Quantum Time-Space Tradeoffs by Recording Queries

Yassine Hamoudi, Frédéric Magniez

IRIF, Université de Paris

arXiv: 2002.08944

Google Sycamore's calculation

Time≈ 5 minutesMemory≈ 53 qubits+ few megabytes

Simulation by Schrödinger-Feynman algorithm

Simulation by Schrödinger algorithm

Time \approx 10,000 yearsMemory \approx 1 Petabyte

Time ≈ 2.5 days Memory ≈ 250 Petabytes

1. Time and Space in the Query Model

2. The Collision Pairs Finding Problem

3. Lower Bounds by Recording Queries

Time and Space in the Query Model

Time T = number of <u>queries</u> to the input **Space S** = number of <u>bits</u> in the computer's memory

Time T = number of <u>queries</u> to the input Space S = number of <u>bits</u> in the computer's memory

- \rightarrow The number of queries is a lower bound on the actual computation time.
- → If $S = \infty$ then $T \le N$ is sufficient (load the entire input in the computer's memory).
- → We are interested in the case "T or S << N".

Time T = number of <u>queries</u> to the input

Space S = number of <u>bits</u> in the computer's memory

Time-Space Tradeoffs:

[Beame'91] Sorting N numbers requires time T and space S such that $TS \ge \Omega(N^2)$.

Time T = number of <u>queries</u> to the input

Space S = number of <u>bits</u> in the computer's memory

Time-Space Tradeoffs:

[Beame'91] Sorting N numbers requires time T and space S such that $TS \ge \Omega(N^2)$.

[Klauck et al.'07] Boolean Multiplication of two NxN matrices requires $TS \ge \Omega(N^3)$.

- Initially, the memory is filled with S zeros.
- The computation alternates between T queries and T memory updates.
- The "Query Operator" Q is:

$$\begin{array}{c} x \\ i \\ Q \\ x_i \end{array}$$

- The memory is made of S qubits, initially set to $|0\rangle$.
- The quantum "Query Operator" Q is: (when $x_i \in \{0,1\}$)

$$\begin{array}{c|c} x & & \\ i \rangle & & Q & -(-1)^{x_i} | i \rangle \end{array}$$

 The computation alternates between T quantum queries and T unitary updates/ measurements of the memory.

Example: Grover's Search

$$\begin{cases} T = O\left(\sqrt{N}\right) \\ S = \log(N) \end{cases}$$

Our focus in this talk: quantum time-space tradeoff lower bounds.

Very few existing results:

[Klauck et al.'07] Sorting N numbers requires $T^2S \ge \Omega(N^3)$.

Our focus in this talk: quantum time-space tradeoff lower bounds.

Very few existing results:

[Klauck et al. '07] Sorting N numbers requires $T^2S \ge \Omega(N^3)$. [Klauck et al. '07] Boolean Matrix-Matrix Multiplication requires $T^2S \ge \Omega(N^5)$. [Klauck et al. '07] Boolean Matrix-Vector Multiplication requires $T^2S \ge \Omega(N^3)$. [Ambainis et al. '09] Evaluating $Ax \ge (t,...,t)$ requires $T^2S \ge \Omega(tN^3)$ when S < N/t. $TS \ge \Omega(N^2)$ when S > N/t. Our focus in this talk: quantum time-space tradeoff lower bounds.

Very few existing results:

[Klauck et al.'07] Sorting N numbers requires $T^2S \ge \Omega(N^3)$. [Klauck et al.'07] Boolean Matrix-Matrix Multiplication requires $T^2S \ge \Omega(N^5)$. [Klauck et al.'07] Boolean Matrix-Vector Multiplication requires $T^2S \ge \Omega(N^3)$. [Ambainis et al.'09] Evaluating $Ax \ge (t,...,t)$ requires $T^2S \ge \Omega(tN^3)$ when S < N/t. $TS \ge \Omega(N^2)$ when S > N/t.

Our contribution: a new tradeoff for the Collision Pairs Finding problem.

The Collision Pairs Finding Problem

Collision pair: $x_i = x_j$

Collision pair: $x_i = x_j$

Collision pair: $x_i = x_j$

K-Collision Pairs

Find K collision pairs in a **random** input $x_1, ..., x_N \sim [N]$.

K-Collision Pairs

Find K collision pairs in a **random** input $x_1, ..., x_N \sim [N]$.

 \rightarrow A random input contains ~ $\Theta(N)$ collision pairs with high probability.

K-Collision Pairs

Find K collision pairs in a **random** input $x_1, ..., x_N \sim [N]$.

 \rightarrow A random input contains ~ $\Theta(N)$ collision pairs with high probability.

→ Finding collisions is an important problem in cryptanalysis:

- preimage attacks on hash functions
- meet-in-the-middle attacks ← requires to find many collisions
- computing discrete logarithms

```
• ...
```


16

Birthday attack

Birthday attack

Birthday attack

$$T = O\left(\sqrt{N}\right)$$
$$S = O\left(\sqrt{N}\right)$$

Birthday attack

$$T = O\left(\sqrt{N}\right)$$
$$S = O\left(\sqrt{N}\right)$$

Birthday attack

$$T = O\left(\sqrt{N}\right)$$
$$S = O\left(\sqrt{N}\right)$$

Birthday attack

$$T = O\left(\sqrt{N}\right)$$
$$S = O\left(\sqrt{N}\right)$$

Birthday attack

$$T = O\left(\sqrt{N}\right)$$
$$S = O\left(\sqrt{N}\right)$$

Birthday attack

$$T = O\left(\sqrt{N}\right)$$
$$S = O\left(\sqrt{N}\right)$$

Birthday attack

$$T = O\left(\sqrt{N}\right)$$
$$S = O\left(\sqrt{N}\right)$$

Birthday attack

$$T = O\left(\sqrt{N}\right)$$
$$S = O\left(\sqrt{N}\right)$$

Birthday attack

$$T = O\left(\sqrt{N}\right)$$
$$S = O\left(\sqrt{N}\right)$$

Birthday attack

$$T = O\left(\sqrt{N}\right)$$
$$S = O\left(\sqrt{N}\right)$$

$$T = O(\sqrt{N})$$
$$S = O(\log N)$$

Quantum BHT algorithm

Quantum BHT algorithm

Quantum BHT algorithm

 $T = O(N^{1/3})$ $S = O(N^{1/3})$

Birthday attack + Floyd's cycle finding

BHT algorithm

$$T = O(\sqrt{N}) \qquad VS \qquad T = O(N^{1/3})$$
$$S = O(\log N) \qquad S = O(N^{1/3})$$

The quantum BHT algorithm has a better time complexity, but a worst time-space tradeoff!

Birthday attack + Floyd's cycle finding

BHT algorithm

$T = O\left(\sqrt{N}\right)$	VS	$T = O(N^{1/3})$
$S = O(\log N)$		$S = O(N^{1/3})$

The quantum BHT algorithm has a better time complexity, but a worst time-space tradeoff!

A BHT attack on SHA3-256 would require S $\approx 2^{256/3} \approx 2^{85}$ qubits!

Birthday attack + Floyd's cycle finding

$T = O(\sqrt{N}) \qquad VS \qquad T = O(N^{1/3})$ $S = O(\log N) \qquad S = O(N^{1/3})$

The quantum BHT algorithm has a better time complexity, but a worst time-space tradeoff!

A BHT attack on SHA3-256 would require S $\approx 2^{256/3} \approx 2^{85}$ qubits!

Big open problem: Is there a quantum algorithm with $T \le o(\sqrt{N})$ and $S = O(\log N)$?

BHT algorithm

	Classical Tradeoff	Quantum Tradeoff
Upper bound	$T^{2}S \leq \tilde{O}(K^{2}N)$ when $\tilde{\Omega}(\log N) \leq S \leq \tilde{O}(K)$	$T^{2}S \leq \tilde{O}(K^{2}N)$ when $\tilde{\Omega}(\log N) \leq S \leq \tilde{O}(K^{2/3}N^{1/3})$
	Parallel Collision Search [van Oorschot and Wiener'99]	Adaptation of the BHT algorithm

	Classical Tradeoff	Quantum Tradeoff
Upper bound	$\begin{array}{l} \mathbf{T^2S} \leq \tilde{\mathbf{O}}(\mathbf{K^2N}) \\ \text{when} \\ \tilde{\Omega}(\log N) \leq S \leq \tilde{\mathbf{O}}(\mathbf{K}) \\ \end{array}$ $\begin{array}{l} \text{Parallel Collision Search} \\ \text{[van Oorschot and Wiener'99]} \end{array}$	$\begin{array}{l} \mathbf{T}^{2}\mathbf{S} \leq \tilde{\mathbf{O}}(\mathbf{K}^{2}\mathbf{N}) \\ \text{when} \\ \tilde{\mathbf{\Omega}}(\log \mathbf{N}) \leq \mathbf{S} \leq \tilde{\mathbf{O}}(\mathbf{K}^{2/3}\mathbf{N}^{1/3}) \\ \text{Adaptation of the BHT algorithm} \end{array}$
Lower bound	T²S ≥ Ω̃(K²N) [Dinur'20]	

	Classical Tradeoff	Quantum Tradeoff
Upper bound	$\begin{array}{l} \mathbf{T^2S} \leq \tilde{\mathbf{O}}(\mathbf{K^2N}) \\ \text{when} \\ \tilde{\Omega}(\log N) \leq S \leq \tilde{\mathbf{O}}(\mathbf{K}) \\ \end{array}$ $\begin{array}{l} \text{Parallel Collision Search} \\ \text{[van Oorschot and Wiener'99]} \end{array}$	$\begin{array}{l} \mathbf{T^2S} \leq \tilde{O}(K^2N) \\ \text{when} \\ \tilde{\Omega}(\log N) \leq S \leq \tilde{O}(K^{2/3}N^{1/3}) \end{array}$ Adaptation of the BHT algorithm
Lower bound	T²S ≥ Ω̃(K²N) [Dinur'20]	T³S ≥ Ω̃(K³N) Our result

	Classical Tradeoff	Quantum Tradeoff
Upper bound	$T^2S \leq \tilde{O}(K^2N)$ when $\tilde{\Omega}(\log N) \leq S \leq \tilde{O}(K)$ Parallel Collision Search [van Oorschot and Wiener'99]	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$
Lower bound	<mark>T²S ≥ Ω̃(K²N)</mark> [Dinur'20]	T³S ≥ Ω̃(K³N) Our result
		We conjecture: $T^2S \ge \tilde{\Omega}(K^2N)$

Our result: $T^3S \ge \tilde{\Omega}(K^3N)$

Conjecture: $T^2S \ge \tilde{\Omega}(K^2N)$

• Our result is non-trivial when $K \ge \omega(1)$:

• Our result is non-trivial when $K \ge \omega(1)$:

→ For K = 1 and S = log(N) it gives T ≥ $\tilde{\Omega}(N^{1/3})$, which is the same as the timeonly lower bound [Aaronson and Shi'04].

• Our result is non-trivial when $K \ge \omega(1)$:

→ For K = 1 and S = log(N) it gives T ≥ $\tilde{\Omega}(N^{1/3})$, which is the same as the timeonly lower bound [Aaronson and Shi'04].

→ For K ≥ $\omega(1)$ and S = log(N) it gives T ≥ $\tilde{\Omega}(KN^{1/3})$, whereas we prove that the best time-only lower bound is T = $\tilde{\Theta}(K^{2/3}N^{1/3})$.

• Our result is non-trivial when $K \ge \omega(1)$:

→ For K = 1 and S = log(N) it gives T ≥ $\tilde{\Omega}(N^{1/3})$, which is the same as the timeonly lower bound [Aaronson and Shi'04].

- → For $K \ge \omega(1)$ and $S = \log(N)$ it gives $T \ge \tilde{\Omega}(KN^{1/3})$, whereas we prove that the best time-only lower bound is $T = \tilde{\Theta}(K^{2/3}N^{1/3})$.
- The conjecture $T^2S \ge \tilde{\Omega}(N^3)$ for $K = \tilde{\Theta}(N)$ is particularly interesting:

• Our result is non-trivial when $K \ge \omega(1)$:

→ For K = 1 and S = log(N) it gives T ≥ $\tilde{\Omega}(N^{1/3})$, which is the same as the timeonly lower bound [Aaronson and Shi'04].

- → For $K \ge \omega(1)$ and $S = \log(N)$ it gives $T \ge \tilde{\Omega}(KN^{1/3})$, whereas we prove that the best time-only lower bound is $T = \tilde{\Theta}(K^{2/3}N^{1/3})$.
- The conjecture $T^2S \ge \tilde{\Omega}(N^3)$ for $K = \tilde{\Theta}(N)$ is particularly interesting:

 \rightarrow Time-space tradeoffs are generally easier to prove when the output is large.

• Our result is non-trivial when $K \ge \omega(1)$:

→ For K = 1 and S = log(N) it gives T ≥ $\tilde{\Omega}(N^{1/3})$, which is the same as the timeonly lower bound [Aaronson and Shi'04].

- → For K ≥ $\omega(1)$ and S = log(N) it gives T ≥ $\tilde{\Omega}(KN^{1/3})$, whereas we prove that the best time-only lower bound is T = $\tilde{\Theta}(K^{2/3}N^{1/3})$.
- The conjecture $T^2S \ge \tilde{\Omega}(N^3)$ for $K = \tilde{\Theta}(N)$ is particularly interesting:

 \rightarrow Time-space tradeoffs are generally easier to prove when the output is large.

→ If true, we show that it would implies $T^2S \ge \tilde{\Omega}(N^2)$ for Element Distinctness.

Lower Bounds by Recording Queries

- → The problem must have a **large output** (\neq decision problem).
- \rightarrow The time lower bound is in the **exponentially small** success probability regime.

- → The problem must have a **large output** (\neq decision problem).
- \rightarrow The time lower bound is in the **exponentially small** success probability regime.

- → The problem must have a **large output** (\neq decision problem).
- \rightarrow The time lower bound is in the **exponentially small** success probability regime.

Polynomial Method

The acceptance probability of a T-query algorithm is a polynomial in x of degree at most 2T.

Polynomial Method

The acceptance probability of a T-query algorithm is a polynomial in x of degree at most 2T. 1

Adversary Method

Bound the progress
$$W^{t} = \sum_{x,y} w_{x,y} \langle \psi_{x}^{t} | \psi_{y}^{t} \rangle$$
.

$$x \longrightarrow Q \longrightarrow W^{t} = \sum_{x,y} w_{x,y} \langle \psi_{x}^{t} | \psi_{y}^{t} \rangle$$

$$|0\rangle \longrightarrow Q \longrightarrow W^{t} = |\psi_{x}^{T}\rangle$$

Polynomial Method

Adversary Method

Both methods are often difficult to use in practice:

K-Search in [Klauck et al.'07]

Coppersmith-Rivlin's bound + Extremal properties of Chebyshev polynomials.

K-Search in [Ambainis'10]

Analysis of the eigenspaces of the Johnson Association Scheme.

Polynomial Method

Adversary Method

Bound the progress
$$W^{t} = \sum_{x,y} w_{x,y} \langle \psi_{x}^{t} | \psi_{y}^{t} \rangle$$
.

$$X \longrightarrow Q \longrightarrow W^{t}_{x,y} \langle \psi_{x}^{t} | \psi_{y}^{t} \rangle$$

$$|0\rangle \longrightarrow Q \longrightarrow W^{t}_{x,y} \langle \psi_{x}^{t} | \psi_{y}^{t} \rangle$$

Both methods are often difficult to use in practice:

K-Search in [Klauck et al.'07]

Coppersmith-Rivlin's bound + Extremal properties of Chebyshev polynomials.

K-Search in [Ambainis'10]

Analysis of the eigenspaces of the Johnson Association Scheme.

A simpler and more intuitive method?

Input: $x = (x_1, ..., x_N)$ where $x_i = 1$ with probability K/N.

Input: $x = (x_1, ..., x_N)$ where $x_i = 1$ with probability K/N.

Strategy: sample each entry only when it is queried, and record its value.

Input: $x = (x_1, ..., x_N)$ where $x_i = 1$ with probability K/N.

Strategy: sample each entry only when it is queried, and record its value.

Algorithm

$$x = (\perp, \perp, \perp, \perp)$$

Input: $x = (x_1, ..., x_N)$ where $x_i = 1$ with probability K/N.

Strategy: sample each entry only when it is queried, and record its value.

Algorithm

Input: $x = (x_1, ..., x_N)$ where $x_i = 1$ with probability K/N.

Strategy: sample each entry only when it is queried, and record its value.

Algorithm

Input: $x = (x_1, ..., x_N)$ where $x_i = 1$ with probability K/N.

Strategy: sample each entry only when it is queried, and record its value.

Algorithm

Input: $x = (x_1, ..., x_N)$ where $x_i = 1$ with probability K/N.

Strategy: sample each entry only when it is queried, and record its value.

Algorithm

Input: $x = (x_1, ..., x_N)$ where $x_i = 1$ with probability K/N.

Strategy: sample each entry only when it is queried, and record its value.

Algorithm

Input: $x = (x_1, ..., x_N)$ where $x_i = 1$ with probability K/N.

Strategy: sample each entry only when it is queried, and record its value.

Algorithm

Input: $x = (x_1, ..., x_N)$ where $x_i = 1$ with probability K/N.

Strategy: sample each entry only when it is queried, and record its value.

Algorithm

Classical Lower Bound for K-Search

Input: $x = (x_1, ..., x_N)$ where $x_i = 1$ with probability K/N.

Strategy: sample each entry only when it is queried, and record its value.

Algorithm

Classical Lower Bound for K-Search

Input: $x = (x_1, ..., x_N)$ where $x_i = 1$ with probability K/N.

Strategy: sample each entry only when it is queried, and record its value.

Algorithm

 $\leq 2^{-\Omega(K)}$ when $T \leq O(N)$

Classical Lower Bound for K-Search

Input: $x = (x_1, ..., x_N)$ where $x_i = 1$ with probability K/N.

Strategy: sample each entry only when it is queried, and record its value.

Algorithm

 $\leq 2^{-\Omega(K)}$ when $T \leq O(N)$

(The un-recorded positions can only be guessed, with success $\leq (K/N)^{K/2} \leq 2^{-\Omega(K)}$).

Can we record quantum queries similarly?

Can we record quantum queries similarly?

- **[Zhandry'19]:** A quantum "recording technique" that works when the input $x_1, ..., x_N$ is sampled from the uniform distribution on [M]^N.
 - Motivations: security proofs in the quantum random oracle model.

Can we record quantum queries similarly?

[Zhandry'19]: • A quantum "recording technique" that works when the input $x_1, ..., x_N$ is sampled from the uniform distribution on $[M]^N$.

• Motivations: security proofs in the quantum random oracle model.

Our contribution: • We generalize Zhandry's technique to the case where $x_1, ..., x_N$ is sampled from any product distribution $D_1 \otimes ... \otimes D_N$ on $[M]^N$.

• We simplify the framework and the analysis of the method.

Query Operator

Query Operator

$$S \mid \perp \rangle = \sqrt{1 - K/N} \mid 0 \rangle + \sqrt{K/N} \mid 1 \rangle$$

Query Operator

$$S \mid \perp \rangle = \sqrt{1 - K/N} \mid 0 \rangle + \sqrt{K/N} \mid 1 \rangle$$

Query Operator

Recording Query Operator

32

$$S \mid \perp \rangle = \sqrt{1 - K/N} \mid 0 \rangle + \sqrt{K/N} \mid 1 \rangle$$

Query Operator

Recording Query Operator

✓ We show that it makes no difference for the algorithm.

$$S \mid \perp \rangle = \sqrt{1 - K/N} \mid 0 \rangle + \sqrt{K/N} \mid 1 \rangle$$

Query Operator

Recording Query Operator

- We show that it makes no difference for the algorithm.
- We show that it "records" the 1's.

$$S \mid \perp \rangle = \sqrt{1 - K/N} \mid 0 \rangle + \sqrt{K/N} \mid 1 \rangle$$

Recording Query Operator

$$S \mid \perp \rangle = \sqrt{1 - K/N} \mid 0 \rangle + \sqrt{K/N} \mid 1 \rangle$$

Recording Query Operator

✓ If x_j is not queried it stays unchanged.

$$S \mid \perp \rangle = \sqrt{1 - K/N} \mid 0 \rangle + \sqrt{K/N} \mid 1 \rangle$$

Recording Query Operator

If x_j is not queried it stays unchanged.

$$S \mid \perp \rangle = \sqrt{1 - K/N} \mid 0 \rangle + \sqrt{K/N} \mid 1 \rangle$$

Recording Query Operator

$$S \mid \perp \rangle = \sqrt{1 - K/N} \mid 0 \rangle + \sqrt{K/N} \mid 1 \rangle$$

Recording Query Operator

$$S \mid \perp \rangle = \sqrt{1 - K/N} \mid 0 \rangle + \sqrt{K/N} \mid 1 \rangle$$

Recording Query Operator

 $\begin{array}{c|c} | \perp \rangle \\ | i \rangle \end{array} = \begin{array}{c|c} R \\ | i \rangle \end{array} = \begin{array}{c|c} | \perp \rangle - \sqrt{K/N} | 1 \rangle \\ | i \rangle \end{array}$

$$\begin{vmatrix} 0 \\ i \end{vmatrix} = \begin{bmatrix} \mathsf{R} \\ \mathsf{R} \end{bmatrix} = \begin{bmatrix} 0 \\ \mathsf{K} \\ \mathsf{K} \end{vmatrix} + \sqrt{K/N} \begin{vmatrix} 1 \\ i \end{vmatrix}$$

$$S \mid \perp \rangle = \sqrt{1 - K/N} \mid 0 \rangle + \sqrt{K/N} \mid 1 \rangle$$

Recording Query Operator

 $\begin{array}{c|c} | \perp \rangle \\ | i \rangle \end{array} = \begin{array}{c|c} R \\ | i \rangle \end{array} = \begin{array}{c|c} | \perp \rangle - \sqrt{K/N} | 1 \rangle \\ | i \rangle \end{array}$

$$\begin{array}{c|c} |0\rangle \\ \hline \\ |i\rangle \end{array} \end{array} \xrightarrow{R} \end{array} \approx |0\rangle + \sqrt{K/N} |1\rangle \\ \hline \\ |i\rangle \end{array}$$

 $\begin{array}{c} |1\rangle \\ |i\rangle \\ |i\rangle \end{array} \approx -|1\rangle + \sqrt{K/N} (|0\rangle - |\perp\rangle) \\ R \\ |i\rangle \end{array}$

$$S \mid \perp \rangle = \sqrt{1 - K/N} \mid 0 \rangle + \sqrt{K/N} \mid 1 \rangle$$

Recording Query Operator

 $|1\rangle - \mathbb{R} \approx -|1\rangle + \sqrt{K/N} (|0\rangle - |\perp\rangle)$ $|i\rangle - \mathbb{R} - |i\rangle$

	Classical Recording	Quantum Recording
K-Search	Probability to have recorded at least K/2 ones $\leq {\binom{T}{K/2}} {\binom{K}{N}}^{K/2}$	

	Classical Recording	Quantum Recording
K-Search	Probability to have recorded at least K/2 ones $\leq {\binom{T}{K/2}} {\binom{K}{N}}^{K/2}$	Amplitude of the states that have recorded at least K/2 ones $\leq {\binom{T}{K/2}} \left(4\sqrt{\frac{K}{N}}\right)^{K/2}$

	Classical Recording	Quantum Recording
K-Search	Probability to have recorded at least K/2 ones $\leq {\binom{T}{K/2}} {\binom{K}{N}}^{K/2}$	Amplitude of the states that have recorded at least K/2 ones $\leq {\binom{T}{K/2}} \left(4\sqrt{\frac{K}{N}}\right)^{K/2}$
K-Collision Pairs	Probability to have recorded at least K/2 (disjoint) collisions $\leq {\binom{T}{K/2}} {\binom{T}{N}}^{K/2}$	

	Classical Recording	Quantum Recording
K-Search	Probability to have recorded at least K/2 ones $\leq {\binom{T}{K/2}} {\binom{K}{N}}^{K/2}$	Amplitude of the states that have recorded at least K/2 ones $\leq {\binom{T}{K/2}} \left(4\sqrt{\frac{K}{N}}\right)^{K/2}$
K-Collision Pairs	Probability to have recorded at least K/2 (disjoint) collisions $\leq {\binom{T}{K/2}} {\binom{T}{N}}^{K/2}$	Amplitude of the states that have recorded at least K/2 (disjoint) collisions $\leq {\binom{T}{K/2}} \left(4\sqrt{\frac{T}{N}}\right)^{K/2}$

	Classical Recording	Quantum Recording
K-Search	Probability to have recorded at least K/2 ones $\leq 2^{-\Omega(K)} \text{ when } T \leq O(N)$	Amplitude of the states that have recorded at least K/2 ones $\leq 2^{-\Omega(K)} \text{ when } T \leq O(\sqrt{NK})$
K-Collision Pairs	Probability to have recorded at least K/2 (disjoint) collisions $\leq 2^{-\Omega(K)}$ when $T \leq O(\sqrt{NK})$	Amplitude of the states that have recorded at least K/2 (disjoint) collisions $\leq 2^{-\Omega(K)}$ when $T \leq O(K^{2/3}N^{1/3})$

Conclusion

Open Problems:

- Extend the quantum recording technique to non-product distributions? Example: uniform distribution over the symmetric group.
- Improve the tradeoff for finding $\tilde{\Theta}(N)$ Collision Pairs to $T^2S \ge \Omega(N^3)$, or find a quantum algorithm with $T^3S \le O(N^4)$?

• New lower bounds by recording queries? Triangles Finding?

Supplementary slides

Reducing $\tilde{\Theta}(N)$ -Collision Pairs to Element Distinctness 39

How to find $\tilde{\Theta}(N)$ Collision Pairs by using an algorithm for Element Distinctness

How to find O(N) Collision Pairs by using an algorithm for Element Distinctness

How to find $\tilde{\Theta}(N)$ Collision Pairs by using an algorithm for Element Distinctness

How to find $\tilde{\Theta}(N)$ Collision Pairs by using an algorithm for Element Distinctness

How to find $\tilde{\Theta}(N)$ Collision Pairs by using an algorithm for Element Distinctness

How to find $\tilde{\Theta}(N)$ Collision Pairs by using an algorithm for Element Distinctness

Repeat O(N) times: sample \sqrt{N} elements and find a collision among them with ED.

 \rightarrow Sometimes, there is no collision to find.

How to find $\tilde{\Theta}(N)$ Collision Pairs by using an algorithm for Element Distinctness

- \rightarrow Sometimes, there is no collision to find.
- \rightarrow We cannot control which collision ED is going to output.

How to find $\tilde{\Theta}(N)$ Collision Pairs by using an algorithm for Element Distinctness

- \rightarrow Sometimes, there is no collision to find.
- \rightarrow We cannot control which collision ED is going to output.
- \rightarrow We can output the same collision many times (but it only counts as one collision).

How to find $\tilde{\Theta}(N)$ Collision Pairs by using an algorithm for Element Distinctness

- \rightarrow Sometimes, there is no collision to find.
- \rightarrow We cannot control which collision ED is going to output.
- \rightarrow We can output the same collision many times (but it only counts as one collision).
- \rightarrow We need to store the \sqrt{N} sampled indices \Rightarrow 4-wise independent sampling

How to find $\tilde{\Theta}(N)$ Collision Pairs by using an algorithm for Element Distinctness

(T,S)-Algorithm for Element Distinctness on inputs of size \sqrt{N}

(NT,S)-Algorithm for finding $\tilde{\Theta}(N)$ Collision Pairs on inputs of size N

How to find $\tilde{\Theta}(N)$ Collision Pairs by using an algorithm for Element Distinctness

(T,S)-Algorithm for Element Distinctness on inputs of size \sqrt{N}

(NT,S)-Algorithm for finding $\tilde{\Theta}(N)$ Collision Pairs on inputs of size N

 $(NT)^2 S \ge \tilde{\Omega}(N^3)$

How to find $\tilde{\Theta}(N)$ Collision Pairs by using an algorithm for Element Distinctness

(T,S)-Algorithm for Element Distinctness on inputs of size \sqrt{N}

$$T^2 S \ge \tilde{\Omega} \left(\sqrt{N}^2 \right)$$

(NT,S)-Algorithm for finding $\tilde{\Theta}(N)$ Collision Pairs on inputs of size N

$$(NT)^2 S \ge \tilde{\Omega}(N^3)$$