/3}, K/2) \\ + O(K/N)^{K/2} \\ \leq 2^{-\Omega(K)}$

Recording Query Operator

$$x_{i}: |\perp\rangle = \mathbb{R} = N^{-1/2} \sum_{y \in [N]} \omega_{N}^{p \cdot y} |y\rangle$$
$$|p, i\rangle = \mathbb{R} = |p, i\rangle$$

 $x_{i}: |y\rangle - \mathbb{R} \approx \omega_{N}^{p \cdot y} |y\rangle$ $|p, i\rangle - \mathbb{R} - |p, i\rangle$

 $\Delta(t, k) =$ amplitude of the basis states containing $\geq k$ (disjoint) collisions after *t* queries.

Conclusion

 \rightarrow K-Search: find *K* ones in *x* where $x_i = 1$ with probability *K*/*N*

Solving the K-Search problem with success probability at least $2^{-O(K)}$ requires time $T \ge \Omega(\sqrt{NK})$.

- + Simpler proof than previous work [Klauck et al.'07, Ambainis'10, ...]
- + Implies several quantum time-space tradeoffs (e.g. for Sorting).

- requires time $T \ge \Omega(\sqrt{NK})$.
- tradeoffs (e.g. for Sorting).
- Recent work for non-product distributions [Czajkowski'21, Rosmanis'21]

- Recent work for non-product distributions [Czajkowski'21, Rosmanis'21]
- Conjecture: $T^2S \ge \Omega(K^2N)$ for finding K collisions.