
Quantum and Classical Algorithms for 

Approximate Submodular Function Minimization

Yassine Hamoudi, Patrick Rebentrost,  

Ansis Rosmanis, Miklos Santha

arXiv: 1907.05378



1. Approximate Submodular Function Minimization 

2. Quantum speed-up for Importance Sampling



Approximate Submodular 
Function Minimization

1



4Submodular Function

A submodular function is a set function                      satisfying the 
diminishing returns property:

F : 2[n] → ℝ

∀A ⊂ B ⊂ [n] and i ∉ B, F(A ∪ {i}) − F(A) ≥ F(B ∪ {i}) − F(B)



4Submodular Function

A submodular function is a set function                      satisfying the 
diminishing returns property:

F : 2[n] → ℝ

Example: area covered by cameras

∀A ⊂ B ⊂ [n] and i ∉ B, F(A ∪ {i}) − F(A) ≥ F(B ∪ {i}) − F(B)

A B



4Submodular Function

A submodular function is a set function                      satisfying the 
diminishing returns property:

F : 2[n] → ℝ

Example: area covered by cameras

∀A ⊂ B ⊂ [n] and i ∉ B, F(A ∪ {i}) − F(A) ≥ F(B ∪ {i}) − F(B)

A B+ i + i



5Submodular Function

A
B

|cut(A)| = 2

|cut(B)| = 5

A submodular function is a set function                      satisfying the 
diminishing returns property:

F : 2[n] → ℝ

Example: size of a cut

∀A ⊂ B ⊂ [n] and i ∉ B, F(A ∪ {i}) − F(A) ≥ F(B ∪ {i}) − F(B)



5Submodular Function

A
B

i

|cut(A)| = 2

|cut(B)| = 5

|cut(A+i)| = 4

|cut(B+i)| = 6

A submodular function is a set function                      satisfying the 
diminishing returns property:

F : 2[n] → ℝ

Example: size of a cut
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6Submodular Function Minimization

Exact Minimization: F(S⋆) = min
S⊂[n]

F(S)S⋆
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F(S) + ϵS⋆ε-Approx. Minimization:
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Submodular functions can be minimized in polynomial time

• Lee, Sidford, Wong FOCS’15:

(Grotschel, Lovasz, Shrijver 1981)

Õ(n3) Õ(n2 log M) M = max |F(S) |or where
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8Lovász Extension

F : 2[n] → ℝSet function:

Discrete Optimization

Continuous Optimization

f : [0,1]n → ℝLovász extension:

• Convex iff F is submodular (Lovász 1983)

The Lovász extension is:

• Piecewise linear (1,1)

(0,0)

(1,0)(0,1)

F(Ø)

F({2})
F({1,2})

F({1})

• Evaluable using n queries to F.
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12Stochastic Subgradient for the Lovász extension

One central idea in the construction of         :

pi =
|g(x)i |
∥g(x)∥1

g̃(x)

Importance Sampling according to g(x).

| |

This is where quantum computing comes in!
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Problem 14

discrete probability distribution D = (p1,…,pn) on [n].Input: 

Output: T independent samples i1,…,iT ~ D.

Evaluation oracle access

Classical Quantum

U( | i⟩ |0⟩) = | i⟩ |pi⟩i ↦ pi

Cost = # queries to the evaluation oracle

Can quantum computing help to sample faster?
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For our submodular function minimization 

algorithm, we need T = √n.

O( Tn)New quantum multi-sampling algorithm in
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PHeavy

p4

PHeavy

p2

PLight

p5

PLight

p6

PLight

p7

PLight

Distribution D

Distribution DHeavy Distribution DLight

Use a Binary Tree Use Quantum State Preparation

pi ≥ 1/T pi < 1/T
PHeavy = ∑

i∈Heavy

pi
PLight = ∑

i∈Light
pi
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Flip a coin that is head with probability PHeavy :

Sampling (repeat T times):

• Head: sample i ~ DHeavy with the Binary Tree Method.
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Conclusion
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• Axelrod, Liu, Sidford 2019: classical               algorithm for 
approximate submodular function minimization

• Can we prepare T copies of the state                 in time             .

arXiv: 1907.05378

Open questions:

• Can we improve the upper/lower bounds for exact/approximate 
submodular function minimization?

∑
i∈[n]

pi | i⟩ O( nT)

Recent improvement:
Õ(n /ϵ2)

• What are other applications of our quantum multi-sampling algorithm? 
(ongoing work: solving linear systems)


