
Quantum Time-Space Tradeoffs
by Recording Queries

Yassine Hamoudi, Frédéric Magniez

arXiv: 2002.08944

IRIF, Université de Paris

Simulation by
Schrödinger-Feynman algorithm

Simulation by
Schrödinger algorithm

Time ≈ 2.5 days

Memory ≈ 250 Petabytes

Time ≈ 10,000 years

Memory ≈ 1 Petabyte

Google Sycamore’s calculation

Time ≈ 5 minutes

Memory ≈ 53 qubits

 + few megabytes

1. Time and Space in the Query Model

2. The Collision Pairs Finding Problem

3. Lower Bounds by Recording Queries

Time and Space

in the Query Model

1

5Classical Query Model

Read Only Memory

x = (x1, …, xN)

Input

Read-Write Memory

i

xi

Queries Computer

5Classical Query Model

Read Only Memory

x = (x1, …, xN)

Input

Read-Write Memory

i

xi

Queries Computer

Time T = number of queries to the input

Space S = number of bits in the computer’s memory

5Classical Query Model

Read Only Memory

x = (x1, …, xN)

Input

Read-Write Memory

i

xi

Queries Computer

Time T = number of queries to the input

Space S = number of bits in the computer’s memory

The number of queries is a lower bound on the actual computation time.

If S = ∞ then T ≤ N is sufficient (load the entire input in the computer’s memory).

We are interested in the case “T or S << N”.

6Classical Query Model

Read Only Memory

Input

Read-Write Memory

i

xi

Queries Computer

Time T = number of queries to the input

Space S = number of bits in the computer’s memory

[Beame’91] Sorting N numbers requires time T and space S such that TS ≥ Ω(N2).
Time-Space Tradeoffs:

x = (x1, …, xN)

6Classical Query Model

Read Only Memory

Input

Read-Write Memory

i

xi

Queries Computer

Time T = number of queries to the input

Space S = number of bits in the computer’s memory

[Beame’91] Sorting N numbers requires time T and space S such that TS ≥ Ω(N2).
Time-Space Tradeoffs:

[Klauck et al.’07] Boolean Multiplication of two NxN matrices requires TS ≥ Ω(N3).
…

x = (x1, …, xN)

7Classical Query Model

S

x

0
0

0

⋮

T

Q Q

Qi xi

• Initially, the memory is filled with S zeros.

• The “Query Operator” Q is:

• The computation alternates between T queries and T memory updates.

x

8Quantum Query Model

⋮

Q Q

Q| i⟩ (−1)xi | i⟩• The quantum “Query Operator” Q is:
x

• The memory is made of S qubits, initially set to |0⟩.

• The computation alternates between T quantum queries and T unitary updates/
measurements of the memory.

x

|0⟩

|0⟩

|0⟩

(when)xi ∈ {0,1}

9Quantum Query Model

x

⋮

Q Q
|0⟩

|0⟩

H

T = O(N)
S = log(N)

2H |0⟩⟨0 |H
−I

2H |0⟩⟨0 |H
−I

|0⟩

Example: Grover’s Search

10Quantum Time-Space Tradeoffs

Our focus in this talk: quantum time-space tradeoff lower bounds.

Very few existing results:

[Klauck et al.’07] Sorting N numbers requires T2S ≥ Ω(N3).

10Quantum Time-Space Tradeoffs

Our focus in this talk: quantum time-space tradeoff lower bounds.

Very few existing results:

[Klauck et al.’07] Sorting N numbers requires T2S ≥ Ω(N3).

[Ambainis et al.’09] Evaluating Ax ≥ (t,…,t) requires T2S ≥ Ω(tN3) when S < N/t.

[Klauck et al.’07] Boolean Matrix-Matrix Multiplication requires T2S ≥ Ω(N5).

[Klauck et al.’07] Boolean Matrix-Vector Multiplication requires T2S ≥ Ω(N3).

TS ≥ Ω(N2) when S > N/t.

10Quantum Time-Space Tradeoffs

Our focus in this talk: quantum time-space tradeoff lower bounds.

Very few existing results:

[Klauck et al.’07] Sorting N numbers requires T2S ≥ Ω(N3).

[Ambainis et al.’09] Evaluating Ax ≥ (t,…,t) requires T2S ≥ Ω(tN3) when S < N/t.

[Klauck et al.’07] Boolean Matrix-Matrix Multiplication requires T2S ≥ Ω(N5).

[Klauck et al.’07] Boolean Matrix-Vector Multiplication requires T2S ≥ Ω(N3).

TS ≥ Ω(N2) when S > N/t.

Our contribution: a new tradeoff for the Collision Pairs Finding problem.

The Collision Pairs Finding Problem

2

12Collision Pairs

Collision pair: xi = xj

x8 = 1

x4 = 2
x6 = 8

x7 = 2x2 = 4
x5 = 7

x1 = 3

x3 = 6

x12 = 3

x9 = 2

x10 = 4
x11 = 4

13Collision Pairs

Collision pair: xi = xj

x8 = 1

x4 = 2
x6 = 8

x7 = 2x2 = 4
x5 = 7

x1 = 3

x3 = 6

x12 = 3

x9 = 2

x10 = 4
x11 = 4

14Collision Pairs

Collision pair: xi = xj

x8 = 1

x4 = 2
x6 = 8

x7 = 2x2 = 4
x5 = 7

x1 = 3

x3 = 6

x12 = 3

x9 = 2

x10 = 4
x11 = 4

15Collision Pairs Finding

K-Collision Pairs

Find K collision pairs in a random input x1, …, xN ~ [N].

15Collision Pairs Finding

K-Collision Pairs

Find K collision pairs in a random input x1, …, xN ~ [N].

→ A random input contains ~ Θ(N) collision pairs with high probability.

15Collision Pairs Finding

• preimage attacks on hash functions

• meet-in-the-middle attacks

• computing discrete logarithms

• …

→ Finding collisions is an important problem in cryptanalysis:

← requires to find many collisions

K-Collision Pairs

Find K collision pairs in a random input x1, …, xN ~ [N].

→ A random input contains ~ Θ(N) collision pairs with high probability.

16Birthday attack (K = 1)

x8 = 1

x4 = 2
x6 = 8

x7 = 2x2 = 4
x5 = 7

x1 = 3

x3 = 6

x12 = 3

x9 = 6

x10 = 4

x11 = 4

17Birthday attack (K = 1)

x8 = 1

x4 = 2
x6 = 8

x7 = 2x2 = 4
x5 = 7

x1 = 3

x3 = 6

x12 = 3

x9 = 6

x10 = 4

N elements

x11 = 4

Birthday attack

18Birthday attack (K = 1)

Birthday attack

x8 = 1

x4 = 2
x6 = 8

x7 = 2x2 = 4
x5 = 7

x1 = 3

x3 = 6

x12 = 3

x9 = 6

x10 = 4

N elements

x11 = 4

18Birthday attack (K = 1)

Birthday attack

T = O(N)
S = O(N)

x8 = 1

x4 = 2
x6 = 8

x7 = 2x2 = 4
x5 = 7

x1 = 3

x3 = 6

x12 = 3

x9 = 6

x10 = 4

N elements

x11 = 4

19Birthday attack (K = 1)

Birthday attack Birthday attack +
Floyd’s cycle finding

T = O(N)
S = O(N)

x8 = 1

x4 = 2
x6 = 8

x7 = 2x2 = 4
x5 = 7

x1 = 3

x3 = 6

x12 = 3

x9 = 6

x10 = 4

x11 = 4

19Birthday attack (K = 1)

Birthday attack Birthday attack +
Floyd’s cycle finding

T = O(N)
S = O(N)

x8 = 1

x4 = 2
x6 = 8

x7 = 2x2 = 4
x5 = 7

x1 = 3

x3 = 6

x12 = 3

x9 = 6

x10 = 4

x11 = 4

19Birthday attack (K = 1)

Birthday attack Birthday attack +
Floyd’s cycle finding

T = O(N)
S = O(N)

x8 = 1

x4 = 2
x6 = 8

x7 = 2x2 = 4
x5 = 7

x1 = 3

x3 = 6

x12 = 3

x9 = 6

x10 = 4

x11 = 4

19Birthday attack (K = 1)

Birthday attack Birthday attack +
Floyd’s cycle finding

T = O(N)
S = O(N)

x8 = 1

x4 = 2
x6 = 8

x7 = 2x2 = 4
x5 = 7

x1 = 3

x3 = 6

x12 = 3

x9 = 6

x10 = 4

x11 = 4

19Birthday attack (K = 1)

Birthday attack Birthday attack +
Floyd’s cycle finding

T = O(N)
S = O(N)

x8 = 1

x4 = 2
x6 = 8

x7 = 2x2 = 4
x5 = 7

x1 = 3

x3 = 6

x12 = 3

x9 = 6

x10 = 4

x11 = 4

19Birthday attack (K = 1)

Birthday attack Birthday attack +
Floyd’s cycle finding

T = O(N)
S = O(N)

x8 = 1

x4 = 2
x6 = 8

x7 = 2x2 = 4
x5 = 7

x1 = 3

x3 = 6

x12 = 3

x9 = 6

x10 = 4

x11 = 4

19Birthday attack (K = 1)

Birthday attack Birthday attack +
Floyd’s cycle finding

T = O(N)
S = O(N)

x8 = 1

x4 = 2
x6 = 8

x7 = 2x2 = 4
x5 = 7

x1 = 3

x3 = 6

x12 = 3

x9 = 6

x10 = 4

x11 = 4

20Birthday attack (K = 1)

Birthday attack Birthday attack +
Floyd’s cycle finding

T = O(N)
S = O(N)

x8 = 1

x4 = 2
x6 = 8

x7 = 2x2 = 4
x5 = 7

x1 = 3

x3 = 6

x12 = 3

x9 = 6

x10 = 4

x11 = 4

20Birthday attack (K = 1)

Birthday attack Birthday attack +
Floyd’s cycle finding

T = O(N)
S = O(N)

T = O(N)
S = O(log N)

x8 = 1

x4 = 2
x6 = 8

x7 = 2x2 = 4
x5 = 7

x1 = 3

x3 = 6

x12 = 3

x9 = 6

x10 = 4

x11 = 4

21Quantum BHT algorithm (K = 1)

Quantum BHT algorithm

x12 = 3

x4 = 2

x6 = 8

x7 = 2
x2 = 4

x5 = 7

x1 = 3

x3 = 6
x8 = 1

x9 = 6
x10 = 4

x11 = 4

N1/3 stored elements

N − N1/3 elements

Grover’s search

22Quantum BHT algorithm (K = 1)

Quantum BHT algorithm

x4 = 2

x6 = 8

x7 = 2
x2 = 4

x5 = 7

x1 = 3

x3 = 6

x9 = 6
x10 = 4

x11 = 4

N1/3 stored elements

N − N1/3 elements

Grover’s search

x12 = 3

x8 = 1

22Quantum BHT algorithm (K = 1)

Quantum BHT algorithm

T = O(N1/3)
S = O(N1/3)

x4 = 2

x6 = 8

x7 = 2
x2 = 4

x5 = 7

x1 = 3

x3 = 6

x9 = 6
x10 = 4

x11 = 4

N1/3 stored elements

N − N1/3 elements

Grover’s search

x12 = 3

x8 = 1

23Finding 1 collision pair

BHT algorithm

T = O(N1/3)
S = O(N1/3)

Birthday attack +
Floyd’s cycle finding

T = O(N)
S = O(log N)

The quantum BHT algorithm has a better time
complexity, but a worst time-space tradeoff!

vs

23Finding 1 collision pair

BHT algorithm

T = O(N1/3)
S = O(N1/3)

Birthday attack +
Floyd’s cycle finding

T = O(N)
S = O(log N)

The quantum BHT algorithm has a better time
complexity, but a worst time-space tradeoff!

vs

A BHT attack on SHA3-256 would require S ≈ 2256/3 ≈ 285 qubits!

23Finding 1 collision pair

BHT algorithm

T = O(N1/3)
S = O(N1/3)

Birthday attack +
Floyd’s cycle finding

T = O(N)
S = O(log N)

The quantum BHT algorithm has a better time
complexity, but a worst time-space tradeoff!

Big open problem: Is there a quantum algorithm with

 and ? T ≤ o(N) S = O(log N)

vs

A BHT attack on SHA3-256 would require S ≈ 2256/3 ≈ 285 qubits!

Classical Tradeoff Quantum Tradeoff

Upper bound

T2S ≤ Õ(K2N)
when

Ω̃(log N) ≤ S ≤ Õ(K)

Parallel Collision Search

[van Oorschot and Wiener’99]

T2S ≤ Õ(K2N)
when

Ω̃(log N) ≤ S ≤ Õ(K2/3N1/3)

Adaptation of the BHT algorithm

Lower bound
T2S ≥ Ω̃(K2N)

[Dinur’20]

T3S ≥ Ω̃(K3N)

Our result

24Finding K collision pairs

Classical Tradeoff Quantum Tradeoff

Upper bound

T2S ≤ Õ(K2N)
when

Ω̃(log N) ≤ S ≤ Õ(K)

Parallel Collision Search

[van Oorschot and Wiener’99]

T2S ≤ Õ(K2N)
when

Ω̃(log N) ≤ S ≤ Õ(K2/3N1/3)

Adaptation of the BHT algorithm

Lower bound
T2S ≥ Ω̃(K2N)

[Dinur’20]

T3S ≥ Ω̃(K3N)

Our result

24Finding K collision pairs

Classical Tradeoff Quantum Tradeoff

Upper bound

T2S ≤ Õ(K2N)
when

Ω̃(log N) ≤ S ≤ Õ(K)

Parallel Collision Search

[van Oorschot and Wiener’99]

T2S ≤ Õ(K2N)
when

Ω̃(log N) ≤ S ≤ Õ(K2/3N1/3)

Adaptation of the BHT algorithm

Lower bound
T2S ≥ Ω̃(K2N)

[Dinur’20]

T3S ≥ Ω̃(K3N)

Our result

24Finding K collision pairs

Classical Tradeoff Quantum Tradeoff

Upper bound

T2S ≤ Õ(K2N)
when

Ω̃(log N) ≤ S ≤ Õ(K)

Parallel Collision Search

[van Oorschot and Wiener’99]

T2S ≤ Õ(K2N)
when

Ω̃(log N) ≤ S ≤ Õ(K2/3N1/3)

Adaptation of the BHT algorithm

Lower bound
T2S ≥ Ω̃(K2N)

[Dinur’20]

T3S ≥ Ω̃(K3N)

Our result

24Finding K collision pairs

We conjecture: T2S ≥ Ω̃(K2N)

25Finding K collision pairs

Our result: T3S ≥ Ω̃(K3N) Conjecture: T2S ≥ Ω̃(K2N)

25Finding K collision pairs

Our result: T3S ≥ Ω̃(K3N) Conjecture: T2S ≥ Ω̃(K2N)

• Our result is non-trivial when K ≥ ω(1):

25Finding K collision pairs

Our result: T3S ≥ Ω̃(K3N) Conjecture: T2S ≥ Ω̃(K2N)

• Our result is non-trivial when K ≥ ω(1):

 → For K = 1 and S = log(N) it gives T ≥ Ω̃(N1/3), which is the same as the time-

 only lower bound [Aaronson and Shi’04].

25Finding K collision pairs

Our result: T3S ≥ Ω̃(K3N) Conjecture: T2S ≥ Ω̃(K2N)

• Our result is non-trivial when K ≥ ω(1):

 → For K = 1 and S = log(N) it gives T ≥ Ω̃(N1/3), which is the same as the time-

 only lower bound [Aaronson and Shi’04].

 → For K ≥ ω(1) and S = log(N) it gives T ≥ Ω̃(KN1/3), whereas we prove that the

 best time-only lower bound is T = Θ̃(K2/3N1/3).

25Finding K collision pairs

Our result: T3S ≥ Ω̃(K3N) Conjecture: T2S ≥ Ω̃(K2N)

• The conjecture T2S ≥ Ω̃(N3) for K = Θ̃(N) is particularly interesting:

• Our result is non-trivial when K ≥ ω(1):

 → For K = 1 and S = log(N) it gives T ≥ Ω̃(N1/3), which is the same as the time-

 only lower bound [Aaronson and Shi’04].

 → For K ≥ ω(1) and S = log(N) it gives T ≥ Ω̃(KN1/3), whereas we prove that the

 best time-only lower bound is T = Θ̃(K2/3N1/3).

25Finding K collision pairs

Our result: T3S ≥ Ω̃(K3N) Conjecture: T2S ≥ Ω̃(K2N)

• The conjecture T2S ≥ Ω̃(N3) for K = Θ̃(N) is particularly interesting:

 → Time-space tradeoffs are generally easier to prove when the output is large.

• Our result is non-trivial when K ≥ ω(1):

 → For K = 1 and S = log(N) it gives T ≥ Ω̃(N1/3), which is the same as the time-

 only lower bound [Aaronson and Shi’04].

 → For K ≥ ω(1) and S = log(N) it gives T ≥ Ω̃(KN1/3), whereas we prove that the

 best time-only lower bound is T = Θ̃(K2/3N1/3).

25Finding K collision pairs

Our result: T3S ≥ Ω̃(K3N) Conjecture: T2S ≥ Ω̃(K2N)

• The conjecture T2S ≥ Ω̃(N3) for K = Θ̃(N) is particularly interesting:

 → If true, we show that it would implies T2S ≥ Ω̃(N2) for Element Distinctness.

 → Time-space tradeoffs are generally easier to prove when the output is large.

• Our result is non-trivial when K ≥ ω(1):

 → For K = 1 and S = log(N) it gives T ≥ Ω̃(N1/3), which is the same as the time-

 only lower bound [Aaronson and Shi’04].

 → For K ≥ ω(1) and S = log(N) it gives T ≥ Ω̃(KN1/3), whereas we prove that the

 best time-only lower bound is T = Θ̃(K2/3N1/3).

Lower Bounds by

Recording Queries

3

27Time-Space Lower Bounds from Time Lower Bounds

[Borodin et al.’81] : a general method to convert Time-only lower bounds

 directly into Time-Space lower bounds.

27Time-Space Lower Bounds from Time Lower Bounds

[Borodin et al.’81] : a general method to convert Time-only lower bounds

 directly into Time-Space lower bounds.

→ The problem must have a large output (≠ decision problem).

→ The time lower bound is in the exponentially small success probability regime.

27Time-Space Lower Bounds from Time Lower Bounds

[Borodin et al.’81] : a general method to convert Time-only lower bounds

 directly into Time-Space lower bounds.

→ The problem must have a large output (≠ decision problem).

→ The time lower bound is in the exponentially small success probability regime.

Finding K ones in
with success probability at least 2-O(K)

requires time .

x ∈ {0,1}N, |x | = K

T ≥ Ω(NK)

K-Search

⇒ All existing quantum

time-space tradeoffs

[Klauck et al.’07, Ambainis’10, …]

27Time-Space Lower Bounds from Time Lower Bounds

[Borodin et al.’81] : a general method to convert Time-only lower bounds

 directly into Time-Space lower bounds.

→ The problem must have a large output (≠ decision problem).

→ The time lower bound is in the exponentially small success probability regime.

Finding K ones in
with success probability at least 2-O(K)

requires time .

x ∈ {0,1}N, |x | = K

T ≥ Ω(NK)

K-Search

Finding K collisions in
with success probability at least 2-O(K)

requires time .

x ∼ [N]N

T ≥ Ω(K2/3N1/3)

K Collisions

⇒ All existing quantum

time-space tradeoffs

⇒ T3S ≥ Ω̃(K3N)

for K-Collision Pairs Finding

[Klauck et al.’07, Ambainis’10, …]

28Time Lower Bounds

Two main methods for proving quantum query lower bounds:

28Time Lower Bounds

Two main methods for proving quantum query lower bounds:

Polynomial Method
The acceptance probability of a T-query algorithm

is a polynomial in x of degree at most 2T.

28Time Lower Bounds

Two main methods for proving quantum query lower bounds:

Polynomial Method
The acceptance probability of a T-query algorithm

is a polynomial in x of degree at most 2T.

Adversary Method

x

⋮

Q
…

|0⟩
|0⟩
|0⟩

|ψT
x ⟩

Bound the progress Wt = ∑x,y
wx,y⟨ψ t

x |ψ t
y⟩ .

28Time Lower Bounds

Two main methods for proving quantum query lower bounds:

Polynomial Method
The acceptance probability of a T-query algorithm

is a polynomial in x of degree at most 2T.

Adversary Method

x

⋮

Q
…

|0⟩
|0⟩
|0⟩

|ψT
x ⟩

Bound the progress Wt = ∑x,y
wx,y⟨ψ t

x |ψ t
y⟩ .

Both methods are often difficult to use in practice:

K-Search in [Klauck et al.’07] K-Search in [Ambainis’10]

Coppersmith-Rivlin’s bound + Extremal

properties of Chebyshev polynomials.

Analysis of the eigenspaces of

the Johnson Association Scheme.

28Time Lower Bounds

Two main methods for proving quantum query lower bounds:

Polynomial Method
The acceptance probability of a T-query algorithm

is a polynomial in x of degree at most 2T.

Adversary Method

x

⋮

Q
…

|0⟩
|0⟩
|0⟩

|ψT
x ⟩

Bound the progress Wt = ∑x,y
wx,y⟨ψ t

x |ψ t
y⟩ .

Both methods are often difficult to use in practice:

K-Search in [Klauck et al.’07] K-Search in [Ambainis’10]

Coppersmith-Rivlin’s bound + Extremal

properties of Chebyshev polynomials.

Analysis of the eigenspaces of

the Johnson Association Scheme.

A simpler and more intuitive method?

29Classical Lower Bound for K-Search
Input: x = (x1, …, xN) where xi = 1 with probability K/N.

29Classical Lower Bound for K-Search
Input: x = (x1, …, xN) where xi = 1 with probability K/N.
Strategy: sample each entry only when it is queried, and record its value.

29Classical Lower Bound for K-Search
Input: x = (x1, …, xN) where xi = 1 with probability K/N.

Algorithm Input
Strategy: sample each entry only when it is queried, and record its value.

x = (⊥ , ⊥ , ⊥ , ⊥)

29Classical Lower Bound for K-Search
Input: x = (x1, …, xN) where xi = 1 with probability K/N.

Algorithm Input
Strategy: sample each entry only when it is queried, and record its value.

x = (⊥ , ⊥ , ⊥ , ⊥)
x2?

29Classical Lower Bound for K-Search
Input: x = (x1, …, xN) where xi = 1 with probability K/N.

Algorithm Input
Strategy: sample each entry only when it is queried, and record its value.

x = (⊥ , ⊥ , ⊥ , ⊥)
x2?

x = (⊥ , 0 , ⊥ , ⊥)

29Classical Lower Bound for K-Search
Input: x = (x1, …, xN) where xi = 1 with probability K/N.

Algorithm Input
Strategy: sample each entry only when it is queried, and record its value.

x = (⊥ , ⊥ , ⊥ , ⊥)
x2?

x = (⊥ , 0 , ⊥ , ⊥)x2 = 0

29Classical Lower Bound for K-Search
Input: x = (x1, …, xN) where xi = 1 with probability K/N.

Algorithm Input
Strategy: sample each entry only when it is queried, and record its value.

x = (⊥ , ⊥ , ⊥ , ⊥)
x2?

x = (⊥ , 0 , ⊥ , ⊥)x2 = 0

x1?

29Classical Lower Bound for K-Search
Input: x = (x1, …, xN) where xi = 1 with probability K/N.

Algorithm Input
Strategy: sample each entry only when it is queried, and record its value.

x = (⊥ , ⊥ , ⊥ , ⊥)
x2?

x = (⊥ , 0 , ⊥ , ⊥)x2 = 0

x1?

x = (1 , 0 , ⊥ , ⊥)

29Classical Lower Bound for K-Search
Input: x = (x1, …, xN) where xi = 1 with probability K/N.

Algorithm Input
Strategy: sample each entry only when it is queried, and record its value.

x = (⊥ , ⊥ , ⊥ , ⊥)
x2?

x = (⊥ , 0 , ⊥ , ⊥)x2 = 0

x1?

x1 = 1 x = (1 , 0 , ⊥ , ⊥)

29Classical Lower Bound for K-Search
Input: x = (x1, …, xN) where xi = 1 with probability K/N.

Algorithm Input
Strategy: sample each entry only when it is queried, and record its value.

x = (⊥ , ⊥ , ⊥ , ⊥)
x2?

x = (⊥ , 0 , ⊥ , ⊥)x2 = 0

x1?

x1 = 1 x = (1 , 0 , ⊥ , ⊥)

⋮

x2?

x2 = 0 x = (1 , 0 , ⊥ , ⊥)

29Classical Lower Bound for K-Search
Input: x = (x1, …, xN) where xi = 1 with probability K/N.

Algorithm Input
Strategy: sample each entry only when it is queried, and record its value.

x = (⊥ , ⊥ , ⊥ , ⊥)
x2?

x = (⊥ , 0 , ⊥ , ⊥)x2 = 0

x1?

x1 = 1 x = (1 , 0 , ⊥ , ⊥)

Probability to have recorded at least K/2 ones after T queries ≤ (T
K /2)(K

N)
K/2

⋮

x2?

x2 = 0 x = (1 , 0 , ⊥ , ⊥)

29Classical Lower Bound for K-Search
Input: x = (x1, …, xN) where xi = 1 with probability K/N.

Algorithm Input
Strategy: sample each entry only when it is queried, and record its value.

x = (⊥ , ⊥ , ⊥ , ⊥)
x2?

x = (⊥ , 0 , ⊥ , ⊥)x2 = 0

x1?

x1 = 1 x = (1 , 0 , ⊥ , ⊥)

Probability to have recorded at least K/2 ones after T queries ≤ (T
K /2)(K

N)
K/2

⋮

when T ≤ O(N)≤ 2−Ω(K)

x2?

x2 = 0 x = (1 , 0 , ⊥ , ⊥)

29Classical Lower Bound for K-Search
Input: x = (x1, …, xN) where xi = 1 with probability K/N.

Algorithm Input
Strategy: sample each entry only when it is queried, and record its value.

x = (⊥ , ⊥ , ⊥ , ⊥)
x2?

x = (⊥ , 0 , ⊥ , ⊥)x2 = 0

x1?

x1 = 1 x = (1 , 0 , ⊥ , ⊥)

Probability to have recorded at least K/2 ones after T queries ≤ (T
K /2)(K

N)
K/2

(The un-recorded positions can only be guessed, with success). ≤ (K /N)K/2 ≤ 2−Ω(K)

⋮

when T ≤ O(N)≤ 2−Ω(K)

x2?

x2 = 0 x = (1 , 0 , ⊥ , ⊥)

30Recording of Quantum Queries

Can we record quantum queries similarly?

30Recording of Quantum Queries

Can we record quantum queries similarly?

[Zhandry’19]: • A quantum “recording technique” that works when the input

 x1, …, xN is sampled from the uniform distribution on [M]N.

• Motivations: security proofs in the quantum random oracle model.

30Recording of Quantum Queries

Can we record quantum queries similarly?

[Zhandry’19]: • A quantum “recording technique” that works when the input

 x1, …, xN is sampled from the uniform distribution on [M]N.

Our contribution: • We generalize Zhandry’s technique to the case where x1, …, xN is

 sampled from any product distribution D1⊗…⊗DN on [M]N.

• We simplify the framework and the analysis of the method.

• Motivations: security proofs in the quantum random oracle model.

31Quantum Recording for K-Search

⋮

Q Q Q
…

|0⟩
|0⟩

|0⟩

1 − K /N |0⟩ + K /N |1⟩

1 − K /N |0⟩ + K /N |1⟩

1 − K /N |0⟩ + K /N |1⟩

Query Operator

x1 :
x2 :

xN :

Q| i⟩ (−1)xi | i⟩

xi

⋮

R R R

32Quantum Recording for K-Search

⋮
…

|0⟩
|0⟩

|0⟩

⋮

Q| i⟩ (−1)xi | i⟩

xi

Query Operator

| ⊥ ⟩
| ⊥ ⟩

| ⊥ ⟩

x1 :
x2 :

xN : ? ? ?

R R R

32Quantum Recording for K-Search

⋮
…

|0⟩
|0⟩

|0⟩

⋮

S | ⊥ ⟩ = 1 − K /N |0⟩ + K /N |1⟩

Q| i⟩ (−1)xi | i⟩

xi

Query Operator

| ⊥ ⟩
| ⊥ ⟩

| ⊥ ⟩

x1 :
x2 :

xN : ? ? ?

R R R

32Quantum Recording for K-Search

⋮
…

|0⟩
|0⟩

|0⟩

⋮

S
S

S

Recording Query Operator

S | ⊥ ⟩ = 1 − K /N |0⟩ + K /N |1⟩

Q| i⟩ (−1)xi | i⟩

xi

Query Operator

Q| i⟩

xi S S†

R

| ⊥ ⟩
| ⊥ ⟩

| ⊥ ⟩

x1 :
x2 :

xN :

(where)(−1)⊥ = 1

R R R

32Quantum Recording for K-Search

⋮
…

|0⟩
|0⟩

|0⟩

⋮

S
S

S

Recording Query Operator

S | ⊥ ⟩ = 1 − K /N |0⟩ + K /N |1⟩

Q| i⟩ (−1)xi | i⟩

xi

Query Operator

Q| i⟩

xi S S†

R

| ⊥ ⟩
| ⊥ ⟩

| ⊥ ⟩

x1 :
x2 :

xN :

 We show that it makes no

 difference for the algorithm.

(where)(−1)⊥ = 1

R R R

32Quantum Recording for K-Search

⋮
…

|0⟩
|0⟩

|0⟩

⋮

S
S

S

Recording Query Operator

S | ⊥ ⟩ = 1 − K /N |0⟩ + K /N |1⟩

Q| i⟩ (−1)xi | i⟩

xi

Query Operator

Q| i⟩

xi S S†

R

| ⊥ ⟩
| ⊥ ⟩

| ⊥ ⟩

x1 :
x2 :

xN :

 We show that it makes no

 difference for the algorithm.

 We show that it “records”

 the 1’s.

(where)(−1)⊥ = 1

1 − K /N |0⟩ + K /N |1⟩

1 − K /N |0⟩ + K /N |1⟩

1 − K /N |0⟩ + K /N |1⟩

x1 :
x2 :

xN :
⋮

33Quantum Recording for K-Search

⋮

Q Q Q
…|0⟩

|0⟩

|0⟩

S | ⊥ ⟩ = 1 − K /N |0⟩ + K /N |1⟩

33Quantum Recording for K-Search

⋮

Q Q Q
…|0⟩

|0⟩

|0⟩

⋮

| ⊥ ⟩
| ⊥ ⟩

| ⊥ ⟩

x1 :
x2 :

xN :

S | ⊥ ⟩ = 1 − K /N |0⟩ + K /N |1⟩

S
S

S

33Quantum Recording for K-Search

⋮

Q Q Q
…|0⟩

|0⟩

|0⟩

⋮

| ⊥ ⟩
| ⊥ ⟩

| ⊥ ⟩

x1 :
x2 :

xN :

S | ⊥ ⟩ = 1 − K /N |0⟩ + K /N |1⟩

S
S

S

33Quantum Recording for K-Search

⋮

Q Q Q
…|0⟩

|0⟩

S†

S†
S

|0⟩

⋮

| ⊥ ⟩
| ⊥ ⟩

| ⊥ ⟩

x1 :
x2 :

xN :

S | ⊥ ⟩ = 1 − K /N |0⟩ + K /N |1⟩

S
S

S S†

S

S

33Quantum Recording for K-Search

⋮

Q Q Q
…|0⟩

|0⟩

S†

S†
S

|0⟩

⋮

| ⊥ ⟩
| ⊥ ⟩

| ⊥ ⟩

x1 :
x2 :

xN :

S | ⊥ ⟩ = 1 − K /N |0⟩ + K /N |1⟩

S
S

S S†

S

S

S†

S†

S†

33Quantum Recording for K-Search

⋮

Q Q Q
…|0⟩

|0⟩

S†

S†
S

|0⟩

⋮

| ⊥ ⟩
| ⊥ ⟩

| ⊥ ⟩

x1 :
x2 :

xN :

S | ⊥ ⟩ = 1 − K /N |0⟩ + K /N |1⟩

S
S

S S†

S

S

S†

S†

S†

S
S

S

33Quantum Recording for K-Search

⋮

Q Q Q
…|0⟩

|0⟩

S†

S†
S

|0⟩

⋮

| ⊥ ⟩
| ⊥ ⟩

| ⊥ ⟩

x1 :
x2 :

xN :

S | ⊥ ⟩ = 1 − K /N |0⟩ + K /N |1⟩

S
S

S S†

S

S

S†

S†

S†

S†

S†
S

S†

S

S

S
S

S

33Quantum Recording for K-Search

⋮

Q Q Q
…|0⟩

|0⟩

S†

S†
S

Recording Query Operator

Q| i⟩

x1
⋮

xN

xi
⋮

S

S

S S†

S†

S†

R

|0⟩

⋮

| ⊥ ⟩
| ⊥ ⟩

| ⊥ ⟩

x1 :
x2 :

xN :

S | ⊥ ⟩ = 1 − K /N |0⟩ + K /N |1⟩

S
S

S S†

S

S

S†

S†

S†

S†

S†
S

S†

S

S

S
S

S

33Quantum Recording for K-Search

⋮

Q Q Q
…|0⟩

|0⟩

S†

S†
S

Recording Query Operator

Q| i⟩

xi S S†

R

 If xj is not queried

 it stays unchanged.

|0⟩

⋮

| ⊥ ⟩
| ⊥ ⟩

| ⊥ ⟩

x1 :
x2 :

xN :

S | ⊥ ⟩ = 1 − K /N |0⟩ + K /N |1⟩

S
S

S S†

S

S

S†

S†

S†

S†

S†
S

S†

S

S

S
S

S

33Quantum Recording for K-Search

⋮
…|0⟩

|0⟩

Recording Query Operator

Q| i⟩

xi S S†

R

 If xj is not queried

 it stays unchanged.

|0⟩

⋮

| ⊥ ⟩
| ⊥ ⟩

| ⊥ ⟩

x1 :
x2 :

xN :

S | ⊥ ⟩ = 1 − K /N |0⟩ + K /N |1⟩

S
S

S
R R R

33Quantum Recording for K-Search

⋮
…|0⟩

|0⟩

Recording Query Operator

Q| i⟩

xi S S†

R

|0⟩

⋮

| ⊥ ⟩
| ⊥ ⟩

| ⊥ ⟩

x1 :
x2 :

xN :

S | ⊥ ⟩ = 1 − K /N |0⟩ + K /N |1⟩

S
S

S
R R R

| i⟩
| ⊥ ⟩

| i⟩
|0⟩

R

| i⟩
|1⟩

R

R

33Quantum Recording for K-Search

⋮
…|0⟩

|0⟩

Recording Query Operator

Q| i⟩

xi S S†

R

|0⟩

⋮

| ⊥ ⟩
| ⊥ ⟩

| ⊥ ⟩

x1 :
x2 :

xN :

S | ⊥ ⟩ = 1 − K /N |0⟩ + K /N |1⟩

S
S

S
R R R

| i⟩
| ⊥ ⟩ ≈ | ⊥ ⟩ − K /N |1⟩

| i⟩

| i⟩
|0⟩

R

| i⟩
|1⟩

R

R

33Quantum Recording for K-Search

⋮
…|0⟩

|0⟩

Recording Query Operator

Q| i⟩

xi S S†

R

|0⟩

⋮

| ⊥ ⟩
| ⊥ ⟩

| ⊥ ⟩

x1 :
x2 :

xN :

S | ⊥ ⟩ = 1 − K /N |0⟩ + K /N |1⟩

S
S

S
R R R

| i⟩
| ⊥ ⟩ ≈ | ⊥ ⟩ − K /N |1⟩

| i⟩

| i⟩
|0⟩ ≈ |0⟩ + K /N |1⟩

| i⟩

R

| i⟩
|1⟩

R

R

33Quantum Recording for K-Search

⋮
…|0⟩

|0⟩

Recording Query Operator

Q| i⟩

xi S S†

R

|0⟩

⋮

| ⊥ ⟩
| ⊥ ⟩

| ⊥ ⟩

x1 :
x2 :

xN :

S | ⊥ ⟩ = 1 − K /N |0⟩ + K /N |1⟩

S
S

S
R R R

| i⟩
| ⊥ ⟩ ≈ | ⊥ ⟩ − K /N |1⟩

| i⟩

| i⟩
|0⟩ ≈ |0⟩ + K /N |1⟩

| i⟩

R

| i⟩
|1⟩ ≈ − |1⟩ + K /N(|0⟩ − | ⊥ ⟩)

| i⟩

R

R

33Quantum Recording for K-Search

⋮
…|0⟩

|0⟩

Recording Query Operator

Q| i⟩

xi S S†

R

|0⟩

⋮

| ⊥ ⟩
| ⊥ ⟩

| ⊥ ⟩

x1 :
x2 :

xN :

S | ⊥ ⟩ = 1 − K /N |0⟩ + K /N |1⟩

S
S

S
R R R

| i⟩
| ⊥ ⟩ ≈ | ⊥ ⟩ − K /N |1⟩

| i⟩ Record
a new 1

| i⟩
|0⟩ ≈ |0⟩ + K /N |1⟩

| i⟩

R

| i⟩
|1⟩ ≈ − |1⟩ + K /N(|0⟩ − | ⊥ ⟩)

| i⟩

R

R

Classical Recording Quantum Recording

K-Search

Probability to have recorded

at least K/2 ones

Amplitude of the states that have
recorded at least K/2 ones

K-Collision Pairs

Probability to have recorded

at least K/2 (disjoint) collisions

Amplitude of the states that have
recorded at least K/2 (disjoint) collisions

34Quantum Recording

≤ (T
K /2)(K

N)
K/2

≤ (T
K /2)(4

K
N)

K/2

≤ (T
K /2)(T

N)
K/2

≤ (T
K /2)(4

T
N)

K/2

Classical Recording Quantum Recording

K-Search

Probability to have recorded

at least K/2 ones

Amplitude of the states that have
recorded at least K/2 ones

K-Collision Pairs

Probability to have recorded

at least K/2 (disjoint) collisions

Amplitude of the states that have
recorded at least K/2 (disjoint) collisions

34Quantum Recording

≤ (T
K /2)(K

N)
K/2

≤ (T
K /2)(4

K
N)

K/2

≤ (T
K /2)(T

N)
K/2

≤ (T
K /2)(4

T
N)

K/2

Classical Recording Quantum Recording

K-Search

Probability to have recorded

at least K/2 ones

Amplitude of the states that have
recorded at least K/2 ones

K-Collision Pairs

Probability to have recorded

at least K/2 (disjoint) collisions

Amplitude of the states that have
recorded at least K/2 (disjoint) collisions

34Quantum Recording

≤ (T
K /2)(K

N)
K/2

≤ (T
K /2)(4

K
N)

K/2

≤ (T
K /2)(T

N)
K/2

≤ (T
K /2)(4

T
N)

K/2

Classical Recording Quantum Recording

K-Search

Probability to have recorded

at least K/2 ones

Amplitude of the states that have
recorded at least K/2 ones

K-Collision Pairs

Probability to have recorded

at least K/2 (disjoint) collisions

Amplitude of the states that have
recorded at least K/2 (disjoint) collisions

34Quantum Recording

≤ (T
K /2)(K

N)
K/2

≤ (T
K /2)(4

K
N)

K/2

≤ (T
K /2)(T

N)
K/2

≤ (T
K /2)(4

T
N)

K/2

Classical Recording Quantum Recording

K-Search

Probability to have recorded

at least K/2 ones

Amplitude of the states that have
recorded at least K/2 ones

K-Collision Pairs

Probability to have recorded

at least K/2 (disjoint) collisions

Amplitude of the states that have
recorded at least K/2 (disjoint) collisions

35Quantum Recording

≤ 2−Ω(K) when T ≤ O(N) ≤ 2−Ω(K) when T ≤ O(NK)

≤ 2−Ω(K) when T ≤ O(K2/3N1/3)≤ 2−Ω(K) when T ≤ O(NK)

Conclusion

• New lower bounds by recording queries? Triangles Finding?

arXiv: 2002.08944

Open Problems:

• Extend the quantum recording technique to non-product distributions?

 Example: uniform distribution over the symmetric group.

• Improve the tradeoff for finding Θ̃(N) Collision Pairs to T2S ≥ Ω(N3),

 or find a quantum algorithm with T3S ≤ O(N4)?

Supplementary slides

39Reducing Θ̃(N)-Collision Pairs to Element Distinctness

x8 = 1

x4 = 2
x6 = 8

x7 = 2x2 = 4
x5 = 7

x1 = 3

x3 = 6

x12 = 3

x9 = 6

x10 = 4
x11 = 4

How to find Θ̃(N) Collision Pairs by using an algorithm for Element Distinctness

39Reducing Θ̃(N)-Collision Pairs to Element Distinctness

x8 = 1

x4 = 2
x6 = 8

x7 = 2x2 = 4
x5 = 7

x1 = 3

x3 = 6

x12 = 3

x9 = 6

x10 = 4
x11 = 4

How to find Θ̃(N) Collision Pairs by using an algorithm for Element Distinctness

Repeat O(N) times: sample elements and find a collision among them with ED.N

40Reducing Θ̃(N)-Collision Pairs to Element Distinctness

x8 = 1

x4 = 2
x6 = 8

x7 = 2x2 = 4
x5 = 7

x1 = 3

x3 = 6

x12 = 3

x9 = 6

x10 = 4
x11 = 4

How to find Θ̃(N) Collision Pairs by using an algorithm for Element Distinctness

Repeat O(N) times: sample elements and find a collision among them with ED.N

41Reducing Θ̃(N)-Collision Pairs to Element Distinctness

x8 = 1

x4 = 2
x6 = 8

x7 = 2x2 = 4
x5 = 7

x1 = 3

x3 = 6

x12 = 3

x9 = 6

x10 = 4
x11 = 4

How to find Θ̃(N) Collision Pairs by using an algorithm for Element Distinctness

Repeat O(N) times: sample elements and find a collision among them with ED.N

42Reducing Θ̃(N)-Collision Pairs to Element Distinctness

x8 = 1

x4 = 2
x6 = 8

x7 = 2x2 = 4
x5 = 7

x1 = 3

x3 = 6

x12 = 3

x9 = 6

x10 = 4
x11 = 4

How to find Θ̃(N) Collision Pairs by using an algorithm for Element Distinctness

Repeat O(N) times: sample elements and find a collision among them with ED.N

43Reducing Θ̃(N)-Collision Pairs to Element Distinctness

x8 = 1

x4 = 2
x6 = 8

x7 = 2x2 = 4
x5 = 7

x1 = 3

x3 = 6

x12 = 3

x9 = 6

x10 = 4
x11 = 4

How to find Θ̃(N) Collision Pairs by using an algorithm for Element Distinctness

Repeat O(N) times: sample elements and find a collision among them with ED.N

→ Sometimes, there is no collision to find.

44Reducing Θ̃(N)-Collision Pairs to Element Distinctness

x8 = 1

x4 = 2
x6 = 8

x7 = 2x2 = 4
x5 = 7

x1 = 3

x3 = 6

x12 = 3

x9 = 6

x10 = 4
x11 = 4

How to find Θ̃(N) Collision Pairs by using an algorithm for Element Distinctness

Repeat O(N) times: sample elements and find a collision among them with ED.N

→ Sometimes, there is no collision to find.
→ We cannot control which collision ED is going to output.

45Reducing Θ̃(N)-Collision Pairs to Element Distinctness

x8 = 1

x4 = 2
x6 = 8

x7 = 2x2 = 4
x5 = 7

x1 = 3

x3 = 6

x12 = 3

x9 = 6

x10 = 4
x11 = 4

How to find Θ̃(N) Collision Pairs by using an algorithm for Element Distinctness

Repeat O(N) times: sample elements and find a collision among them with ED.N

→ Sometimes, there is no collision to find.
→ We cannot control which collision ED is going to output.
→ We can output the same collision many times (but it only counts as one collision).

46Reducing Θ̃(N)-Collision Pairs to Element Distinctness

x8 = 1

x4 = 2
x6 = 8

x7 = 2x2 = 4
x5 = 7

x1 = 3

x3 = 6

x12 = 3

x9 = 6

x10 = 4
x11 = 4

How to find Θ̃(N) Collision Pairs by using an algorithm for Element Distinctness

Repeat O(N) times: sample elements and find a collision among them with ED.N

→ We can output the same collision many times (but it only counts as one collision).

→ Sometimes, there is no collision to find.
→ We cannot control which collision ED is going to output.

→ We need to store the sampled indices ⇒ 4-wise independent samplingN

47Reducing Θ̃(N)-Collision Pairs to Element Distinctness

x8 = 1

x4 = 2
x6 = 8

x7 = 2x2 = 4
x5 = 7

x1 = 3

x3 = 6

x12 = 3

x9 = 6

x10 = 4
x11 = 4

How to find Θ̃(N) Collision Pairs by using an algorithm for Element Distinctness

(T,S)-Algorithm for Element
Distinctness on inputs of size N

(NT,S)-Algorithm for finding Θ̃(N)
Collision Pairs on inputs of size N⟹

47Reducing Θ̃(N)-Collision Pairs to Element Distinctness

x8 = 1

x4 = 2
x6 = 8

x7 = 2x2 = 4
x5 = 7

x1 = 3

x3 = 6

x12 = 3

x9 = 6

x10 = 4
x11 = 4

How to find Θ̃(N) Collision Pairs by using an algorithm for Element Distinctness

(T,S)-Algorithm for Element
Distinctness on inputs of size N

(NT,S)-Algorithm for finding Θ̃(N)
Collision Pairs on inputs of size N⟹

(NT)2S ≥ Ω̃(N3)

47Reducing Θ̃(N)-Collision Pairs to Element Distinctness

x8 = 1

x4 = 2
x6 = 8

x7 = 2x2 = 4
x5 = 7

x1 = 3

x3 = 6

x12 = 3

x9 = 6

x10 = 4
x11 = 4

How to find Θ̃(N) Collision Pairs by using an algorithm for Element Distinctness

(T,S)-Algorithm for Element
Distinctness on inputs of size N

(NT,S)-Algorithm for finding Θ̃(N)
Collision Pairs on inputs of size N⟹

⟸T2S ≥ Ω̃(N
2) (NT)2S ≥ Ω̃(N3)

