Classical and quantum algorithms for variants of Subset-Sum via dynamic programming

Yassine Hamoudi

Simons Institute

joint work with

Jon Allcock Antoine Joux Felix Klingelhöfer Miklos Santha Tencent CISPA G-SCOP CQT, NUS

arXiv:2111.07059

SUBSET-SUM Input: Multiset $\{a_1, \ldots, a_n\}$ and target mOutput: Subset $S \subseteq [n]$ such that $\sum_{i \in S} a_i = m$

SUBSET-SUM Input: Multiset $\{a_1, \ldots, a_n\}$ and target mOutput: Subset $S \subseteq [n]$ such that $\sum_{i \in S} a_i = m$

SHIFTED-SUMS Input: Multiset $\{a_1, \ldots, a_n\}$ and shift sOutput: Subsets $S_1 \neq S_2 \subseteq [n]$ s.t. $\sum_{i \in S_1} a_i + s = \sum_{i \in S_2} a_i$

SUBSET-SUM Input: Multiset $\{a_1, \ldots, a_n\}$ and target mOutput: Subset $S \subseteq [n]$ such that $\sum_{i \in S} a_i = m$

SHIFTED-SUMS Input: Multiset $\{a_1, \ldots, a_n\}$ and shift sOutput: Subsets $S_1 \neq S_2 \subseteq [n]$ s.t. $\sum_{i \in S_1} a_i + s = \sum_{i \in S_2} a_i$

EQUAL-SUMS Assumption: s = 0

SUBSET-SUM Input: Multiset $\{a_1, \ldots, a_n\}$ and target mOutput: Subset $S \subseteq [n]$ such that $\sum_{i \in S} a_i = m$

SHIFTED-SUMS Input: Multiset $\{a_1, \ldots, a_n\}$ and shift s Output: Subsets $S_1 \neq S_2 \subseteq [n]$ s.t. $\sum_{i \in S_1} a_i + s = \sum_{i \in S_2} a_i$

EQUAL-SUMS Assumption: s = 0

PIGEONHOLE EQUAL-SUMS Assumption: s = 0 and $\sum_{i=1}^{n} a_i < 2^n - 1$

Results

Prior work	Classical	Quantum
SUBSET-SUM [HS'74,BJLM'13]	$\widetilde{O}(2^{n/2})$	$\widetilde{O}(2^{n/3})$
$\operatorname{EQUAL-SUMS}$ [Woe'08,MNPW'19]	$O(2^{0.773n})$	$O(2^{0.529n})$

Results

Prior work	Classical	Quantum
SUBSET-SUM [HS'74,BJLM'13]	$\widetilde{O}(2^{n/2})$	$\widetilde{O}(2^{n/3})$
$\operatorname{EQUAL-SUMS}$ [Woe'08,MNPW'19]	$O(2^{0.773n})$	$O(2^{0.529n})$

Our results	Classical	Quantum
${\displaystyle {\rm SUBSET}{-}{ m SUM}}$ (not Meet-in-the-Middle)	$\widetilde{O}(2^{n/2})$	$\widetilde{O}(2^{n/3})$
Shifted-Sums	$O(2^{0.773n})$	$O(2^{0.504n})$
PIGEONHOLE EQUAL-SUMS	$\widetilde{O}(2^{n/2})$	$\widetilde{O}(2^{2n/5})$

Representation technique approach:

- Standard in average-case analysis of **SUBSET-SUM** [HJ'10]
- Introduced to worst-case analysis of Equal-Sums [MNPW'19]

Representation technique approach:

- Standard in average-case analysis of **SUBSET-SUM** [HJ'10]
- Introduced to worst-case analysis of Equal-Sums [MNPW'19]

1/ Select p and hash the subset sum values into bins,

$$T_{p,k} = \{S \subseteq \{1,\ldots,n\} : \sum_{i \in S} a_i \equiv k \pmod{p}\}.$$

Representation technique approach:

- Standard in average-case analysis of **SUBSET-SUM** [HJ'10]
- Introduced to worst-case analysis of Equal-Sums [MNPW'19]

1/ Select p and hash the subset sum values into bins,

$$T_{p,k} = \{S \subseteq \{1,\ldots,n\} : \sum_{i \in S} a_i \equiv k \pmod{p}\}.$$

2/ Select k and search for a collision $(S_1, S_2) \in T_{p,k} \times T_{p,k-s \mod p}$,

$$\sum_{i\in S_1}a_i=s+\sum_{i\in S_2}a_i.$$

Representation technique approach:

- Standard in average-case analysis of SUBSET-SUM [HJ'10]
- Introduced to worst-case analysis of Equal-Sums [MNPW'19]

1/ Select p and hash the subset sum values into bins,

$$T_{p,k} = \{S \subseteq \{1,\ldots,n\} : \sum_{i \in S} a_i \equiv k \pmod{p}\}.$$

2/ Select k and search for a collision $(S_1, S_2) \in T_{p,k} \times T_{p,k-s \mod p}$,

$$\sum_{i\in S_1}a_i=s+\sum_{i\in S_2}a_i.$$

Good choice for *p* and *k*:

- the bins are small to keep the cost of search low.
- the bins contain a solution with large probability.

Number of collision values

Collision values:

$$V = \left\{ v \in \mathbb{N} : \exists S_1 \neq S_2, v = \sum_{i \in S_1} a_i = \sum_{i \in S_2} a_i + s \right\}$$

Number of collision values

Collision values:

$$V = \left\{ v \in \mathbb{N} : \exists S_1 \neq S_2, v = \sum_{i \in S_1} a_i = \sum_{i \in S_2} a_i + s \right\}$$

Maximum solution size:

 $\gamma = \max\{|S_1| + |S_2| : S_1, S_2 \text{ disjoint solution}\}$

Number of collision values

Collision values:

$$V = \left\{ v \in \mathbb{N} : \exists S_1 \neq S_2, v = \sum_{i \in S_1} a_i = \sum_{i \in S_2} a_i + s \right\}$$

Maximum solution size:

 $\gamma = \max\{|S_1| + |S_2| : S_1, S_2 \text{ disjoint solution}\}$

Lemma: At least $|V| \ge 2^{n-\gamma}$ distinct collision values.

By quantum element distinctness [Ambainis'07].

By quantum element distinctness [Ambainis'07].

Let's illustrate when $\gamma = 3n/5$,

By quantum element distinctness [Ambainis'07].

Let's illustrate when $\gamma = 3n/5$,

• at least $2^{2n/5}$ collision values

By quantum element distinctness [Ambainis'07].

Let's illustrate when $\gamma = 3n/5$,

- at least $2^{2n/5}$ collision values
- choose prime $p \in [2^{2n/5}, 2^{2n/5+1}]$ and $k \in [0, p-1]$ at random

By quantum element distinctness [Ambainis'07].

Let's illustrate when $\gamma = 3n/5$,

- at least $2^{2n/5}$ collision values
- choose prime $p \in [2^{2n/5}, 2^{2n/5+1}]$ and $k \in [0, p-1]$ at random
- expected bin size $|T_{p,k}| \approx 2^{3n/5}$ and contains a solution w.h.p.

By quantum element distinctness [Ambainis'07].

Let's illustrate when $\gamma = 3n/5$,

- at least $2^{2n/5}$ collision values
- choose prime $p \in [2^{2n/5}, 2^{2n/5+1}]$ and $k \in [0, p-1]$ at random
- expected bin size $|T_{p,k}| \approx 2^{3n/5}$ and contains a solution w.h.p.

 \Rightarrow Ambainis' algorithm finds a solution in $\approx 2^{2n/5}$ steps.

By quantum element distinctness [Ambainis'07].

Let's illustrate when $\gamma = 3n/5$,

- at least $2^{2n/5}$ collision values
- choose prime $p \in [2^{2n/5}, 2^{2n/5+1}]$ and $k \in [0, p-1]$ at random
- expected bin size $|T_{p,k}| \approx 2^{3n/5}$ and contains a solution w.h.p.

 \Rightarrow Ambainis' algorithm finds a solution in $\approx 2^{2n/5}$ steps.

Difficulty: each step requires one (quantum) query to $T_{p,k}$

 \Rightarrow for some indexing of $T_{\rho,k} = \{S_1, \dots, S_{|T_{\rho,k}|}\}$ we need to implement the oracle

$$O_{T_{p,k}}: \ell \mapsto S_{\ell}, \quad \text{for} \ 1 \le \ell \le |T_{p,k}|$$

Dynamic programming data structure

Compute the cardinality table

$$t_p[i,j] = |\{S \subseteq \{1,\ldots,i\} : \sum_{i \in S} a_i \equiv j \pmod{p}\}|$$

by dynamic programming in time O(np).

Dynamic programming data structure

Compute the cardinality table

$$t_p[i,j] = |\{S \subseteq \{1,\ldots,i\} : \sum_{i \in S} a_i \equiv j \pmod{p}\}|$$

by dynamic programming in time O(np).

Definition: Denote \prec the strict total order defined as $S_1 \prec S_2$ if and only if max $\{i : i \in S_1 \Delta S_2\} \in S_2$.

Dynamic programming data structure

Compute the cardinality table

$$t_p[i,j] = |\{S \subseteq \{1,\ldots,i\} : \sum_{i \in S} a_i \equiv j \pmod{p}\}|$$

by dynamic programming in time O(np).

Definition: Denote \prec the strict total order defined as $S_1 \prec S_2$ if and only if max $\{i : i \in S_1 \Delta S_2\} \in S_2$.

Theorem: Given $1 \le \ell \le t_{p,k}$ and random access to the elements of the table t_p , the ℓ -th set in $T_{p,k}$ can be computed in time O(n).

Computing the oracle

Input: Table t_p , integers $0 \le k \le p-1$ and $1 \le \ell \le t_{p,k}$ Output: ℓ -th set $S \in T_{p,k}$ for \prec . 1) $j = k, S = \emptyset$ 2) for i = n, ..., 1 do 3) if $\ell \le t_p[i-1,j]$ then Do nothing 4) else 5) $S = S \cup \{i\}, \quad \ell = \ell - t_p[i-1,j], \quad j = j - a_j \mod p$

6 Return S

Running time exponent

Running time exponent

Open problem

PIGEONHOLE MODULAR EQUAL-SUMS Input: Set $\{a_1, ..., a_n\}$ and a modulus q s.t. $q \le 2^n - 1$ Output: Subsets $S_1 \ne S_2 \subseteq [n]$ s.t. $\sum_{i \in S_1} a_i \equiv_q \sum_{i \in S_2} a_i$

Generalizes PIGEONHOLE EQUAL-SUMS

Theorem: Can be solved deterministically in time $\tilde{O}(2^{n/2})$

Question: Can be solved quantumly in time $\tilde{O}(2^{2n/5})$?