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Time        ≈  2.5 days

Memory  ≈  250 Petabytes

Time        ≈  10,000 years

Memory  ≈  1 Petabyte

Google Sycamore’s calculation 

Time        ≈ 5 minutes

Memory  ≈ 53 qubits 

                   + few megabytes
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5Classical Query Model

Read Only Memory

x = (x1, …, xN)

Input

Read-Write Memory

i

xi

Queries Computer

Time T = number of queries to the input

Space S = number of bits in the computer’s memory

The number of queries is a lower bound on the actual computation time.

If S = ∞ then T ≤ N is sufficient (load the entire input in the computer’s memory).

We are interested in the case “T or S << N”.
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Read Only Memory

Input

Read-Write Memory

i

xi

Queries Computer

Time T = number of queries to the input

Space S = number of bits in the computer’s memory

[Beame’91] Sorting N numbers requires time T and space S such that TS ≥ Ω(N2). 
Time-Space Tradeoffs:

[Klauck et al.’07] Boolean Multiplication of two NxN matrices requires TS ≥ Ω(N3). 
…

x = (x1, …, xN)
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S

x

0
0

0

⋮

T

Q Q

Qi xi

• Initially, the memory is filled with S zeros.

• The “Query Operator” Q is:

• The computation alternates between T queries and T memory updates.  

x
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⋮

Q Q

Q| i⟩ (−1)xi | i⟩• The quantum “Query Operator” Q is:
x

• The memory is made of S qubits, initially set to |0⟩.

• The computation alternates between T quantum queries and T unitary updates/
measurements of the memory.

x

|0⟩

|0⟩

|0⟩

(when )xi ∈ {0,1}
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x

⋮

Q Q
|0⟩

|0⟩

H

T = O( N)
S = log(N)

2H |0⟩⟨0 |H
−I

2H |0⟩⟨0 |H
−I

|0⟩

Example: Grover’s Search
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Our focus in this talk: quantum time-space tradeoff lower bounds.

Very few existing results:

[Klauck et al.’07] Sorting N numbers requires T2S ≥ Ω(N3). 

[Ambainis et al.’09] Evaluating Ax ≥ (t,…,t) requires T2S ≥ Ω(tN3) when S < N/t.

[Klauck et al.’07] Boolean Matrix-Matrix Multiplication requires T2S ≥ Ω(N5). 

[Klauck et al.’07] Boolean Matrix-Vector Multiplication requires T2S ≥ Ω(N3). 

TS ≥ Ω(N2) when S > N/t.

Our contribution: a new tradeoff for the Collision Pairs Finding problem.
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Find K collision pairs in a random input x1, …, xN ~ [N].

→ A random input contains ~ Θ(N) collision pairs with high probability.
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• preimage attacks on hash functions


• meet-in-the-middle attacks


• computing discrete logarithms


• …

→ Finding collisions is an important problem in cryptanalysis:

← requires to find many collisions

K-Collision Pairs 

Find K collision pairs in a random input x1, …, xN ~ [N].

→ A random input contains ~ Θ(N) collision pairs with high probability.
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Birthday attack Birthday attack + 
Floyd’s cycle finding

T = O( N)
S = O( N)

T = O( N)
S = O(log N)
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Quantum BHT algorithm
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N − N1/3 elements

Grover’s search
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23Finding 1 collision pair

BHT algorithm

T = O(N1/3)
S = O(N1/3)

Birthday attack + 
Floyd’s cycle finding

T = O( N)
S = O(log N)

The quantum BHT algorithm has a better time 
complexity, but a worst time-space tradeoff!

Big open problem: Is there a quantum algorithm with                   

                                                    and                      ?             T ≤ o( N) S = O(log N)

vs

A BHT attack on SHA3-256 would require S ≈ 2256/3 ≈ 285  qubits!
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Our result: T3S ≥ Ω̃(K3N)           Conjecture: T2S ≥ Ω̃(K2N)

• The conjecture T2S ≥ Ω̃(N3)  for K = Θ̃(N) is particularly interesting:

  → If true, we show that it would implies T2S ≥ Ω̃(N2) for Element Distinctness.

  → Time-space tradeoffs are generally easier to prove when the output is large.

• Our result is non-trivial when K ≥ ω(1):

  → For K = 1 and S = log(N) it gives T ≥ Ω̃(N1/3), which is the same as the time-


       only lower bound [Aaronson and Shi’04].

  → For K ≥ ω(1) and S = log(N) it gives T ≥ Ω̃(KN1/3), whereas we prove that the 


      best time-only lower bound is T = Θ̃(K2/3N1/3).
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27Time-Space Lower Bounds from Time Lower Bounds

[Borodin et al.’81] : a general method to convert Time-only lower bounds 


                               directly into Time-Space lower bounds.

→ The problem must have a large output (≠ decision problem).

→ The time lower bound is in the exponentially small success probability regime.

Finding K ones in  
with success probability at least 2-O(K) 


requires time .

x ∈ {0,1}N, |x | = K

T ≥ Ω( NK)

K-Search

Finding K collisions in  
with success probability at least 2-O(K) 


requires time .

x ∼ [N ]N

T ≥ Ω(K2/3N1/3)

K Collisions

⇒ All existing quantum 


time-space tradeoffs

⇒ T3S ≥ Ω̃(K3N )

for K-Collision Pairs Finding

[Klauck et al.’07, Ambainis’10, …]
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Two main methods for proving quantum query lower bounds:

Polynomial Method
The acceptance probability of a T-query algorithm 


is a polynomial in x of degree at most 2T.

Adversary Method

x

⋮

Q
…

|0⟩
|0⟩
|0⟩

|ψT
x ⟩

Bound the progress Wt = ∑x,y
wx,y⟨ψ t

x |ψ t
y⟩ .

Both methods are often difficult to use in practice:

K-Search in [Klauck et al.’07] K-Search in [Ambainis’10]

Coppersmith-Rivlin’s bound + Extremal 

properties of Chebyshev polynomials.

Analysis of the eigenspaces of 

the Johnson Association Scheme.

A simpler and more intuitive method?
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Input: x = (x1, …, xN) where xi = 1 with probability K/N.

Algorithm Input
Strategy: sample each entry only when it is queried, and record its value.

x = ( ⊥ , ⊥ , ⊥ , ⊥ )
x2?

x = ( ⊥ , 0 , ⊥ , ⊥ )x2 = 0

x1?

x1 = 1 x = ( 1 , 0 , ⊥ , ⊥ )
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Can we record quantum queries similarly?

[Zhandry’19]: • A quantum “recording technique” that works when the input 

    x1, …, xN is sampled from the uniform distribution on [M]N.

Our contribution: • We generalize Zhandry’s technique to the case where x1, …, xN is 

    sampled from any product distribution D1⊗…⊗DN on [M]N.

• We simplify the framework and the analysis of the method.

• Motivations: security proofs in the quantum random oracle model.
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≤ 2−Ω(K) when T ≤ O(N ) ≤ 2−Ω(K) when T ≤ O( NK)

≤ 2−Ω(K) when T ≤ O(K2/3N1/3)≤ 2−Ω(K) when T ≤ O( NK)



Conclusion



• New lower bounds by recording queries? Triangles Finding?

arXiv: 2002.08944

Open Problems:

• Extend the quantum recording technique to non-product distributions? 

    Example: uniform distribution over the symmetric group.

• Improve the tradeoff for finding Θ̃(N) Collision Pairs to T2S ≥ Ω(N3),  

    or find a quantum algorithm with T3S ≤ O(N4)?
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