Classical and quantum algorithms for variants of Subset-Sum via dynamic programming

Yassine Hamoudi
Simons Institute

joint work with

Jon Allcock Antoine Joux Felix Klingelhöfer Miklos Santha
Tencent CISPA G-SCOP CQT, NUS

arXiv:2111.07059

The problems

Subset-Sum
 Input: Multiset $\left\{a_{1}, \ldots, a_{n}\right\}$ and target m
 Output: Subset $S \subseteq[n]$ such that $\sum_{i \in S} a_{i}=m$

The problems

Subset-Sum
Input: Multiset $\left\{a_{1}, \ldots, a_{n}\right\}$ and target m
Output: Subset $S \subseteq[n]$ such that $\sum_{i \in S} a_{i}=m$

Shifted-Sums
Input: Multiset $\left\{a_{1}, \ldots, a_{n}\right\}$ and shift s
Output: Subsets $S_{1} \neq S_{2} \subseteq[n]$ s.t. $\sum_{i \in S_{1}} a_{i}+s=\sum_{i \in S_{2}} a_{i}$

The problems

Subset-Sum
Input: Multiset $\left\{a_{1}, \ldots, a_{n}\right\}$ and target m
Output: Subset $S \subseteq[n]$ such that $\sum_{i \in S} a_{i}=m$

Shifted-Sums
Input: Multiset $\left\{a_{1}, \ldots, a_{n}\right\}$ and shift s
Output: Subsets $S_{1} \neq S_{2} \subseteq[n]$ s.t. $\sum_{i \in S_{1}} a_{i}+s=\sum_{i \in S_{2}} a_{i}$

Equal-Sums
Assumption: $s=0$

The problems

Subset-Sum
Input: Multiset $\left\{a_{1}, \ldots, a_{n}\right\}$ and target m
Output: Subset $S \subseteq[n]$ such that $\sum_{i \in S} a_{i}=m$

Shifted-Sums
Input: Multiset $\left\{a_{1}, \ldots, a_{n}\right\}$ and shift s
Output: Subsets $S_{1} \neq S_{2} \subseteq[n]$ s.t. $\sum_{i \in S_{1}} a_{i}+s=\sum_{i \in S_{2}} a_{i}$

Equal-Sums
Assumption: $s=0$
Pigeonhole Equal-Sums
Assumption: $s=0$ and $\sum_{i=1}^{n} a_{i}<2^{n}-1$

Results

Prior work	Classical	Quantum
SUBSET-SUM [HS'74,BJLM'13]	$\widetilde{O}\left(2^{n / 2}\right)$	$\widetilde{O}\left(2^{n / 3}\right)$
EQUAL-SUMS [Woe'08,MNPW'19]	$O\left(2^{0.773 n}\right)$	$O\left(2^{0.529 n}\right)$

Results

Prior work	Classical	Quantum
SUBSET-SUM [HS'74,BJLM'13]	$\widetilde{O}\left(2^{n / 2}\right)$	$\widetilde{O}\left(2^{n / 3}\right)$
EQUAL-SUMS [Woe'08,MNPW'19]	$O\left(2^{0.773 n}\right)$	$O\left(2^{0.529 n}\right)$
Our results	Classical	Quantum
SuBSET-SUM (not Meet-in-the-Middle)	$\widetilde{O}\left(2^{n / 2}\right)$	$\widetilde{O}\left(2^{n / 3}\right)$
ShIFTED-SUMS	$O\left(2^{0.773 n}\right)$	$O\left(2^{0.504 n}\right)$
PIGEONHOLE EQUAL-SUMS	$\widetilde{O}\left(2^{n / 2}\right)$	$\widetilde{O}\left(2^{2 n / 5}\right)$

Main idea for Shifted-Sums

Representation technique approach:

- Standard in average-case analysis of Subset-Sum [HJ'10]
- Introduced to worst-case analysis of Equal-Sums [MNPW'19]

Main idea for Shifted-Sums

Representation technique approach:

- Standard in average-case analysis of Subset-Sum [HJ'10]
- Introduced to worst-case analysis of EQUAL-Sums [MNPW'19]

1 Select p and hash the subset sum values into bins,

$$
T_{p, k}=\left\{S \subseteq\{1, \ldots, n\}: \sum_{i \in S} a_{i} \equiv k(\bmod p)\right\}
$$

Main idea for Shifted-Sums

Representation technique approach:

- Standard in average-case analysis of Subset-Sum [HJ'10]
- Introduced to worst-case analysis of EqUaL-Sums [MNPW'19]
$1 /$ Select p and hash the subset sum values into bins,

$$
T_{p, k}=\left\{S \subseteq\{1, \ldots, n\}: \sum_{i \in S} a_{i} \equiv k(\bmod p)\right\}
$$

2/ Select k and search for a collision $\left(S_{1}, S_{2}\right) \in T_{p, k} \times T_{p, k-s \bmod p}$,

$$
\sum_{i \in S_{1}} a_{i}=s+\sum_{i \in S_{2}} a_{i}
$$

Main idea for Shifted-Sums

Representation technique approach:

- Standard in average-case analysis of Subset-Sum [HJ'10]
- Introduced to worst-case analysis of EqUaL-Sums [MNPW'19]

1/ Select p and hash the subset sum values into bins,

$$
T_{p, k}=\left\{S \subseteq\{1, \ldots, n\}: \sum_{i \in S} a_{i} \equiv k(\bmod p)\right\}
$$

2/ Select k and search for a collision $\left(S_{1}, S_{2}\right) \in T_{p, k} \times T_{p, k-s \bmod p}$,

$$
\sum_{i \in S_{1}} a_{i}=s+\sum_{i \in S_{2}} a_{i}
$$

Good choice for p and k :

- the bins are small to keep the cost of search low.
- the bins contain a solution with large probability.

Number of collision values

Collision values:

$$
V=\left\{v \in \mathbb{N}: \exists S_{1} \neq S_{2}, v=\sum_{i \in S_{1}} a_{i}=\sum_{i \in S_{2}} a_{i}+s\right\}
$$

Number of collision values

Collision values:

$$
V=\left\{v \in \mathbb{N}: \exists S_{1} \neq S_{2}, v=\sum_{i \in S_{1}} a_{i}=\sum_{i \in S_{2}} a_{i}+s\right\}
$$

Maximum solution size:

$$
\gamma=\max \left\{\left|S_{1}\right|+\left|S_{2}\right|: S_{1}, S_{2} \text { disjoint solution }\right\}
$$

Number of collision values

Collision values:

$$
V=\left\{v \in \mathbb{N}: \exists S_{1} \neq S_{2}, v=\sum_{i \in S_{1}} a_{i}=\sum_{i \in S_{2}} a_{i}+s\right\}
$$

Maximum solution size:

$$
\gamma=\max \left\{\left|S_{1}\right|+\left|S_{2}\right|: S_{1}, S_{2} \text { disjoint solution }\right\}
$$

Lemma: At least $|V| \geq 2^{n-\gamma}$ distinct collision values.

How to find a solution in a good bin?

By quantum element distinctness [Ambainis'07].

How to find a solution in a good bin?

By quantum element distinctness [Ambainis'07].
Let's illustrate when $\gamma=3 n / 5$,

How to find a solution in a good bin?

By quantum element distinctness [Ambainis'07].
Let's illustrate when $\gamma=3 n / 5$,

- at least $2^{2 n / 5}$ collision values

How to find a solution in a good bin?

By quantum element distinctness [Ambainis'07].
Let's illustrate when $\gamma=3 n / 5$,

- at least $2^{2 n / 5}$ collision values
- choose prime $p \in\left[2^{2 n / 5}, 2^{2 n / 5+1}\right]$ and $k \in[0, p-1]$ at random

How to find a solution in a good bin?

By quantum element distinctness [Ambainis'07].
Let's illustrate when $\gamma=3 n / 5$,

- at least $2^{2 n / 5}$ collision values
- choose prime $p \in\left[2^{2 n / 5}, 2^{2 n / 5+1}\right]$ and $k \in[0, p-1]$ at random
- expected bin size $\left|T_{p, k}\right| \approx 2^{3 n / 5}$ and contains a solution w.h.p.

How to find a solution in a good bin?

By quantum element distinctness [Ambainis'07].
Let's illustrate when $\gamma=3 n / 5$,

- at least $2^{2 n / 5}$ collision values
- choose prime $p \in\left[2^{2 n / 5}, 2^{2 n / 5+1}\right]$ and $k \in[0, p-1]$ at random
- expected bin size $\left|T_{p, k}\right| \approx 2^{3 n / 5}$ and contains a solution w.h.p. \Rightarrow Ambainis' algorithm finds a solution in $\approx 2^{2 n / 5}$ steps.

How to find a solution in a good bin?

By quantum element distinctness [Ambainis'07].
Let's illustrate when $\gamma=3 n / 5$,

- at least $2^{2 n / 5}$ collision values
- choose prime $p \in\left[2^{2 n / 5}, 2^{2 n / 5+1}\right]$ and $k \in[0, p-1]$ at random
- expected bin size $\left|T_{p, k}\right| \approx 2^{3 n / 5}$ and contains a solution w.h.p.
\Rightarrow Ambainis' algorithm finds a solution in $\approx 2^{2 n / 5}$ steps.

Difficulty: each step requires one (quantum) query to $T_{p, k}$
\Rightarrow for some indexing of $T_{p, k}=\left\{S_{1}, \ldots, S_{\left|T_{p, k}\right|}\right\}$ we need to implement the oracle

$$
O_{T_{p, k}}: \ell \mapsto S_{\ell}, \quad \text { for } \quad 1 \leq \ell \leq\left|T_{p, k}\right|
$$

Dynamic programming data structure

Compute the cardinality table

$$
t_{p}[i, j]=\left|\left\{S \subseteq\{1, \ldots, i\}: \sum_{i \in S} a_{i} \equiv j \quad(\bmod p)\right\}\right|
$$

by dynamic programming in time $O(n p)$.

Dynamic programming data structure

Compute the cardinality table

$$
t_{p}[i, j]=\left|\left\{S \subseteq\{1, \ldots, i\}: \sum_{i \in S} a_{i} \equiv j \quad(\bmod p)\right\}\right|
$$

by dynamic programming in time $O(n p)$.

Definition: Denote \prec the strict total order defined as

$$
S_{1} \prec S_{2} \text { if and only if } \max \left\{i: i \in S_{1} \Delta S_{2}\right\} \in S_{2} .
$$

Dynamic programming data structure

Compute the cardinality table

$$
t_{p}[i, j]=\left|\left\{S \subseteq\{1, \ldots, i\}: \sum_{i \in S} a_{i} \equiv j \quad(\bmod p)\right\}\right|
$$

by dynamic programming in time $O(n p)$.

Definition: Denote \prec the strict total order defined as

$$
S_{1} \prec S_{2} \text { if and only if } \max \left\{i: i \in S_{1} \Delta S_{2}\right\} \in S_{2} .
$$

Theorem: Given $1 \leq \ell \leq t_{p, k}$ and random access to the elements of the table t_{p}, the ℓ-th set in $T_{p, k}$ can be computed in time $O(n)$.

Computing the oracle

Input: Table t_{p}, integers $0 \leq k \leq p-1$ and $1 \leq \ell \leq t_{p, k}$
Output: ℓ-th set $S \in T_{p, k}$ for \prec.
(1) $j=k, S=\varnothing$
(2) for $i=n, \ldots, 1$ do
(3) if $\ell \leq t_{p}[i-1, j]$ then Do nothing
(4) else
(5) $\quad S=S \cup\{i\}, \quad \ell=\ell-t_{p}[i-1, j], \quad j=j-a_{i} \bmod p$
(6) Return S

Running time exponent

Running time exponent

Open problem

Pigeonhole Modular Equal-Sums
Input: Set $\left\{a_{1}, \ldots, a_{n}\right\}$ and a modulus q s.t. $q \leq 2^{n}-1$
Output: Subsets $S_{1} \neq S_{2} \subseteq[n]$ s.t. $\sum_{i \in S_{1}} a_{i} \equiv q \sum_{i \in S_{2}} a_{i}$
Generalizes Pigeonhole Equal-Sums
Theorem: Can be solved deterministically in time $\widetilde{O}\left(2^{n / 2}\right)$
Question: Can be solved quantumly in time $\widetilde{O}\left(2^{2 n / 5}\right)$?

