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A submodular function is a set function F : 2" - R satisfying the
diminishing returns property:

VACBC[n]landi & B, FAU {i})—FA) > F(BU {i}) — F(B)

Example: size of a cut

lcut(A)l =2
lcut(B)l =5
lcut(A+i)l = 4

lcut(B+i)l = 6
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given S obtain F(S). (time = #queries to the oracle )

Submodular functions can be minimized in polynomial time
(Grotschel, Lovasz, Shrijver 1981)

Exact Minimization: find S* such that F(S*) = min F(S)
SC[n]

* Lee, Sidford, Wong FOCS’15: O(n>) or O(nzlog M) where M = max|F(S)]

e-Approx. Minimization: find S*such that F(S*) < min F(S) + ¢
SC[n]

e Previous work: 0(715/ 3 62) (classical)
(Chakrabarty, Lee, Sidford, Wong STOC’17)

e Our result: é(n3/2/€2) (classical) or 0(715/4/65/2) (quantum)
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Discrete Optimization
Set function: F : 2!l 5 R

v

Continuous Optimization

Lovasz extension: f:[0,1]" > R

ry ™~ ™~ F 1
The Lovasz extension is: FL2)) . ({1h

2
F({ })’

* Piecewise linear

* Convex iff Fis submodular (ovasz 1983) 1):

- Evaluable using n queries to F.
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Stochastic Subgradient Descent 10

Convex function f: C — R onaconvexset C. (not necessarily differentiable)
slope g(x) of any line that is below the graph of f and intersects it at x.
random variable g(x) satisfying E[g(x)] = g(x)

(orojected) Stochastic Subgradient Descent

If 2(x) has then the number of steps is the same as if we were using g(x).
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there exists a subgradient g(x) such that:

® g(x) can be computed in time

e subgradient descent requires steps to get an e-minimizer of f

(Jegelka, Bilmes 2011) and (Hazan, Kale 2012)

——p Approximate minimization in time O(/ - n/e?)

A 2(x) can be computed in time

* Previous work: O(nZ/ 3)
(Chakrabarty, Lee, Sidford, Wong STOC’17)

e Our result: é(nl/z) (classical) or 0(n1/4/€1/2) (Quantum)

=P Approximate minimization in time O(O - n/ 62)
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in the construction of 2(x) :

Importance Sampling according to g(x).

Sampling from the distribution that gives

with probability

This Is where quantum computing comes in!
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Input: discrete probability distribution on [n].

Output: T independent samples i1,...,it ~ D.

Evaluation oracle access

Classical Quantum

Cost = # queries to the evaluation oracle

Can quantum computing help to sample faster?
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10

P1+Dr+ D3 pst+ps
/\ g
P +D; P3 @
P1 1%))

Preprocessing time: O(n)

Cost per sample:  O(log n)

Cost for T samples:
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(Grover 2000)
Preprocessing:

1. Compute p,,.,, = max {py, ..., p,} with quantum

2. Construct the unitary v(|0)|0)) — : Z |7) | 0)

1 . .
— Y 1y /E |0>+\/1— l
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1
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(Grover 2000)
Preprocessing:

1. Compute p,,.,, = max {py, ..., p,} with quantum

2. Construct the unitary v(|0)|0)) — : 2 |7) | 0)

1 . D; -
> (-2 |0>+\/1— l |1>)
\/Eg,;] < Prmax Prmax
:\/%<Zﬂ|i>>|0)+...|l)

1. Prepare ) /p:|i) with on V, and measure it.

Sampling (repeat T times):

Preprocessing time: 0(\/;)
Cost per sample:  O(y/MPmax )

Cost for T samples: O(v\/n + T /ipmey ) = O(T\/1)
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Binary Tree Quantum State Preparation

For our submodular function minimization
algorithm, we need

l

New quantum multi-sampling algorithm in O(+/7n)
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Our result: O(\/ Tn) for obtaining T independent samples from D = (p1,...,Pn).

Element 1 2 3 4 5 6 V4

Probability pi1 | p2 | p3

Element 1 3 4
S P1 P3 P4
robability
P Heavy P Heavy IS Heavy

Use a Binary Tree

Element 2 5 6 /
SUr— P> Ps Pe P7
robabili
y P Light P Light P Light P Light

Use Quantum State Preparation
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Preprocessing:

1. Compute the set c [n] of indices i such that , using Grover Search.

2. Compute = Z P

iEHeavy

3. Apply the preprocessing step of the Binary Tree Method on
4. Apply the preprocessing step of the Quant. State Preparation method on

Sampling (repeat T times):

Flip a coin that is head with probability

* Head: sample with the Binary Tree Method.

e Tail: sample with Quantum State Preparation.
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Preprocessing:

1. Compute the set c [n] of indices i such that , using Grover Search.

Cost: O(y/nT) since |Heavy| = T

2. Compute = Z P
iEHeavy

Cost: O(T)

3. Apply the preprocessing step of the Binary Tree Method on

Cost: O(T)

4. Apply the preprocessing step of the Quant. State Preparation method on

Cost: O(+/n)
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Sampling (repeat T times):
Flip a coin that is head with probability

e Head: sample with the Binary Tree Method.
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e Tail: sample with Quantum State Preparation.
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Sampling (repeat T times):
Flip a coin that is head with probability Preavy :

e Head: sample i ~ Dueavy with the Binary Tree Method.

Cost per sample: O(log n) Total cost: O(T logn)

e Tail: sample | ~ Diignt with Quantum State Preparation.

1

Cost per sample: O(, /npmax) where P = max{ L I E Light} <

Ppigne I+ Prign

Total expected cost: O(T * PLight * + /npmax> = 0<\/ n-T- PLight> =0 <\/nT>



Conclusion



Recent improvement:

® Axelrod, Liu, Sidford 2019: classical O(n/e?) algorithm for
approximate submodular function minimization



Recent improvement:

® Axelrod, Liu, Sidford 2019: classical O(n/e?) algorithm for
approximate submodular function minimization

Open questions:

® Can we improve the upper/lower bounds for exact/approximate
submodular function minimization?

®  What are other applications of our qguantum multi-sampling algorithm?
(ongoing work: solving linear systems)

® Can we prepare T copies of the state Z /Pi 1) in time O(y/nT).
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