
Classical and quantum algorithms for
variants of Subset-Sum via dynamic programming

Yassine Hamoudi
Simons Institute

joint work with

Jon Allcock Antoine Joux Felix Klingelhöfer Miklos Santha
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The problems

Subset-Sum
Input: Multiset {a1, . . . , an} and target m
Output: Subset S ⊆ [n] such that

∑
i∈S

ai = m

Shifted-Sums
Input: Multiset {a1, . . . , an} and shift s
Output: Subsets S1 ̸= S2 ⊆ [n] s.t.

∑
i∈S1

ai + s =
∑
i∈S2

ai

Equal-Sums
Assumption: s = 0

Pigeonhole Equal-Sums

Assumption: s = 0 and
n∑

i=1
ai < 2n − 1
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Results

Prior work Classical Quantum

Subset-Sum [HS’74,BJLM’13] Õ(2n/2) Õ(2n/3)

Equal-Sums [Woe’08,MNPW’19] O(20.773n) O(20.529n)

Our results Classical Quantum

Subset-Sum (not Meet-in-the-Middle) Õ(2n/2) Õ(2n/3)

Shifted-Sums O(20.773n) O(20.504n)

Pigeonhole Equal-Sums Õ(2n/2) Õ(22n/5)
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Main idea for Shifted-Sums
Representation technique approach:
– Standard in average-case analysis of Subset-Sum [HJ’10]
– Introduced to worst-case analysis of Equal-Sums [MNPW’19]

1/ Select p and hash the subset sum values into bins,

Tp,k = {S ⊆ {1, . . . , n} :
∑
i∈S

ai ≡ k (mod p)}.

2/ Select k and search for a collision (S1,S2) ∈ Tp,k ×Tp,k−s mod p,∑
i∈S1

ai = s +
∑
i∈S2

ai .

Good choice for p and k :
– the bins are small to keep the cost of search low.
– the bins contain a solution with large probability.
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Number of collision values

Collision values:

V =

v ∈ N : ∃S1 ̸= S2, v =
∑
i∈S1

ai =
∑
i∈S2

ai + s



Maximum solution size:

γ = max{|S1|+ |S2| : S1,S2 disjoint solution}

Lemma: At least |V | ≥ 2n−γ distinct collision values.
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How to find a solution in a good bin?

By quantum element distinctness [Ambainis’07].

Let’s illustrate when γ = 3n/5,

• at least 22n/5 collision values

• choose prime p ∈ [22n/5, 22n/5+1] and k ∈ [0, p− 1] at random

• expected bin size |Tp,k | ≈ 23n/5 and contains a solution w.h.p.

⇒ Ambainis’ algorithm finds a solution in ≈ 22n/5 steps.

Difficulty: each step requires one (quantum) query to Tp,k

⇒ for some indexing of Tp,k = {S1, . . . ,S|Tp,k |} we need to

implement the oracle

OTp,k
: ℓ 7→ Sℓ, for 1 ≤ ℓ ≤ |Tp,k |
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Dynamic programming data structure

Compute the cardinality table

tp[i , j ] = |{S ⊆ {1, . . . , i} :
∑
i∈S

ai ≡ j (mod p)}|

by dynamic programming in time O(np).

Definition: Denote ≺ the strict total order defined as

S1 ≺ S2 if and only if max{i : i ∈ S1∆S2} ∈ S2.

Theorem: Given 1 ≤ ℓ ≤ tp,k and random access to the elements of
the table tp, the ℓ-th set in Tp,k can be computed in time O(n).
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Computing the oracle

Input: Table tp, integers 0 ≤ k ≤ p − 1 and 1 ≤ ℓ ≤ tp,k
Output: ℓ-th set S ∈ Tp,k for ≺.

1 j = k, S = ∅
2 for i = n, . . . , 1 do

3 if ℓ ≤ tp[i − 1, j ] then Do nothing

4 else

5 S = S ∪ {i}, ℓ = ℓ− tp[i − 1, j ], j = j − ai mod p

6 Return S
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Running time exponent
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Running time exponent
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Open problem

Pigeonhole Modular Equal-Sums
Input: Set {a1, . . . , an} and a modulus q s.t. q ≤ 2n − 1
Output: Subsets S1 ̸= S2 ⊆ [n] s.t.

∑
i∈S1

ai ≡q
∑
i∈S2

ai

Generalizes Pigeonhole Equal-Sums

Theorem: Can be solved deterministically in time Õ(2n/2)

Question: Can be solved quantumly in time Õ(22n/5)?
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