Quantum and Classical Algorithms for

Approximate Submodular Function Minimization

Yassine Hamoudi, Patrick Rebentrost,

Ansis Rosmanis, Miklos Santha

arXiv: 1907.05378

1. Approximate Submodular Function Minimization

2. Quantum speed-up for Importance Sampling

O

Approximate Submodular
Function Minimization

Submodular Function 4

A is a set function F : 21"l — R satisfying the

VACBCnlandi & B, F(AUuli})—FA) > F(BU {i})— F(B)

Submodular Function 4

A is a set function F : 21"l — R satisfying the
VACBC [n]andig B, F(AU {i})— F(A)> F(BU {i}) — F(B)

Example: area covered by cameras

N S N

N

N

Submodular Function 4

A is a set function F : 21"l — R satisfying the
VACBC[nlandi¢ B, FAAU {i}))—FA)> FBU {i}) - F(B)

Example: area covered by cameras

N IS N
N

A+1 B+1

N

Submodular Function 5

A submodular function is a set function F : 2" - R satisfying the
diminishing returns property:

VACBC[n]landi & B, FAU {i})—FA) > F(BU {i}) — F(B)

Example: size of a cut
lcut(A)l =2
lcut(B)l =5

Submodular Function 5

A submodular function is a set function F : 2" - R satisfying the
diminishing returns property:

VACBC[n]landi & B, FAU {i})—FA) > F(BU {i}) — F(B)

Example: size of a cut

lcut(A)l =2
lcut(B)l =5
lcut(A+i)l = 4

lcut(B+i)l = 6

Submodular Function Minimization 6

cvaluation oracle access: given S obtain F(S). (time = #queries to the oracle)

Submodular Function Minimization 6

given S obtain F(S). (time = #queries to the oracle)

Submodular functions can be minimized in polynomial time
(Grotschel, Lovasz, Shrijver 1981)

Submodular Function Minimization 6

given S obtain F(S). (time = #queries to the oracle)

Submodular functions can be minimized in polynomial time
(Grotschel, Lovasz, Shrijver 1981)

Exact Minimization: find S* such that F(S*) = min F(S)
SC[n]

* Lee, Sidford, Wong FOCS’15: O(n>) or O(nzlog M) where M = max|F(S)]

Submodular Function Minimization 6

given S obtain F(S). (time = #queries to the oracle)

Submodular functions can be minimized in polynomial time
(Grotschel, Lovasz, Shrijver 1981)

Exact Minimization: find S* such that F(S*) = min F(S)
SC[n]

* Lee, Sidford, Wong FOCS’15: O(n>) or O(nzlog M) where M = max|F(S)]

e-Approx. Minimization: find S*such that F(S*) < min F(S) + ¢
SC[n]

Submodular Function Minimization 6

given S obtain F(S). (time = #queries to the oracle)

Submodular functions can be minimized in polynomial time
(Grotschel, Lovasz, Shrijver 1981)

Exact Minimization: find S* such that F(S*) = min F(S)
SC[n]

* Lee, Sidford, Wong FOCS’15: O(n>) or O(nzlog M) where M = max|F(S)]

e-Approx. Minimization: find S*such that F(S*) < min F(S) + ¢
SC[n]

e Previous work: 0(715/ 3 62) (classical)
(Chakrabarty, Lee, Sidford, Wong STOC’17)

Submodular Function Minimization 6

given S obtain F(S). (time = #queries to the oracle)

Submodular functions can be minimized in polynomial time
(Grotschel, Lovasz, Shrijver 1981)

Exact Minimization: find S* such that F(S*) = min F(S)
SC[n]

* Lee, Sidford, Wong FOCS’15: O(n>) or O(nzlog M) where M = max|F(S)]

e-Approx. Minimization: find S*such that F(S*) < min F(S) + ¢
SC[n]

e Previous work: 0(715/ 3 62) (classical)
(Chakrabarty, Lee, Sidford, Wong STOC’17)

e Our result: é(n3/2/€2) (classical) or 0(715/4/65/2) (quantum)

Lovasz Extension

Discrete Optimization
Set function: F : 2!l 5 R

Lovasz Extension

Discrete Optimization
Set function: F : 2" - R

v

Continuous Optimization

Lovasz extension: f:[0,1]" > R

Lovasz Extension

Set function: F: 2"l 5 R

Lovasz extension: f:[0,1]" - R

n=~>2
F(©@)=0
F({1})=10
F({2}) =6
F{l1,2}) =3

Lovasz Extension

n=~>2
F(©@)=0
F({1})=10
F({2}) =6
F{l1,2}) =3

Lovasz extension: f:[0,1]" - R

(0,1)

Set function: F: 2"l 5 R

d.D

(0,0)

(1,0)

0,177

Lovasz Extension

n=~>2
F(©@)=0
F({1})=10
F({2}) =6
F{l1,2}) =3

Lovasz extension: f:[0,1]" - R

F({2
(1 }),

(0,1):

Set function: F: 2"l 5 R

F(

F(Q)

11,2})
¢
d.D

(0,0)

?F({l})

Lovasz Extension

n=~>2
F(@) =0
F({1})=10
F({2}) =6
F{1,2})=3

Lovasz extension: f:[0,1]" > R

Discrete Optimization
Set function: F : 2!l 5 R

\4

Continuous Optimization

F({1,2})

F({1})

Lovasz Extension 8

Discrete Optimization
Set function: F : 2!l 5 R

v

Continuous Optimization

Lovasz extension: f:[0,1]" > R

The Lovasz extension is: F({1.2)})

Lovasz Extension 8

Discrete Optimization
Set function: F : 2!l 5 R

v

Continuous Optimization

Lovasz extension: f:[0,1]" > R

F({1})

The Lovasz extension is: F({1.2)})

F({2})
* Piecewise linear '

0,1)

Lovasz Extension 8

Discrete Optimization
Set function: F : 2!l 5 R

v

Continuous Optimization

Lovasz extension: f:[0,1]" > R

ry ™~ ™~ F 1
The Lovasz extension is: FL2)) . ({1h

2
F({ })’

* Piecewise linear

* Convex iff Fis submodular (ovasz 1983) 1):

Lovasz Extension 8

Discrete Optimization
Set function: F : 2!l 5 R

v

Continuous Optimization

Lovasz extension: f:[0,1]" > R

ry ™~ ™~ F 1
The Lovasz extension is: FL2)) . ({1h

2
F({ })’

* Piecewise linear

* Convex iff Fis submodular (ovasz 1983) 1):

- Evaluable using n queries to F.

Stochastic Subgradient Descent

Convex function f: C — R onaconvexset C. (not necessarily differentiable)

Stochastic Subgradient Descent 9

Convex function f: C — R onaconvexset C. (not necessarily differentiable)

slope g(x) of any line that is below the graph of f and intersects it at x.

J(X) -

Stochastic Subgradient Descent 9

Convex function f: C — R onaconvexset C. (not necessarily differentiable)

slope g(x) of any line that is below the graph of f and intersects it at x.

J(X) -

Stochastic Subgradient Descent 9

Convex function f: C — R onaconvexset C. (not necessarily differentiable)
slope g(x) of any line that is below the graph of f and intersects it at x.

random variable g(x) satisfying E[g(x)] = g(x)

“2(x)
fx) +

2(x) w.p. 1/2

Stochastic Subgradient Descent 10

Convex function f: C — R onaconvexset C. (not necessarily differentiable)
slope g(x) of any line that is below the graph of f and intersects it at x.
random variable g(x) satisfying E[g(x)] = g(x)

(orojected) Stochastic Subgradient Descent

Stochastic Subgradient Descent 10

Convex function f: C — R onaconvexset C. (not necessarily differentiable)
slope g(x) of any line that is below the graph of f and intersects it at x.
random variable g(x) satisfying E[g(x)] = g(x)

(orojected) Stochastic Subgradient Descent

Stochastic Subgradient Descent 10

Convex function f: C — R onaconvexset C. (not necessarily differentiable)
slope g(x) of any line that is below the graph of f and intersects it at x.
random variable g(x) satisfying E[g(x)] = g(x)

(orojected) Stochastic Subgradient Descent

~78(x?

Stochastic Subgradient Descent 10

Convex function f: C — R onaconvexset C. (not necessarily differentiable)
slope g(x) of any line that is below the graph of f and intersects it at x.
random variable g(x) satisfying E[g(x)] = g(x)

(orojected) Stochastic Subgradient Descent

Stochastic Subgradient Descent 10

Convex function f: C — R onaconvexset C. (not necessarily differentiable)
slope g(x) of any line that is below the graph of f and intersects it at x.
random variable g(x) satisfying E[g(x)] = g(x)

(orojected) Stochastic Subgradient Descent

If 2(x) has then the number of steps is the same as if we were using g(x).

Stochastic Subgradient for the Lovasz extension

171

For the Lovasz extension f, there exists a subgradient g(x) such that:

Stochastic Subgradient for the Lovasz extension 11

there exists a subgradient g(x) such that:

® o(x) can be computed in time

(Jegelka, Bilmes 2011) and (Hazan, Kale 2012)

Stochastic Subgradient for the Lovasz extension 11

there exists a subgradient g(x) such that:

® g(x) can be computed in time

e subgradient descent requires steps to get an e-minimizer of f

(Jegelka, Bilmes 2011) and (Hazan, Kale 2012)

Stochastic Subgradient for the Lovasz extension 11

there exists a subgradient g(x) such that:

® g(x) can be computed in time

e subgradient descent requires steps to get an e-minimizer of f

(Jegelka, Bilmes 2011) and (Hazan, Kale 2012)

——p Approximate minimization in time O(/ - n/e?)

Stochastic Subgradient for the Lovasz extension 11

there exists a subgradient g(x) such that:

® g(x) can be computed in time

e subgradient descent requires steps to get an e-minimizer of f

(Jegelka, Bilmes 2011) and (Hazan, Kale 2012)

——p Approximate minimization in time O(/ - n/e?)

A 2(x) can be computed in time

* Previous work: O(nZ/ 3)
(Chakrabarty, Lee, Sidford, Wong STOC’17)

Stochastic Subgradient for the Lovasz extension 11

there exists a subgradient g(x) such that:

® g(x) can be computed in time

e subgradient descent requires steps to get an e-minimizer of f

(Jegelka, Bilmes 2011) and (Hazan, Kale 2012)

——p Approximate minimization in time O(/ - n/e?)

A 2(x) can be computed in time

* Previous work: O(nZ/ 3)
(Chakrabarty, Lee, Sidford, Wong STOC’17)

e Our result: O(nl/z) (classical) or 0(n1/4/€1/2) (Quantum)

Stochastic Subgradient for the Lovasz extension 11

there exists a subgradient g(x) such that:

® g(x) can be computed in time

e subgradient descent requires steps to get an e-minimizer of f

(Jegelka, Bilmes 2011) and (Hazan, Kale 2012)

——p Approximate minimization in time O(/ - n/e?)

A 2(x) can be computed in time

* Previous work: O(nZ/ 3)
(Chakrabarty, Lee, Sidford, Wong STOC’17)

e Our result: é(nl/z) (classical) or 0(n1/4/€1/2) (Quantum)

=P Approximate minimization in time O(O - n/ 62)

Stochastic Subgradient for the Lovasz extension 12

in the construction of 2(x) :

Importance Sampling according to g(x).

Stochastic Subgradient for the Lovasz extension 12

in the construction of 2(x) :

Importance Sampling according to g(x).

Sampling from the distribution that gives

with probability

Stochastic Subgradient for the Lovasz extension 12

in the construction of 2(x) :

Importance Sampling according to g(x).

Sampling from the distribution that gives

with probability

This Is where quantum computing comes in!

(®

Quantum speed-up for
Importance Sampling

Problem

14

Input: discrete probability distribution

Output: T independent samples i1,...,it ~ D.

on [n].

Problem

14

Input: discrete probability distribution

Output: T independent samples i1,...,it ~ D.

Evaluation oracle access

Classical Quantum

Cost = # queries to the evaluation oracle

on [n].

Problem 14

Input: discrete probability distribution on [n].

Output: T independent samples i1,...,it ~ D.

Evaluation oracle access

Classical Quantum

Cost = # queries to the evaluation oracle

Can quantum computing help to sample faster?

Importance Sampling with a Binary Tree

10

TN

P1+ Dyt D3 P4+ D5
/\ P4 Ps
P11+ D P3

P1 P2

Importance Sampling with a Binary Tree

10

Importance Sampling with a Binary Tree

10

P1+ Dyt D3 P4+ D5
P4 Ps
P11+ D P3

Importance Sampling with a Binary Tree

10

/\

Importance Sampling with a Binary Tree

15

Pt Dy + D3 ooty W
Ps
P+ Py .

P1 s

Importance Sampling with a Binary Tree

10

P1+Dr+ D3 pst+ps
/\ g
P +D; P3 @
P1 1%))

Preprocessing time: O(n)

Cost per sample: O(log n)

Importance Sampling with a Binary Tree

10

P1+Dr+ D3 pst+ps
/\ g
P +D; P3 @
P1 1%))

Preprocessing time: O(n)

Cost per sample: O(log n)

Cost for T samples:

Importance Sampling with Quantum State preparation 16

(Grover 2000)
Preprocessing:

Sampling (repeat T times):

Importance Sampling with Quantum State preparation 16

(Grover 2000)
Preprocessing:

1. Compute p,,.,, = max {py, ..., p,} with quantum

Sampling (repeat T times):

Importance Sampling with Quantum State preparation 16

(Grover 2000)
Preprocessing:

1. Compute p,,.,, = max {py, ..., p,} with quantum

2. Construct the unitary v(|0)|0)) — : Z |7) | 0)

Sampling (repeat T times):

Importance Sampling with Quantum State preparation

10

(Grover 2000)
Preprocessing:

1. Compute p,,.,, = max {py, ..., p,} with quantum

2. Construct the unitary v(|0)|0)) — : Z |7) | 0)

Sampling (repeat T times):

Importance Sampling with Quantum State preparation

10

(Grover 2000)
Preprocessing:

1. Compute p,,.,, = max {py, ..., p,} with quantum

2. Construct the unitary v(|0)|0)) — : Z |7) | 0)

1 . .
— Y 1y /E |0>+\/1— l
\/E iE[n] pmax pmax

1
= i 0)+...[1
_npmax<;ﬁl| >)|)+ I1)

Sampling (repeat T times):

Importance Sampling with Quantum State preparation 16

Preprocessing:

1. Compute p, ., = max {py, ..

2. Construct the unitary v(|0)|0))

Sampling (repeat T times):

1. Prepare) /p:|i) with

(Grover 2000)

., D,,} with quantum

m<2f|z>>|0>+)

on V, and measure it.

Importance Sampling with Quantum State preparation 16

(Grover 2000)
Preprocessing:

1. Compute p,,.,, = max {py, ..., p,} with quantum

2. Construct the unitary v(|0)|0)) — : Z |7) | 0)

1 . D; -
> (-2 |0>+\/1— l |1>)
\/Eg,,j] < Prmax Prmax
:\/%(Z\/E|i)>|0)+...|l)

1. Prepare) /p:|i) with on V, and measure it.

Sampling (repeat T times):

Preprocessing time: 0(\/;)

Cost per sample: 0(\/npmax>

Importance Sampling with Quantum State preparation 16

(Grover 2000)
Preprocessing:

1. Compute p,,.,, = max {py, ..., p,} with quantum

2. Construct the unitary v(|0)|0)) — : 2 |7) | 0)

1 . D; -
> (-2 |0>+\/1— l |1>)
\/Eg,;] < Prmax Prmax
:\/%<Zﬂ|i>>|0)+...|l)

1. Prepare) /p:|i) with on V, and measure it.

Sampling (repeat T times):

Preprocessing time: 0(\/;)
Cost per sample: O(y/MPmax)

Cost for T samples: O(v/n + T\ /P)

Importance Sampling with Quantum State preparation 16

(Grover 2000)
Preprocessing:

1. Compute p,,.,, = max {py, ..., p,} with quantum

2. Construct the unitary v(|0)|0)) — : 2 |7) | 0)

1 . D; -
> (-2 |0>+\/1— l |1>)
\/Eg,;] < Prmax Prmax
:\/%<Zﬂ|i>>|0)+...|l)

1. Prepare) /p:|i) with on V, and measure it.

Sampling (repeat T times):

Preprocessing time: 0(\/;)
Cost per sample: O(y/MPmax)

Cost for T samples: O(v\/n + T /ipmey) = O(T\/1)

Importance Sampling 17

Binary Tree Quantum State Preparation

Importance Sampling 17

Binary Tree Quantum State Preparation

For our submodular function minimization
algorithm, we need

Importance Sampling 17

Binary Tree Quantum State Preparation

For our submodular function minimization
algorithm, we need

l

New quantum multi-sampling algorithm in O(+/7n)

Importance Sampling with a Quantum Oracle

18

Our result: O(\/ Tn) for obtaining T independent samples from D = (p+,...,pn).

Importance Sampling with a Quantum Oracle

18

Our result: O(\/ Tn) for obtaining T independent samples from D = (p1,...,Pn).

Element

Probability

Pl

P2

P3

P4

pP5

J49

pP7

Importance Sampling with a Quantum Oracle

18

Our result: O(\/ Tn) for obtaining T independent samples from D = (p1,...,Pn).

Element

Probability

Pl

P2

P3

P4

pP5

J49

P7

Element 1 3 4
S P1 P3 P4
robability
P Heavy P Heavy IS Heavy

Importance Sampling with a Quantum Oracle

18

Our result: O(\/ Tn) for obtaining T independent samples from D = (p1,...,Pn).

Element

Probability

Pl

P2

P3

Element 1 3 4
S P1 P3 P4
robability
P Heavy P Heavy P Heavy

Element 2 5 6 /
SUr— P> Ps Pe P7
robabili
y P Light P Light P Light P Light

Importance Sampling with a Quantum Oracle

18

Our result: O(\/ Tn) for obtaining T independent samples from D = (p1,...,Pn).

Element

Probability

Pl

P2

P3

Element 1 3 4
S P1 P3 P4
robability
P Heavy P Heavy P Heavy

Use a Binary Tree

Element 2 5 6 /
SUr— P> Ps Pe P7
robabili
y P Light P Light P Light P Light

Importance Sampling with a Quantum Oracle 18

Our result: O(\/ Tn) for obtaining T independent samples from D = (p1,...,Pn).

Element 1 2 3 4 5 6 V4

Probability pi1 | p2 | p3

Element 1 3 4
S P1 P3 P4
robability
P Heavy P Heavy IS Heavy

Use a Binary Tree

Element 2 5 6 /
SUr— P> Ps Pe P7
robabili
y P Light P Light P Light P Light

Use Quantum State Preparation

Importance Sampling with a Quantum Oracle

19

Preprocessing:

Sampling (repeat T times):

Importance Sampling with a Quantum Oracle 19

Preprocessing:

1. Compute the set c [n] of indices i such that , using Grover Search.

Sampling (repeat T times):

Importance Sampling with a Quantum Oracle 19

Preprocessing:

1. Compute the set c [n] of indices i such that , using Grover Search.

2. Compute = Z P

iEHeavy

Sampling (repeat T times):

Importance Sampling with a Quantum Oracle 19

Preprocessing:

1. Compute the set c [n] of indices i such that , using Grover Search.

2. Compute = Z P

iEHeavy

3. Apply the preprocessing step of the Binary Tree Method on

Sampling (repeat T times):

Importance Sampling with a Quantum Oracle 19

Preprocessing:

1. Compute the set c [n] of indices i such that , using Grover Search.

2. Compute = Z P

iEHeavy

3. Apply the preprocessing step of the Binary Tree Method on

4. Apply the preprocessing step of the Quant. State Preparation method on

Sampling (repeat T times):

Importance Sampling with a Quantum Oracle 19

Preprocessing:

1. Compute the set c [n] of indices i such that , using Grover Search.

2. Compute = Z P

iEHeavy

3. Apply the preprocessing step of the Binary Tree Method on

4. Apply the preprocessing step of the Quant. State Preparation method on

Sampling (repeat T times):

Flip a coin that is head with probability

Importance Sampling with a Quantum Oracle 19

Preprocessing:

1. Compute the set c [n] of indices i such that , using Grover Search.

2. Compute = Z P

iEHeavy

3. Apply the preprocessing step of the Binary Tree Method on
4. Apply the preprocessing step of the Quant. State Preparation method on

Sampling (repeat T times):

Flip a coin that is head with probability

* Head: sample with the Binary Tree Method.

Importance Sampling with a Quantum Oracle 19

Preprocessing:

1. Compute the set c [n] of indices i such that , using Grover Search.

2. Compute = Z P

iEHeavy

3. Apply the preprocessing step of the Binary Tree Method on
4. Apply the preprocessing step of the Quant. State Preparation method on

Sampling (repeat T times):

Flip a coin that is head with probability

* Head: sample with the Binary Tree Method.

e Tail: sample with Quantum State Preparation.

Importance Sampling with a Quantum Oracle 20

Preprocessing:

1. Compute the set c [n] of indices i such that , using Grover Search.
Cost:
2. Compute = Z Di
iEHeavy
Cost:

3. Apply the preprocessing step of the Binary Tree Method on

Cost:

4. Apply the preprocessing step of the Quant. State Preparation method on

Cost:

Importance Sampling with a Quantum Oracle 20

Preprocessing:

1. Compute the set c [n] of indices i such that , using Grover Search.

Cost: O(y/nT) since |Heavy| = T

2. Compute = Z P
iEHeavy
Cost:

3. Apply the preprocessing step of the Binary Tree Method on

Cost:

4. Apply the preprocessing step of the Quant. State Preparation method on

Cost:

Importance Sampling with a Quantum Oracle 20

Preprocessing:

1. Compute the set c [n] of indices i such that , using Grover Search.

Cost: O(y/nT) since |Heavy| = T

2. Compute = Z Di
iEHeavy
Cost: O(T)
3. Apply the preprocessing step of the Binary Tree Method on

Cost:

4. Apply the preprocessing step of the Quant. State Preparation method on

Cost:

Importance Sampling with a Quantum Oracle 20

Preprocessing:

1. Compute the set c [n] of indices i such that , using Grover Search.

Cost: O(y/nT) since |Heavy| = T

2. Compute = Z Di
iEHeavy
Cost: O(T)
3. Apply the preprocessing step of the Binary Tree Method on

Cost: O(T)

4. Apply the preprocessing step of the Quant. State Preparation method on

Cost:

Importance Sampling with a Quantum Oracle 20

Preprocessing:

1. Compute the set c [n] of indices i such that , using Grover Search.

Cost: O(y/nT) since |Heavy| = T

2. Compute = Z P
iEHeavy

Cost: O(T)

3. Apply the preprocessing step of the Binary Tree Method on

Cost: O(T)

4. Apply the preprocessing step of the Quant. State Preparation method on

Cost: O(+/n)

Importance Sampling with a Quantum Oracle

2

Sampling (repeat T times).
Flip a coin that is head with probability
e Head: sample with the Binary Tree Method.

Cost per sample:

e Tail: sample with Quantum State Preparation.

Importance Sampling with a Quantum Oracle

2

Sampling (repeat T times).
Flip a coin that is head with probability

e Head: sample with the Binary Tree Method.

Cost per sample: O(log n)

e Tail: sample with Quantum State Preparation.

Importance Sampling with a Quantum Oracle

2

Sampling (repeat T times).
Flip a coin that is head with probability

e Head: sample with the Binary Tree Method.

Cost per sample: O(log n) Total cost: O(T logn)

e Tail: sample with Quantum State Preparation.

Importance Sampling with a Quantum Oracle

2

Sampling (repeat T times).
Flip a coin that is head with probability

e Head: sample with the Binary Tree Method.

Cost per sample: O(log n) Total cost: O(T logn)

e Tail: sample with Quantum State Preparation.

Cost per sample:

Importance Sampling with a Quantum Oracle

2

Sampling (repeat T times):
Flip a coin that is head with probability

e Head: sample with the Binary Tree Method.

Cost per sample: O(log n) Total cost: O(T logn)

e Tail: sample with Quantum State Preparation.

1% : :
Cost per sample: O(,/np,....) where = max{ W ASH B ht}
p ple: O(/MPpax) Pina P g

Importance Sampling with a Quantum Oracle 2

Sampling (repeat T times):
Flip a coin that is head with probability

e Head: sample with the Binary Tree Method.

Cost per sample: O(log n) Total cost: O(T logn)

e Tail: sample with Quantum State Preparation.

1

Cost per sample: 0(, /npmax> where poa.x = max{ P I E Light} <

Ppight I+ Prign

Importance Sampling with a Quantum Oracle 2

Sampling (repeat T times):
Flip a coin that is head with probability Preavy :

e Head: sample i ~ Dueavy with the Binary Tree Method.

Cost per sample: O(log n) Total cost: O(T logn)

e Tail: sample | ~ Diignt with Quantum State Preparation.

1

Cost per sample: O(, /npmax> where P = max{ L I E Light} <

Ppight I+ Pyign

Total expected cost:

Importance Sampling with a Quantum Oracle 2

Sampling (repeat T times):
Flip a coin that is head with probability Preavy :

e Head: sample i ~ Dueavy with the Binary Tree Method.

Cost per sample: O(log n) Total cost: O(T logn)

e Tail: sample | ~ Diignt with Quantum State Preparation.

1

Cost per sample: O(, /npmax> where P = max{ L I E Light} <

Ppigne I+ Prign

Total expected cost: O(T * Prignt * 4 /npmax>

Importance Sampling with a Quantum Oracle 2

Sampling (repeat T times):
Flip a coin that is head with probability Preavy :

e Head: sample i ~ Dueavy with the Binary Tree Method.

Cost per sample: O(log n) Total cost: O(T logn)

e Tail: sample | ~ Diignt with Quantum State Preparation.

1

Cost per sample: O(, /npmax) where P = max{ L I E Light} <

Ppigne I+ Prign

Total expected cost: O(T- Prpight * 4 /npmax) - 0<\/ n-1-°pP Light)

Importance Sampling with a Quantum Oracle 2

Sampling (repeat T times):
Flip a coin that is head with probability Preavy :

e Head: sample i ~ Dueavy with the Binary Tree Method.

Cost per sample: O(log n) Total cost: O(T logn)

e Tail: sample | ~ Diignt with Quantum State Preparation.

1

Cost per sample: O(, /npmax) where P = max{ L I E Light} <

Ppigne I+ Prign

Total expected cost: O(T * PLight * + /npmax> = 0<\/ n-T- PLight> =0 <\/nT>

Conclusion

Recent improvement:

® Axelrod, Liu, Sidford 2019: classical O(n/e?) algorithm for
approximate submodular function minimization

Recent improvement:

® Axelrod, Liu, Sidford 2019: classical O(n/e?) algorithm for
approximate submodular function minimization

Open questions:

® Can we improve the upper/lower bounds for exact/approximate
submodular function minimization?

® What are other applications of our qguantum multi-sampling algorithm?
(ongoing work: solving linear systems)

® Can we prepare T copies of the state Z /Pi 1) in time O(y/nT).

1€[n]

arXiv:

