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Input Queries Computer

Read Only Memory Read-Write Memory

Time T = number of gueries to the input

Space S = number of bits in the computer’'s memory

— The number of queries is a lower bound on the actual computation time.
— If S = o then T < N is sufficient (load the entire input in the computer’'s memory).

— \We are interested in the case “T or S << N”.
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Input Queries Computer

Read Only Memory Read-Write Memory

Time T = number of gueries to the input

Space S = number of bits in the computer’'s memory

[Beame’91] Sorting N numbers requires time T and space S such that

[Klauck et al.’07] Boolean Multiplication of two NxN matrices requires



Classical Query Model

* |nitially, the memory is filled with S zeros.

 The computation alternates between T queries and T memory updates.

X
* The “Query Operator” Q is:



Quantum Query Model

e The memory is made of , initially set to |0).

X

* The quantum “Query Operator” Q is: . .
(when x. € {0,1}) |7) (—=1)%|i)

e The computation alternates between T quantum queries and T unitary updates/
measurements of the memory.



Quantum Query Model

2H|0)(0|H
1

Example: Grover’s Search

{T=o<m

S = log(N)
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Our focus in this talk: quantum time-space tradeoft

Very few existing results:
[Klauck et al.’07] Sorting N numbers requires T2S = Q(N3).
[Klauck et al.’07] Boolean Matrix-Matrix Multiplication requires T2S = Q(N5).
[Klauck et al.’07] Boolean Matrix-Vector Multiplication requires T2S = Q(N3).

[Ambainis et al.’09] Evaluating Ax = (t,...,1) requires T2S = Q(tN3) when S < N/A.
TS = Q(N2) when S > N/A.

Our contribution: a new tradeoff for the problem.
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— A random input contains ~ ©(N) collision pairs with high probability.



Collision Pairs Finding 15

Find K collision pairs in a random input x1, ..., xy ~ [N].

— A random input contains ~ ©(N) collision pairs with high probability.

— Finding collisions Is an important problem in cryptanalysis:
e preimage attacks on hash functions

 meet-in-the-middle attacks « requires to find many collisions

e computing discrete logarithms
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r= 0(y¥)

S = O(logN)
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I'=0(yN) vs T=0(N'")
§ = O(log N) 5= 0(N'")

The quantum BHT algorithm has a better time
complexity, but a worst time-space tradeoff!

A BHT attack on would require S = 2256/3 =~ 285 qubits!

Big open problem: Is there a quantum algorithm with
T <o(y/N) and S = O(logN)?



Finding K collision pairs 24

Classical Tradeoff Quantum Tradeoff
5 when when
Upper bound - QUogN)<S<0OK) = QogN)<S < OK3N3)
Parallel Collision Search Adaptation of the BHT algorithm

[van Oorschot and Wiener’99]



Finding K collision pairs 24

Classical Tradeoff Quantum Tradeoff
5 when when
Upper bound - QUogN)<S<0OK) = QogN)<S < OK3N3)
Parallel Collision Search Adaptation of the BHT algorithm

[van Oorschot and Wiener’99]

Lower bound
[Dinur’20]



Finding K collision pairs 24

Classical Tradeoff Quantum Tradeoff
5 when when
Upper bound - QUogN)<S<0OK) = QogN)<S < OK3N3)
Parallel Collision Search Adaptation of the BHT algorithm

[van Oorschot and Wiener’99]

T3S > Q(K3N)
Lower bound |
[Dinur’20] Our result
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Classical Tradeoff

Quantum Tradeoff

Upper bound

when
Q(og N) < S < O(K)

Parallel Collision Search
[van Oorschot and Wiener’99]

when
Q(log N) < S < O(K2/3N1/3)

Adaptation of the BHT algorithm

Lower bound

[Dinur’20]

T3S > Q(K3N)

Our result

We conjecture: T2S = Q(K2N)
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Our result: T3S = Q(K3N) Conjecture: T2S > Q(K2N)

e QOur result is non-trivial when K = w(1):

— For K =1 and S = log(N) it gives T = Q(N/3), which is the same as the time-

only lower bound [Aaronson and Shi’04].

— For K > w(1) and S = log(N) it gives T = Q(KN1/3), whereas we prove that the

best time-only lower bound is T = O(K2/3N1/3).

* The conjecture for IS particularly interesting:
— Time-space tradeoffs are generally easier to prove when the output is large.

— If true, we show that it would implies for
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[Borodin et al.’81] : a general method to convert

directly into

— The problem must have a large output (# decision problem).

— The time lower bound is in the exponentially small success probability regime.

Finding inx e {0,1}",|x| =K All existing quantum
with success probability at least 2-0K) :

requires time

KColliSIONS!- - :cccereeeerccenreennnann, .

Finding inx ~ [N]Y

| - ; # T°S > Q(K°N)
with success probability at least 2-0K) .
- for K-Collision Pairs Finding

time-space tradeoffs

requires time
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Two main methods for proving quantum query lower bounds:

The acceptance probability of a T-query algorithm
Is a polynomial in x of degree at most 2T.
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Two main methods for proving quantum query lower bounds:

The _acceptance propability of a T-query algorithm Bound the progress W' = 2 Wx,y<l//)€ | l//yf> ,
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"',./\\.___\ 1 ‘l | O> Q
"“ \\_/j':_\'\ ," 1 v B - o ’”\{5 : - T
"’: 1 \, | | |0> — R ‘ B | l//x >
| - \_/ [ P o _
'I
Both methods are often difficult to use in practice:
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properties of Chebyshev polynomials. the Johnson Association Scheme.
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Two main methods for proving quantum query lower bounds:

The _acceptance propability of a T-query algorithm Bound the progress W' = 2 w)@y(% | 1//5) ,
Is a polynomial in x of degree at most 2T. Y
1 |' X !
",.-/_\\-..\ 1 ‘l | O> Q
/ \/T\ ‘l' 1K ; ;\,\ ‘\‘ L= o ;\ B T
| - \_/ 10) —— — _
'l
Both methods are often difficult to use in practice:
Coppersmith-Rivlin’s bound + Extremal Analysis of the eigenspaces of
properties of Chebyshev polynomials. the Johnson Association Scheme.

A simpler and more intuitive method?
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Input: x = (x1, ..., Xx§) where x; = 1 with probability K/N.

Strategy: sample each entry only when it is queried, and record its value.

x=(Ll,L1,1,1)

x=(L,0,L,1)

x=(1,0,1,1)

x=(1,0,1,1)
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Input: x = (x1, ..., Xx§) where x; = 1 with probability K/N.

Strategy: sample each entry only when it is queried, and record its value.

Probability to have

(The un-recorded positions can only be

x=(Ll,L1,1,1)

X7
>

.X2=O XZ(J_,O,J_,J_)
<

x;? X

x1=1 X:(l,O,J_,J_)
<

X" R

XZZO x=(1,O,J_,J_)

. T K K/2
ones after T queries < —
K/2)\ N

< 279K) \when

, With success < (K/N)X? < 27%K)),
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Can we record quantum queries similarly?

[Zhandry’19]: ¢ A quantum “recording technique” that works when the input
X1, ...,XN Is sampled from the on [M]N.

e Motivations: security proofs in the quantum random oracle model.

Our contribution: ¢ We generalize Zhandry’s technique to the case where x1, ..., xy is
sampled from any on [M]N.

* We simplify the framework and the analysis of the method.
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xl . | 1 > m
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0) — o
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S| L)Y=1+/1-K/N|0)++/K/N|1)
Query Operator Recording Query Operator
v We show that it makes no
X O X

difference for the algorithm.

v We show that it “records”
the 1’s.
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R

(where (= 1)+ = 1)



Quantum Recording for K-Search

33

X1 : \/1=KIN|0) ++/KIN|1)

Xy +4/1 =K/N|0) ++/K/N|1)

XN /1=KIN|0) ++/K/N|1)

O> 1
3

i

° fi

oy

S| L)=1+/1-K/N|0)++/K/N|1)




Quantum Recording for K-Search 33
xp:o L) -|E
Y- 1L)qS]
Xy 1L1) 3]
0) —
0)——

S| L)=1+/1-K/N|0)++/K/N|1)




Quantum Recording for K-Search

33

Xy | L) S
Xp i | L) S
Xy L) S

0) —

O).—

0)—

S| L)=1+/1-K/N|0)++/K/N|1)




Quantum Recording for K-Search

33

X 14 SkeST S
Xy L) S-St S
0) —
0) —
0)—

S| L)=1+/1-K/N|0)++/K/N|1)




Quantum Recording for K-Search

33

X o L) Ste-ST S ST
X [L) SHsT SHsT
Xy | L) Ky ST S ST

0) —

0) —

0>'_

S| L)=1+/1-K/N|0)++/K/N|1)




Quantum Recording for K-Search

33

X o L) Ste-ST S ST
X [L) SHsT SHsT
Xy | L) Ky ST S ST

0) —

0) —

0>'_

S| L)=1+/1-K/N|0)++/K/N|1)




Quantum Recording for K-Search 33
xp:oo L) She-s Ste-IsT S’ 5]
Xyt | L1) SHs SHsT St 1S]
Xy:o | L) q N S gt g IE
0) —
O).—
0y——

S| L)=1+/1-K/N|0)++/K/N|1)




Quantum Recording for K-Search 33
xp:oo L) She-s Ste-IsT S’ 5]
Xyt | L1) SHs SHsT St 1S]
Xy:o | L) q N S gt g E
0) —
O).—
0y——

S| L)=1+/1-K/N|0)++/K/N|1)

Recording Query Operator




Quantum Recording for K-Search 33
xp:oo L) She-s Ste-IsT S’ 5]
Xyt | L1) SHs SHsT St 1S]
Xy:o | L) q N S gt g m
0) —
0) —

S| L)=1+/1-K/N|0)++/K/N|1)

Recording Query Operator

v If xjis not queried
it stays unchanged.




Quantum Recording for K-Search 33
Xy L) (5]
Xp o | 1) 3]
R R
Xy . | L) IEI
0) — -
0) —
0)——

S| L)=1+/1-K/N|0)++/K/N|1)

Recording Query Operator

v If xjis not queried
it stays unchanged.




Quantum Recording for K-Search 33
Xy L) (5]
Xp o | 1) 3]
R R
Xy . | L) IEI
0) — - i i
0) —
0)—

S| L)=1+/1-K/N|0)++/K/N|1)

Recording Query Operator

| L) —

) —

10) —

1) —

1) —

1) —




Quantum Recording for K-Search 33
X | 1) E
Xp i | L) 3]
R R R
Xy . | L) IEI
0) — - . _ i
0) —
0)——
S| L)=1+/1-K/N|0)++/K/N|1)
| L) - ~|L)Y-—+KIN|1)
Recording Query Operator §) — |7
X |0) —
i) =

1) —

1) —




Quantum Recording for K-Search 33
X | 1) E
Xp i | L) 3]
R R
Xy . | L) IEI
0) — - _ i
0) —
0)——
S| L)=1+/1-K/N|0)++/K/N|1)
| L) - _— ~|L)—-+/K/N|1)
Recording Query Operator §) — — )
|0) — — ~ |0)++/K/N|1)
xl . .
-1 i)
) _

1) —

1) —




Quantum Recording for K-Search 33

X1 L)
Xp i | L)

[l [

<
-
=

S| L)=1+/1-K/N|0)++/K/N|1)

| L) — — ~ | L)Y=+/K/N|1)
Recording Query Operator |i) — . | i)
|0) — — ~ |0) +/K/N|1)
X; . R :
1= 1§)

11— F=~-I1)+vK/IN(|0)—]| 1))
D11




Quantum Recording for K-Search 33
Xy L) (5]
Xyt | L) EI
R R R
Xy . | L) IEI
0) — . : i i
0) —
0)—

S| L)=1+/1-K/N|0)++/K/N|1)

Record

— |i)
a nhew 1

— |i)

| L) —
Recording Query Operator i) —
|0) —

.Xl- .
i) —
) 1) —
i) —

—~ — | 1) +/K/N(|0)—| L))

— )




Quantum Recording 34

Classical Recording Quantum Recording

to have recorded
at least K/2 ones

K-Search



Quantum Recording 34

Classical Recording Quantum Recording
to have recorded of the states that have
at least K/2 ones recorded at least K/2 ones

K-Search



Quantum Recording 34

Classical Recording Quantum Recording
to have recorded of the states that have

at least K/2 ones recorded at least K/2 ones

K-Search

to have recorded
at least K/2 (disjoint) collisions

(1) (1)

K-Collision Pairs



Quantum Recording 34

Classical Recording Quantum Recording
to have recorded of the states that have
at least K/2 ones recorded at least K/2 ones
K-Search
T K K72 T K K72
- < 4/ —
K/i2)\ N K72 N
to have recorded of the states that have

at least K/2 (disjoint) collisions recorded at least K/2 (disjoint) collisions

S(Jz)@) < () (s §>

K-Collision Pairs:
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Classical Recording Quantum Recording
to have recorded of the states that have
at least K/2 ones recorded at least K/2 ones
K-Search
<27 when T<OW) | <27 \when T < O(y/NK)
to have recorded of the states that have

. atleast K/2 (disjoint) collisions Erecorded at least K/2 (disjoint) collisions
K-Collision Pairs |

<27%%) when T < O(y/NK) <27 \when T < O(K**N'?)



Conclusion



Open Problems:

® Extend the quantum recording technique to distributions?

Example: uniform distribution over the symmetric group.

® Improve the tradeoff for finding ©(N) Collision Pairs to ,

or find a quantum algorithm with T3S < O(N4)?

® New lower bounds by recording queries? ?

arXiv:
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How to find by using an algorithm for
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.Xf3‘ 6 Xg = Q Ps
@
xl — 3 xlO =
A1 = ® ®
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X2 — 4 X9 — 6 'x7 — 2
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.x8 — 1

Repeat O(N) times: sample \/ﬁ elements and find a collision among them with ED.
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How to find by using an algorithm for
X4 =2
X; =06 _ 4
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Repeat O(N) times: sample \/ﬁ elements and find a collision among them with ED.
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How to find by using an algorithm for
X4 =2
X, =6 _ 4
3. X = 8 o

---------------------------------------- ® _
,,,, X = 3 "'~...\ 'xl() —

X1 = O R ®

® ® X2 =
@
.. ‘ XS — 7
____________________ Xy = 4x9 =6 X7 =2
® e o o
x8 — 1

Repeat O(N) times: sample \/ﬁ elements and find a collision among them with ED.
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How to find by using an algorithm for
--------------- X, =2
X; =06 _ 4
3‘ X = 8 o
. @ _
X = 3 ; . X0 =
A1 = | '3 _ ®
® ‘- ® X2 =
@
‘ XS — 7
X2 — 4 X9 — 6 'x7 — 2
| ® ®
x8 — 1

...
.....
-------

Repeat O(N) times: sample \/ﬁ elements and find a collision among them with ED.
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How to find by using an algorithm for
X4 =2
X, =6 _ 4
3‘ X = 8 o
@ _
.xl — 3 xlO T 4
X1 = ® e T ®
o Lot ® X1p = 3
@
. XS — 7
X2 — 4 XQ — 6 'x7 — 2
| ‘ ® ‘ ®
.x8 — 1 ______________________________________

Repeat O(N) times: sample \/ﬁ elements and find a collision among them with ED.

— Sometimes, there is no collision to find.
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How to find by using an algorithm for
X4 =2
X, =6 _ 4
3‘ X = 8 o
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Repeat O(N) times: sample \/ﬁ elements and find a collision among them with ED.

— Sometimes, there is no collision to find.
— We cannot control which collision ED is going to output.
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How to find by using an algorithm for
X4 =2
X, =6 _ 4
3‘ X = 8 o

et ® _
'''''' x, =3 X10 =

X1 = ® _ ®
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. ‘ XS — 7
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Repeat O(N) times: sample \/ﬁ elements and find a collision among them with ED.

— Sometimes, there is no collision to find.
— We cannot control which collision ED is going to output.
— We can output the same collision many times (but it only counts as one collision).
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How to find by using an algorithm for
X, =6 X4 =2
3‘ Xg = 8 )
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.xl — 3 T xlO T
A1 = ® ®
® ® X2 =
@
. XS — 7
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Repeat O(N) times: sample \/ﬁ elements and find a collision among them with ED.

— Sometimes, there is no collision to find.
— We cannot control which collision ED is going to output.
— We can output the same collision many times (but it only counts as one collision).

— We need to store the y/N sampled indices =
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How to find by using an algorithm for
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-Algorithm for -Algorithm for finding

on inputs of size \/]T’ on inputs of size N
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How to find by using an algorithm for
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-Algorithm for -Algorithm for finding
on inputs of size \/]T’ on inputs of size N

(NT)*S > Q(N°)
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How to find by using an algorithm for
X3‘ Xg = 8 ®
@ _
.xl — 3 xlO T
xpp =4 ® ¢
® ® Ao =
@
. XS — 7
X2 — 4 XQ — 6 'x7 — 2
| P @
.x8 — 1
-Algorithm for -Algorithm for finding
on inputs of size \/]T’ on inputs of size N

75 > O(V/N ) — (NT)2S > Q(N?)



