Quantum and Classical Algorithms for Approximate Submodular Function Minimization

Yassine Hamoudi, Patrick Rebentrost,

Ansis Rosmanis, Miklos Santha

arXiv: 1907.05378

1. Approximate Submodular Function Minimization

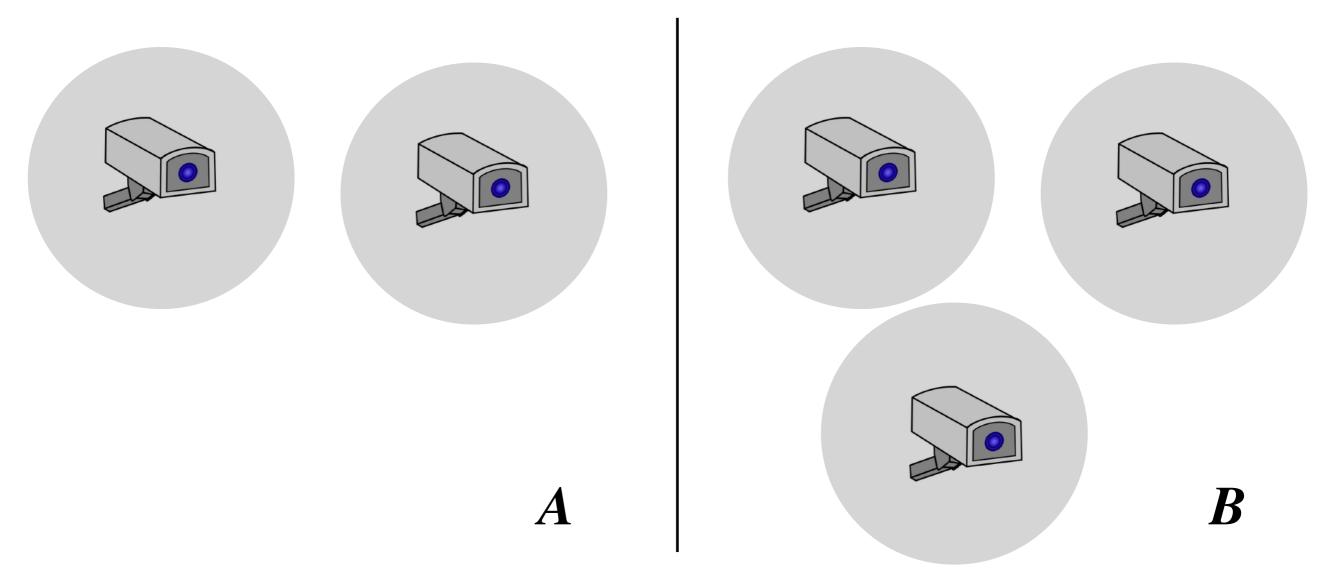
2. Quantum speed-up for Importance Sampling

Approximate Submodular Function Minimization

 $\forall A \subset B \subset [n] \text{ and } i \notin B, \ F(A \cup \{i\}) - F(A) \ge F(B \cup \{i\}) - F(B)$

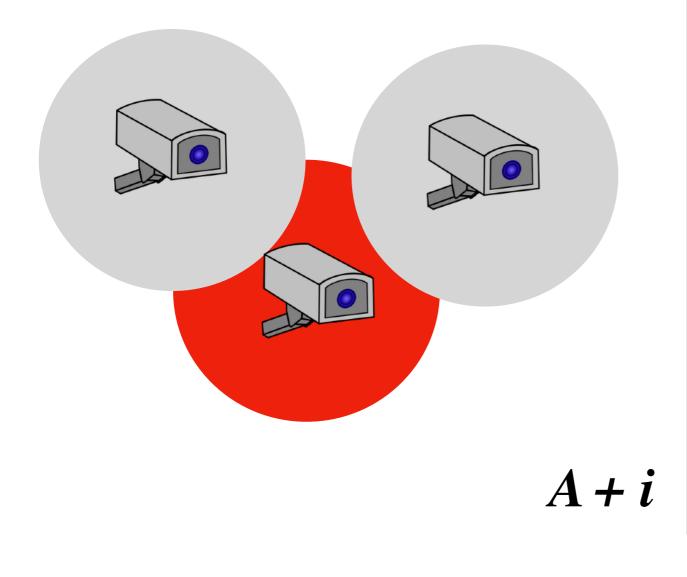
 $\forall A \subset B \subset [n] \text{ and } i \notin B, \ F(A \cup \{i\}) - F(A) \ge F(B \cup \{i\}) - F(B)$

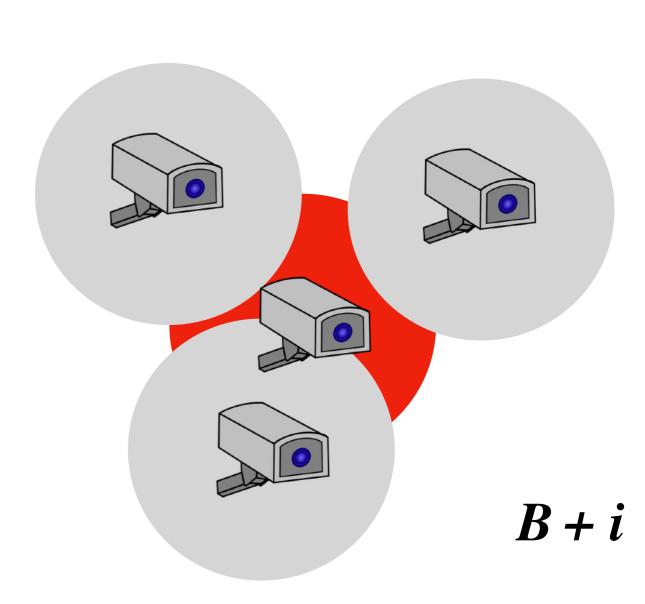
Example: area covered by cameras



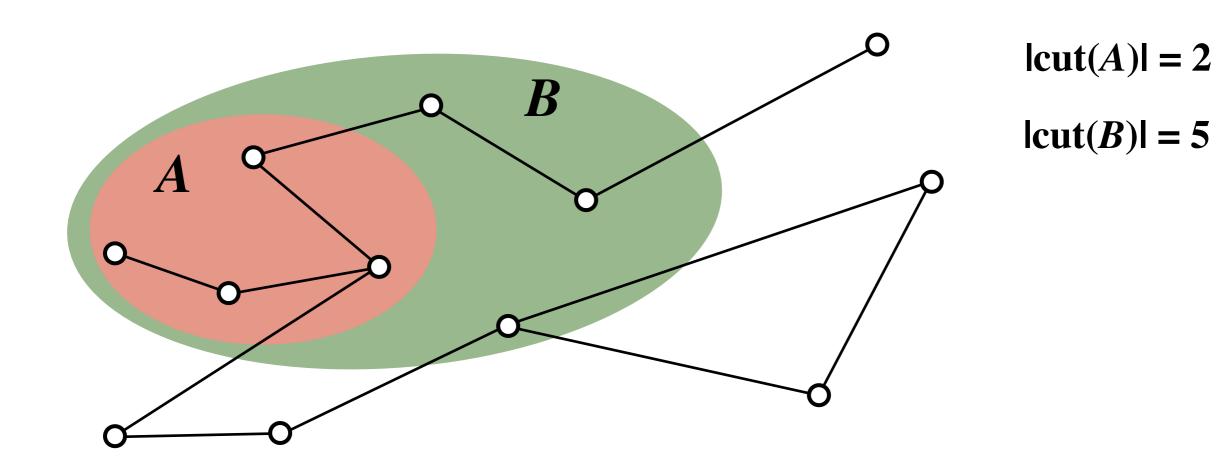
 $\forall A \subset B \subset [n] \text{ and } i \notin B, \ F(A \cup \{i\}) - F(A) \ge F(B \cup \{i\}) - F(B)$

Example: area covered by cameras



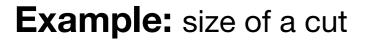


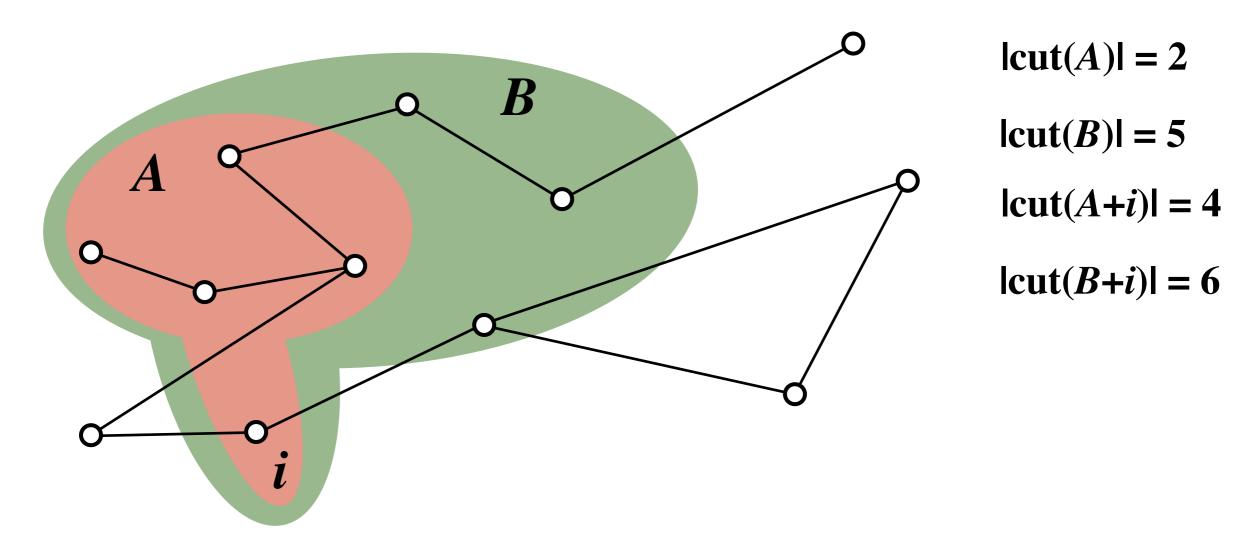
 $\forall A \subset B \subset [n] \text{ and } i \notin B, \ F(A \cup \{i\}) - F(A) \ge F(B \cup \{i\}) - F(B)$



Example: size of a cut

 $\forall A \subset B \subset [n] \text{ and } i \notin B, \ F(A \cup \{i\}) - F(A) \ge F(B \cup \{i\}) - F(B)$





Submodular functions can be minimized in polynomial time (Grotschel, Lovasz, Shrijver 1981)

Submodular functions can be minimized in polynomial time (Grotschel, Lovasz, Shrijver 1981)

Exact Minimization: find S^* such that $F(S^*) = \min_{S \subset [n]} F(S)$

• Lee, Sidford, Wong FOCS'15: $\tilde{O}(n^3)$ or $\tilde{O}(n^2 \log M)$ where $M = \max |F(S)|$

Submodular functions can be minimized in polynomial time (Grotschel, Lovasz, Shrijver 1981)

Exact Minimization: find S^* such that $F(S^*) = \min_{S \subset [n]} F(S)$

• Lee, Sidford, Wong FOCS'15: $\tilde{O}(n^3)$ or $\tilde{O}(n^2 \log M)$ where $M = \max |F(S)|$

E-Approx. Minimization: find S^* such that $F(S^*) \le \min_{S \subseteq [n]} F(S) + \epsilon$ ($F: 2^{[n]} \to [-1,1]$)

Submodular functions can be minimized in polynomial time (Grotschel, Lovasz, Shrijver 1981)

Exact Minimization: find S^* such that $F(S^*) = \min_{S \subset [n]} F(S)$

• Lee, Sidford, Wong FOCS'15: $\tilde{O}(n^3)$ or $\tilde{O}(n^2 \log M)$ where $M = \max |F(S)|$

e-Approx. Minimization: find S^* such that $F(S^*) \leq \min_{S \subset [n]} F(S) + \epsilon$ ($F: 2^{[n]} \to [-1,1]$) • Previous work: $\tilde{O}(n^{5/3}/\epsilon^2)$ (classical)

(Chakrabarty, Lee, Sidford, Wong STOC'17)

Submodular functions can be minimized in polynomial time (Grotschel, Lovasz, Shrijver 1981)

Exact Minimization: find S^* such that $F(S^*) = \min_{S \subset [n]} F(S)$

• Lee, Sidford, Wong FOCS'15: $\tilde{O}(n^3)$ or $\tilde{O}(n^2 \log M)$ where $M = \max |F(S)|$

E-Approx. Minimization: find S^* such that $F(S^*) \leq \min_{S \subset [n]} F(S) + \epsilon$ ($F: 2^{[n]} \to [-1,1]$) • Previous work: $\tilde{O}(n^{5/3}/\epsilon^2)$ (classical)

(Chakrabarty, Lee, Sidford, Wong STOC'17)

• Our result:

 $ilde{O}(n^{3/2}/\epsilon^2)$ (classical) or $ilde{O}(n^{5/4}/\epsilon^{5/2})$ (quantum)

Set function: $F: 2^{[n]} \to \mathbb{R}$

Set function: $F: 2^{[n]} \to \mathbb{R}$

Continuous Optimization

Lovász extension: $f: [0,1]^n \to \mathbb{R}$

Set function: $F: 2^{[n]} \to \mathbb{R}$

Continuous Optimization

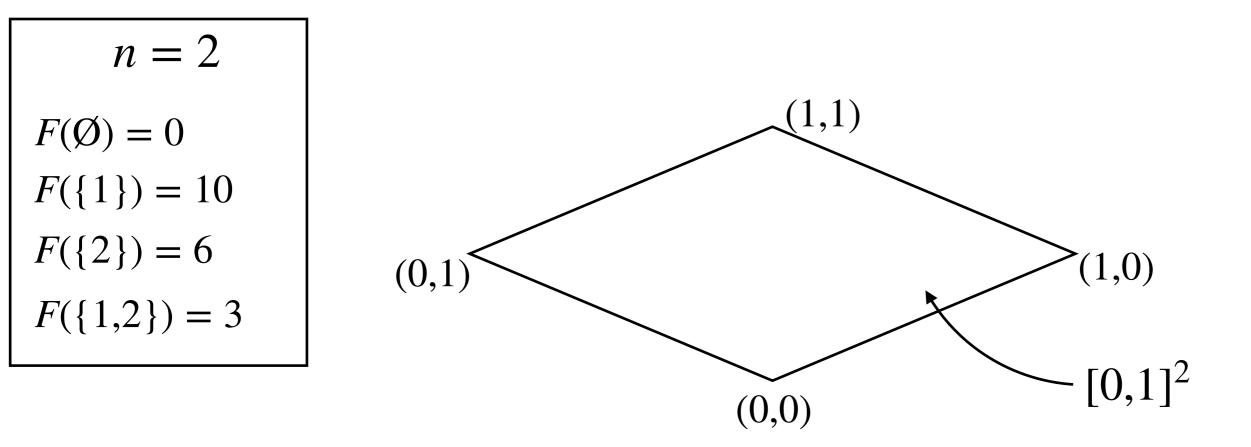
Lovász extension: $f: [0,1]^n \to \mathbb{R}$

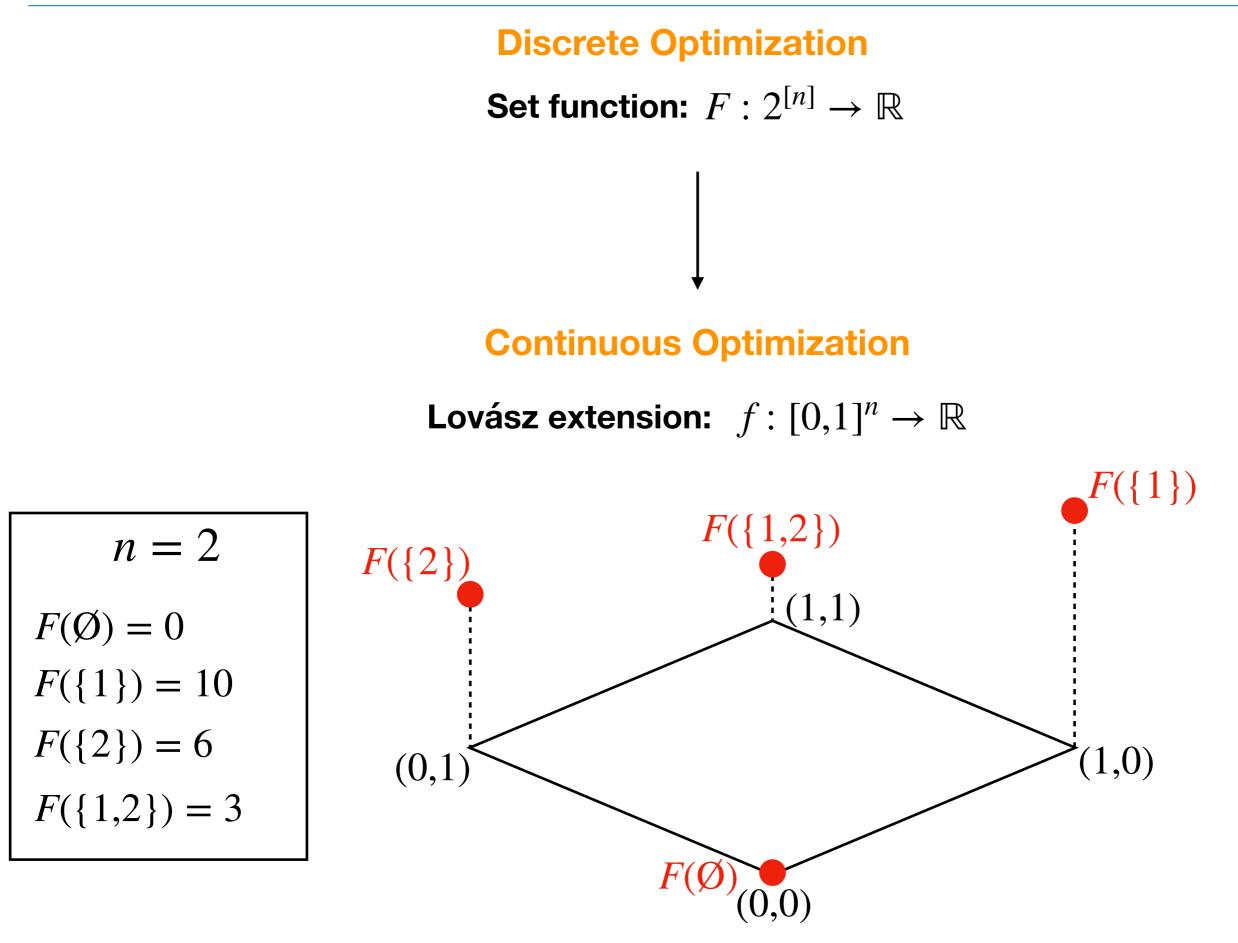
$$n = 2$$

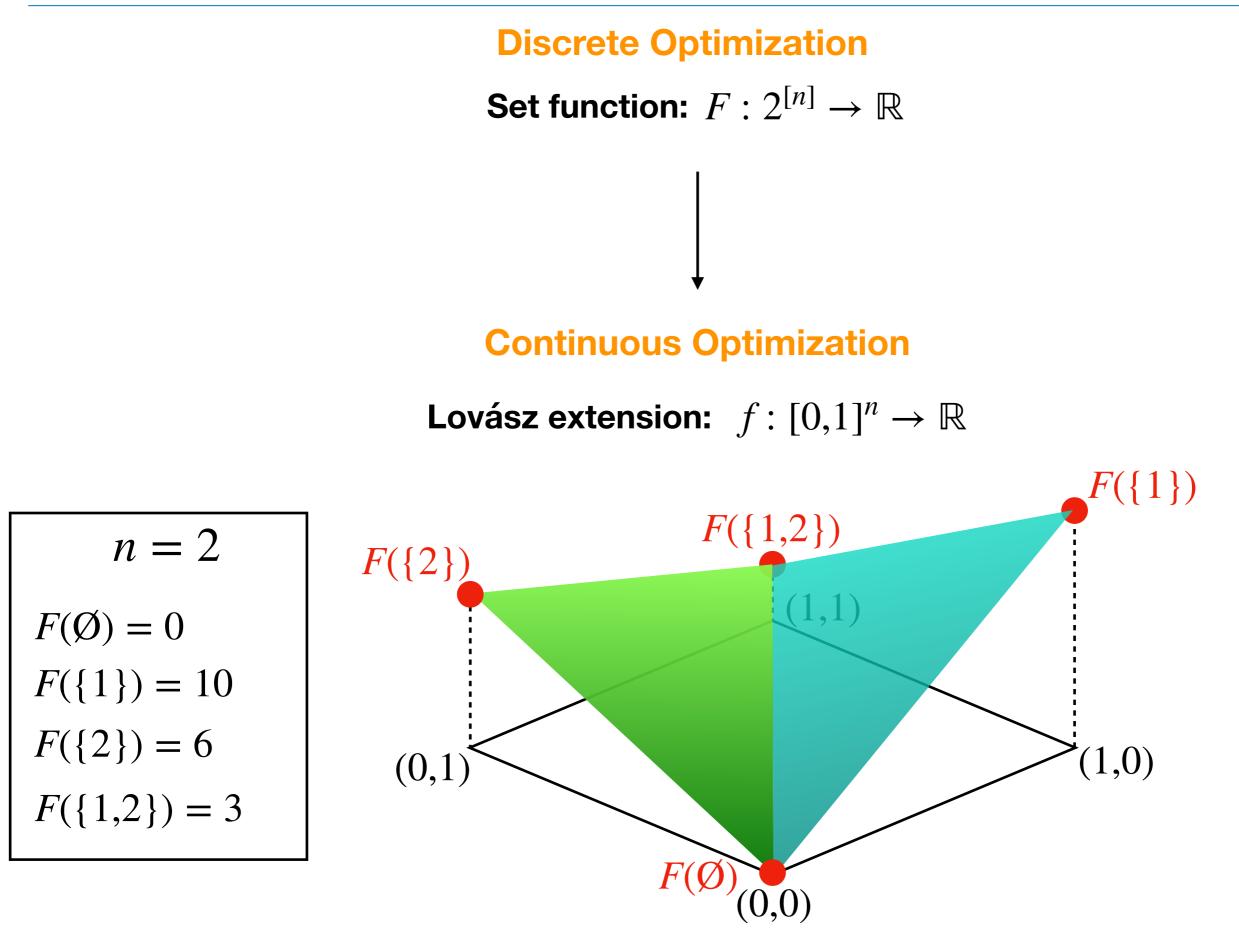
 $F(\emptyset) = 0$
 $F(\{1\}) = 10$
 $F(\{2\}) = 6$
 $F(\{1,2\}) = 3$

Continuous Optimization

Lovász extension: $f: [0,1]^n \to \mathbb{R}$





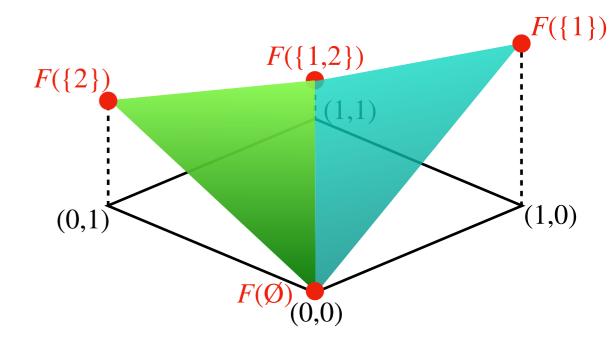


Set function: $F: 2^{[n]} \to \mathbb{R}$

Continuous Optimization

Lovász extension: $f: [0,1]^n \to \mathbb{R}$

The Lovász extension is:



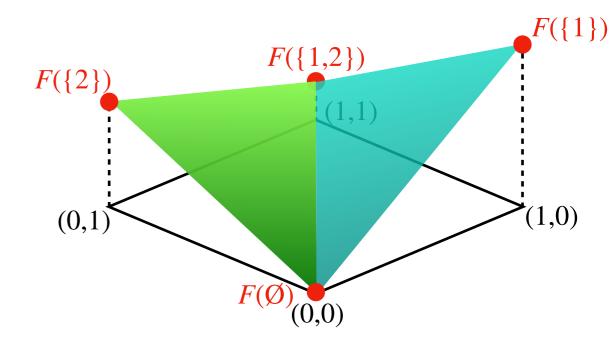
Set function: $F: 2^{[n]} \to \mathbb{R}$

Continuous Optimization

Lovász extension: $f: [0,1]^n \to \mathbb{R}$

The Lovász extension is:

Piecewise linear

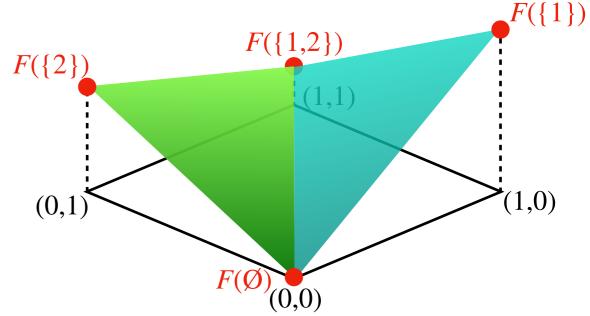


Continuous Optimization

Lovász extension: $f: [0,1]^n \to \mathbb{R}$

The Lovász extension is:

- Piecewise linear
- Convex iff F is submodular (Lovász 1983)



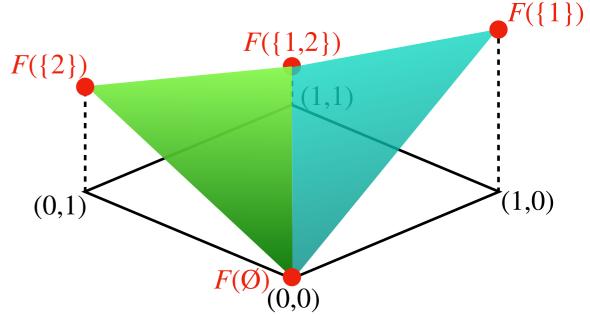
Set function: $F: 2^{[n]} \to \mathbb{R}$

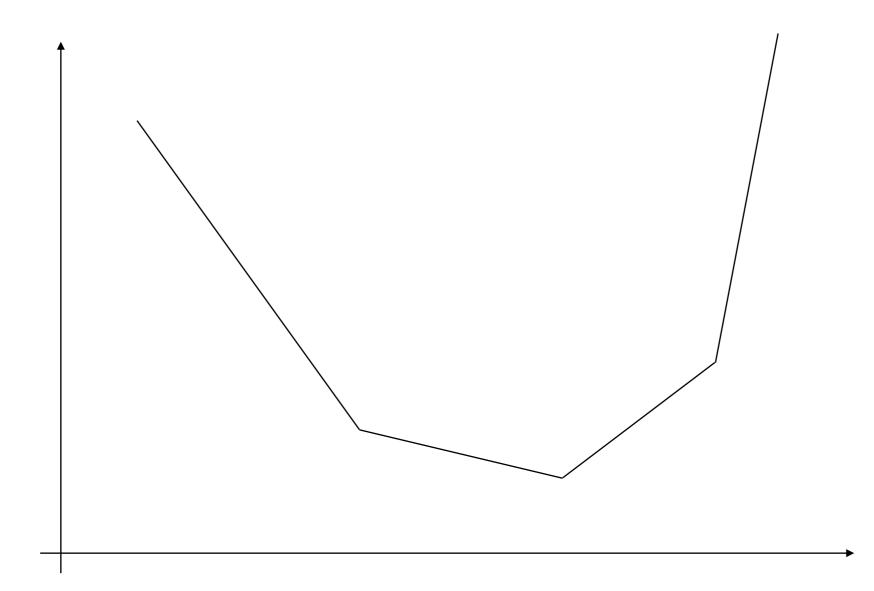
Continuous Optimization

Lovász extension: $f: [0,1]^n \to \mathbb{R}$

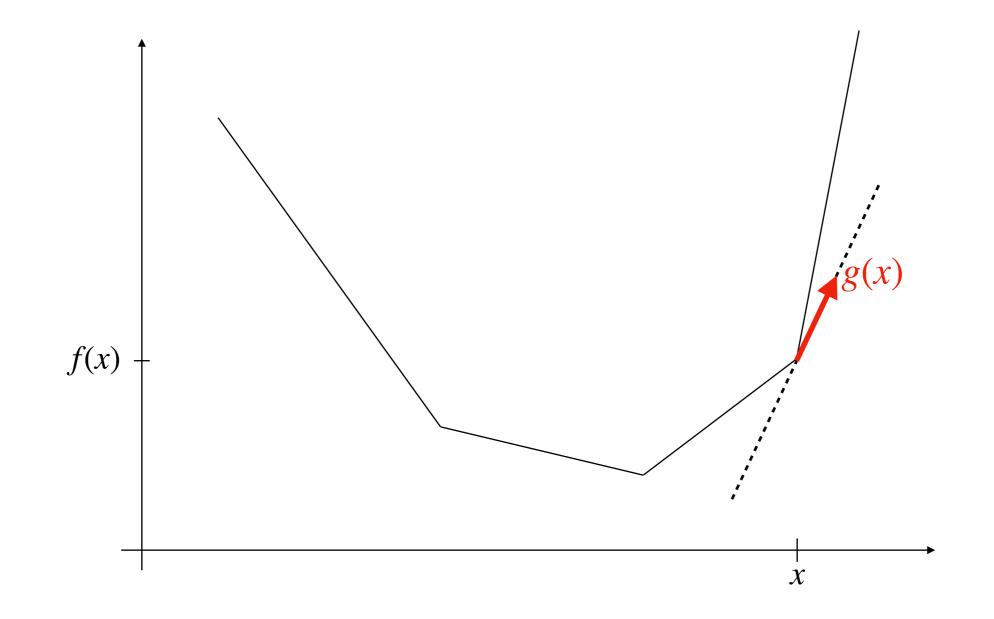
The Lovász extension is:

- Piecewise linear
- Convex iff F is submodular (Lovász 1983)
- Evaluable using n queries to F.

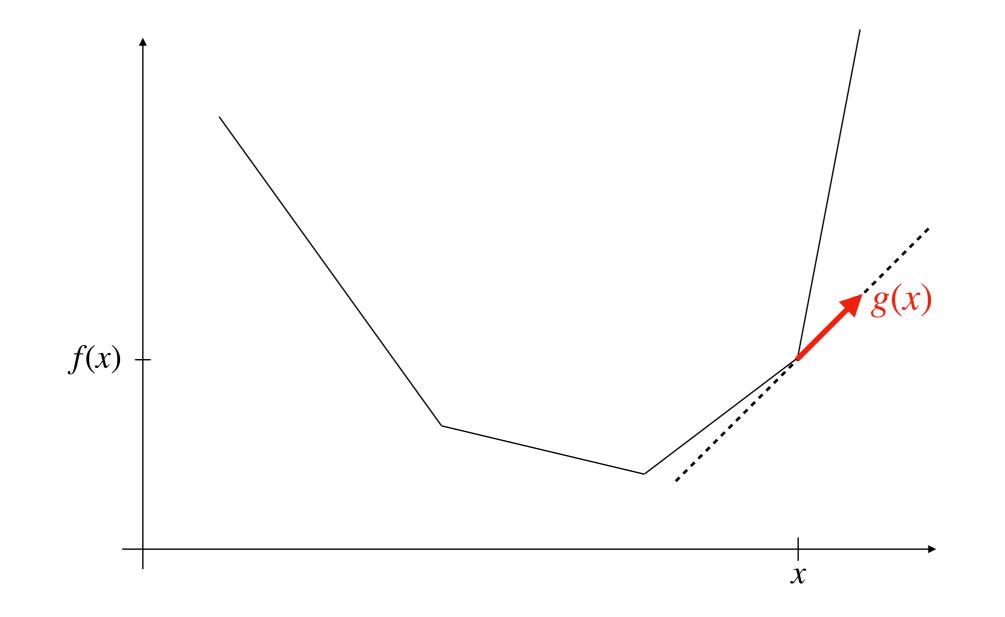




Subgradient at x: slope g(x) of any line that is below the graph of f and intersects it at x.

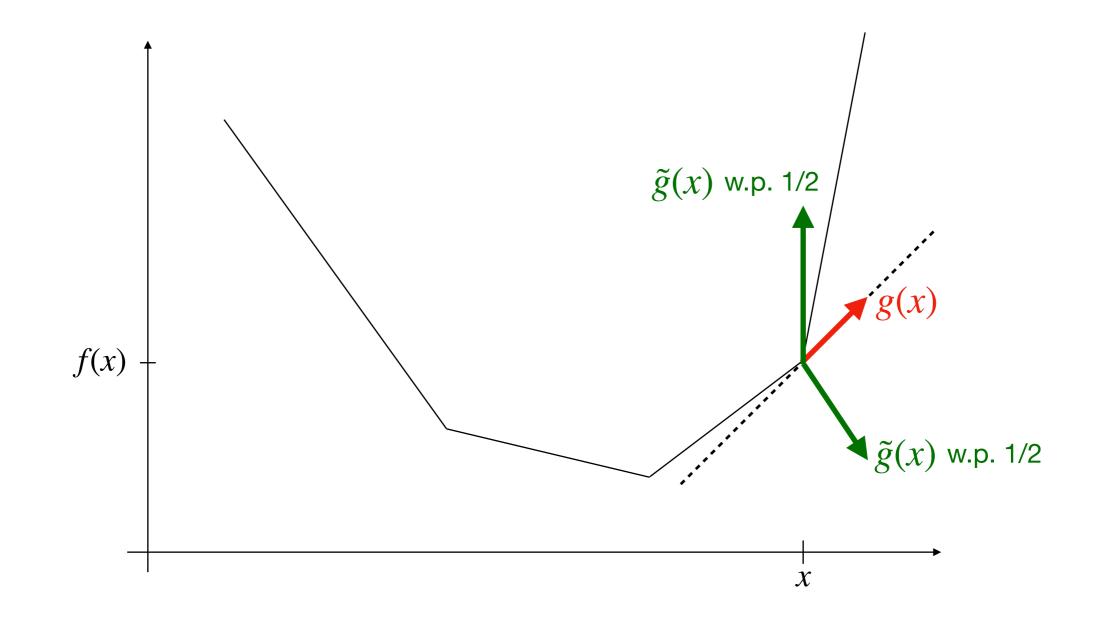


Subgradient at x: slope g(x) of any line that is below the graph of f and intersects it at x.



Subgradient at x: slope g(x) of any line that is below the graph of f and intersects it at x.

Stochastic Subgradient at *x***:** random variable $\tilde{g}(x)$ satisfying $E[\tilde{g}(x)] = g(x)$

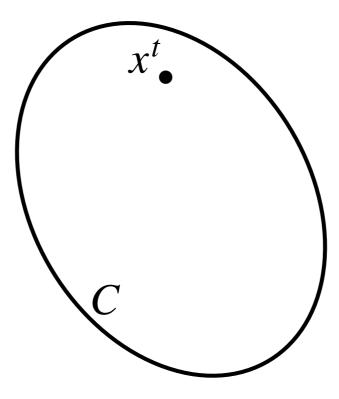


Subgradient at x: slope g(x) of any line that is below the graph of f and intersects it at x.

Stochastic Subgradient at *x***:** random variable $\tilde{g}(x)$ satisfying $E[\tilde{g}(x)] = g(x)$

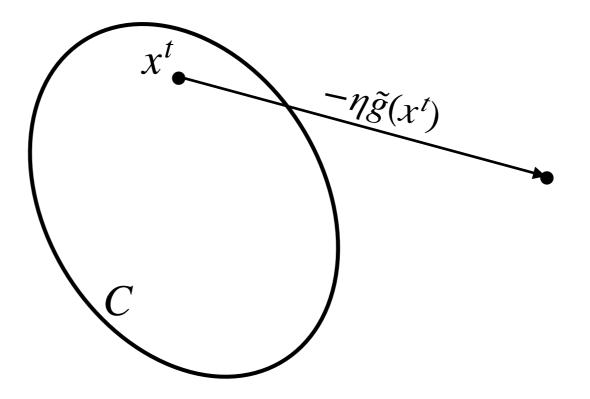
Subgradient at x: slope g(x) of any line that is below the graph of f and intersects it at x.

Stochastic Subgradient at *x***:** random variable $\tilde{g}(x)$ satisfying $E[\tilde{g}(x)] = g(x)$



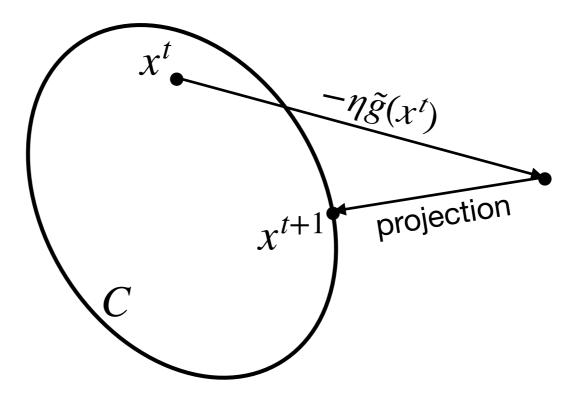
Subgradient at x: slope g(x) of any line that is below the graph of f and intersects it at x.

Stochastic Subgradient at *x***:** random variable $\tilde{g}(x)$ satisfying $E[\tilde{g}(x)] = g(x)$



Subgradient at x: slope g(x) of any line that is below the graph of f and intersects it at x.

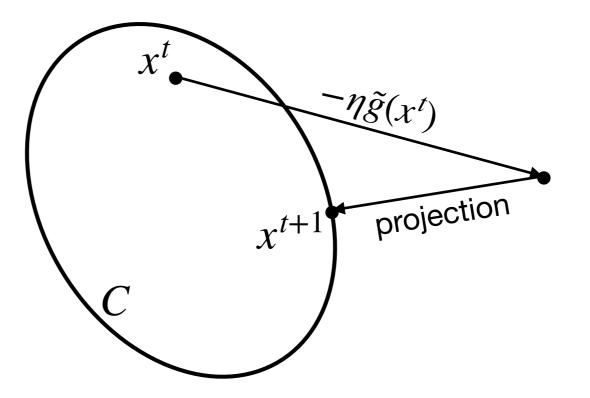
Stochastic Subgradient at *x***:** random variable $\tilde{g}(x)$ satisfying $E[\tilde{g}(x)] = g(x)$



Subgradient at x: slope g(x) of any line that is below the graph of f and intersects it at x.

Stochastic Subgradient at *x***:** random variable $\tilde{g}(x)$ satisfying $E[\tilde{g}(x)] = g(x)$

(projected) Stochastic Subgradient Descent



If $\tilde{g}(x)$ has low variance then the number of steps is the same as if we were using g(x).

For the Lovász extension f, there exists a subgradient g(x) such that:

Stochastic Subgradient for the Lovász extension

For the Lovász extension f, there exists a subgradient g(x) such that:

• g(x) can be computed in time O(n)

(Jegelka, Bilmes 2011) and (Hazan, Kale 2012)

Stochastic Subgradient for the Lovász extension

For the Lovász extension f, there exists a subgradient g(x) such that:

- g(x) can be computed in time O(n)
- subgradient descent requires $O(n/\epsilon^2)$ steps to get an ϵ -minimizer of f

(Jegelka, Bilmes 2011) and (Hazan, Kale 2012)

For the Lovász extension f, there exists a subgradient g(x) such that:

- g(x) can be computed in time O(n)
- subgradient descent requires $O(n/\epsilon^2)$ steps to get an ϵ -minimizer of f

(Jegelka, Bilmes 2011) and (Hazan, Kale 2012)

• Approximate minimization in time $O(n \cdot n/\epsilon^2)$

For the Lovász extension f, there exists a subgradient g(x) such that:

- g(x) can be computed in time O(n)
- subgradient descent requires $O(n/\epsilon^2)$ steps to get an ϵ -minimizer of f

(Jegelka, Bilmes 2011) and (Hazan, Kale 2012)

• Approximate minimization in time $O(n \cdot n/\epsilon^2)$

A stochastic subgradient $\tilde{g}(x)$ can be computed in time Q =

• Previous work:

 $\tilde{O}(n^{2/3})$

(Chakrabarty, Lee, Sidford, Wong STOC'17)

For the Lovász extension f, there exists a subgradient g(x) such that:

- g(x) can be computed in time O(n)
- subgradient descent requires $O(n/\epsilon^2)$ steps to get an ϵ -minimizer of f

(Jegelka, Bilmes 2011) and (Hazan, Kale 2012)

• Approximate minimization in time $O(n \cdot n/\epsilon^2)$

A stochastic subgradient $\tilde{g}(x)$ can be computed in time Q =

Previous work:

$$\tilde{O}(n^{2/3})$$

(Chakrabarty, Lee, Sidford, Wong STOC'17)

• Our result:

$$ilde{O}(n^{1/2})$$
 (classical) Or $ilde{O}(n^{1/4}/\epsilon^{1/2})$ (quantum)

For the Lovász extension f, there exists a subgradient g(x) such that:

- g(x) can be computed in time O(n)
- subgradient descent requires $O(n/\epsilon^2)$ steps to get an ϵ -minimizer of f

(Jegelka, Bilmes 2011) and (Hazan, Kale 2012)

• Approximate minimization in time $O(n \cdot n/\epsilon^2)$

A stochastic subgradient $\tilde{g}(x)$ can be computed in time Q =

Previous work:

$$\tilde{O}(n^{2/3})$$

(Chakrabarty, Lee, Sidford, Wong STOC'17)

• Our result: $\tilde{O}(n^{1/2})$ (classical) Or $\tilde{O}(n^{1/4}/\epsilon^{1/2})$ (quantum)

• Approximate minimization in time $O(Q \cdot n/\epsilon^2)$

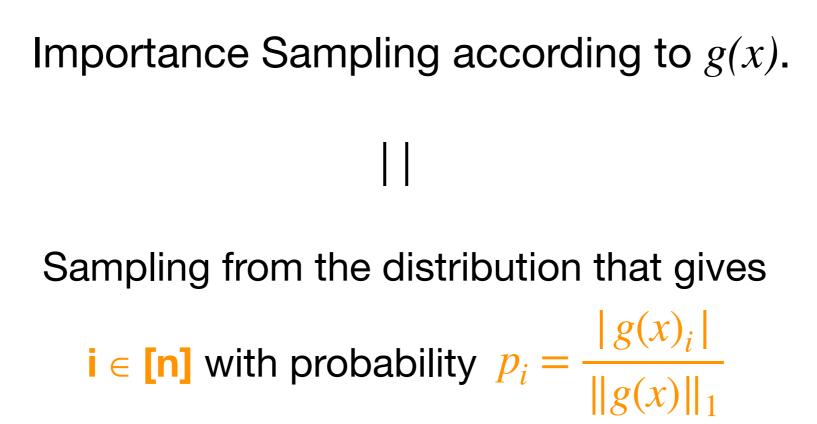
One central idea in the construction of $\tilde{g}(x)$:

Importance Sampling according to g(x).

One central idea in the construction of $\tilde{g}(x)$:

Importance Sampling according to g(x). || Sampling from the distribution that gives $\mathbf{i} \in [\mathbf{n}]$ with probability $p_i = \frac{|g(x)_i|}{||g(x)||_1}$

One central idea in the construction of $\tilde{g}(x)$:



This is where quantum computing comes in!

Quantum speed-up for Importance Sampling

Input: discrete probability distribution $D = (p_1, \dots, p_n)$ on [n].

Output: T independent samples $i_1, ..., i_T \sim D$.

Input: discrete probability distribution $D = (p_1, \dots, p_n)$ on [n].

Output: T independent samples $i_1, \ldots, i_T \sim D$.

Evaluation oracle access

Cost = # queries to the evaluation oracle

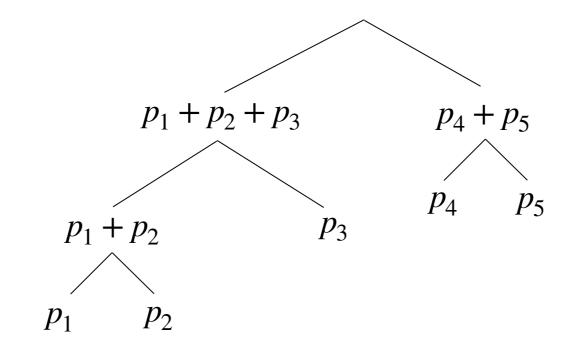
Input: discrete probability distribution $D = (p_1, \dots, p_n)$ on [n].

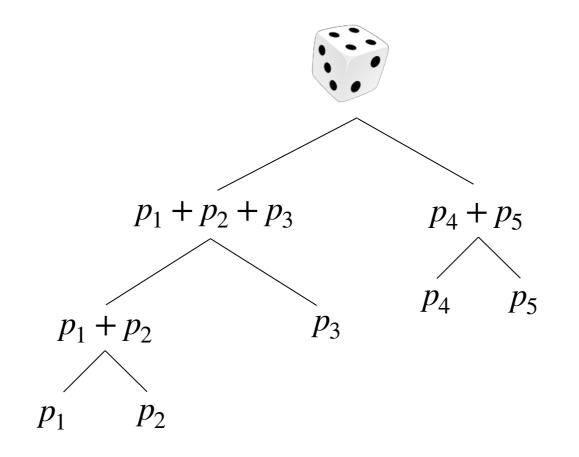
Output: T independent samples $i_1, \ldots, i_T \sim D$.

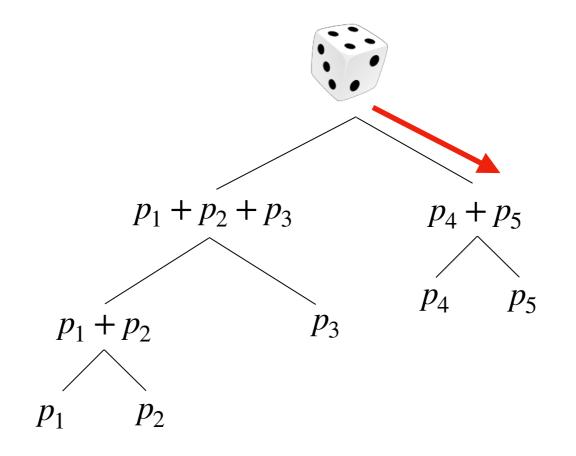
Evaluation oracle access

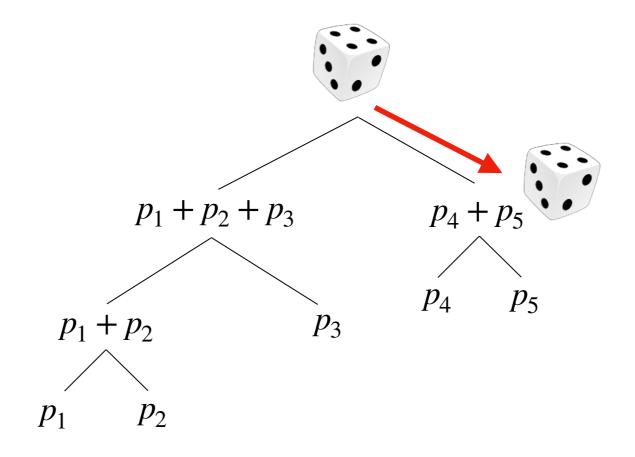
Cost = # queries to the evaluation oracle

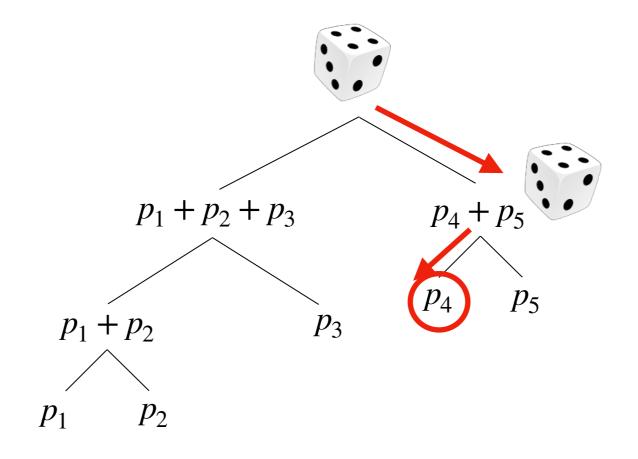
Can quantum computing help to sample faster?

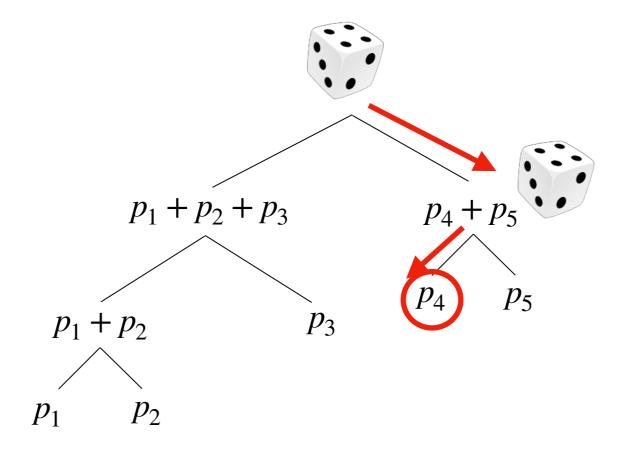






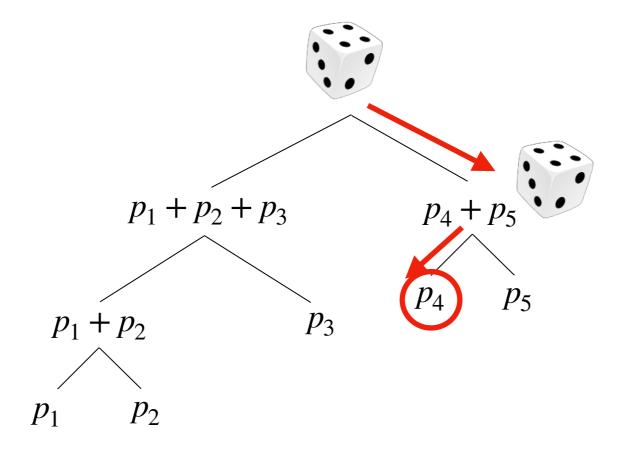






Preprocessing time: O(n)

Cost per sample: $O(\log n)$



Preprocessing time: O(n)

Cost per sample: $O(\log n)$

Cost for T samples: $O(n + T \log n)$

(Grover 2000)

Preprocessing:

(Grover 2000)

Preprocessing:

1. Compute $p_{\text{max}} = \max \{p_1, \dots, p_n\}$ with quantum Maximum Finding

(Grover 2000)

Preprocessing:

1. Compute $p_{\text{max}} = \max \{p_1, \dots, p_n\}$ with quantum Maximum Finding

2. Construct the unitary
$$V(|0\rangle|0\rangle) \mapsto \frac{1}{\sqrt{n}} \sum_{i \in [n]} |i\rangle|0\rangle$$

(Grover 2000)

Preprocessing:

1. Compute $p_{\text{max}} = \max \{p_1, ..., p_n\}$ with quantum Maximum Finding

2. Construct the unitary
$$V(|0\rangle|0\rangle) \mapsto \frac{1}{\sqrt{n}} \sum_{i \in [n]} |i\rangle |0\rangle$$

$$\mapsto \frac{1}{\sqrt{n}} \sum_{i \in [n]} |i\rangle \left(\sqrt{\frac{p_i}{p_{\text{max}}}} |0\rangle + \sqrt{1 - \frac{p_i}{p_{\text{max}}}} |1\rangle\right)$$

(Grover 2000)

Preprocessing:

1. Compute $p_{\text{max}} = \max \{p_1, ..., p_n\}$ with quantum Maximum Finding

2. Construct the unitary
$$V(|0\rangle|0\rangle) \mapsto \frac{1}{\sqrt{n}} \sum_{i \in [n]} |i\rangle |0\rangle$$

 $\mapsto \frac{1}{\sqrt{n}} \sum_{i \in [n]} |i\rangle \left(\sqrt{\frac{p_i}{p_{\max}}} |0\rangle + \sqrt{1 - \frac{p_i}{p_{\max}}} |1\rangle\right)$
 $= \frac{1}{\sqrt{np_{\max}}} \left(\sum_i \sqrt{p_i} |i\rangle\right) |0\rangle + \dots |1\rangle$

(Grover 2000)

Preprocessing:

1. Compute $p_{\text{max}} = \max \{p_1, \dots, p_n\}$ with quantum Maximum Finding

2. Construct the unitary
$$V(|0\rangle|0\rangle) \mapsto \frac{1}{\sqrt{n}} \sum_{i \in [n]} |i\rangle |0\rangle$$

 $\mapsto \frac{1}{\sqrt{n}} \sum_{i \in [n]} |i\rangle \left(\sqrt{\frac{p_i}{p_{\max}}} |0\rangle + \sqrt{1 - \frac{p_i}{p_{\max}}} |1\rangle\right)$
 $= \frac{1}{\sqrt{np_{\max}}} \left(\sum_i \sqrt{p_i} |i\rangle\right) |0\rangle + \dots |1\rangle$

Sampling (repeat T times):

1. Prepare $\sum_{i} \sqrt{p_i} |i\rangle$ with Amplitude Amplification on V, and measure it.

(Grover 2000)

Preprocessing:

1. Compute $p_{\text{max}} = \max \{p_1, \dots, p_n\}$ with quantum Maximum Finding

2. Construct the unitary
$$V(|0\rangle|0\rangle) \mapsto \frac{1}{\sqrt{n}} \sum_{i \in [n]} |i\rangle |0\rangle$$

 $\mapsto \frac{1}{\sqrt{n}} \sum_{i \in [n]} |i\rangle \left(\sqrt{\frac{p_i}{p_{\max}}} |0\rangle + \sqrt{1 - \frac{p_i}{p_{\max}}} |1\rangle\right)$
 $= \frac{1}{\sqrt{np_{\max}}} \left(\sum_i \sqrt{p_i} |i\rangle\right) |0\rangle + \dots |1\rangle$

Sampling (repeat T times):

1. Prepare $\sum_{i} \sqrt{p_i} |i\rangle$ with Amplitude Amplification on V, and measure it.

Preprocessing time: $O(\sqrt{n})$ Cost per sample: $O(\sqrt{np_{max}})$

(Grover 2000)

Preprocessing:

1. Compute $p_{\text{max}} = \max \{p_1, \dots, p_n\}$ with quantum Maximum Finding

2. Construct the unitary
$$V(|0\rangle|0\rangle) \mapsto \frac{1}{\sqrt{n}} \sum_{i \in [n]} |i\rangle |0\rangle$$

 $\mapsto \frac{1}{\sqrt{n}} \sum_{i \in [n]} |i\rangle \left(\sqrt{\frac{p_i}{p_{\max}}} |0\rangle + \sqrt{1 - \frac{p_i}{p_{\max}}} |1\rangle\right)$
 $= \frac{1}{\sqrt{np_{\max}}} \left(\sum_i \sqrt{p_i} |i\rangle\right) |0\rangle + \dots |1\rangle$

Sampling (repeat T times):

1. Prepare $\sum_{i} \sqrt{p_i} |i\rangle$ with Amplitude Amplification on V, and measure it.

Preprocessing time: $O(\sqrt{n})$ Cost per sample: $O(\sqrt{np_{max}})$

Cost for T samples: $O(\sqrt{n} + T\sqrt{np_{\max}})$

(Grover 2000)

Preprocessing:

1. Compute $p_{\text{max}} = \max \{p_1, \dots, p_n\}$ with quantum Maximum Finding

2. Construct the unitary
$$V(|0\rangle|0\rangle) \mapsto \frac{1}{\sqrt{n}} \sum_{i \in [n]} |i\rangle |0\rangle$$

 $\mapsto \frac{1}{\sqrt{n}} \sum_{i \in [n]} |i\rangle \left(\sqrt{\frac{p_i}{p_{\max}}} |0\rangle + \sqrt{1 - \frac{p_i}{p_{\max}}} |1\rangle\right)$
 $= \frac{1}{\sqrt{np_{\max}}} \left(\sum_i \sqrt{p_i} |i\rangle\right) |0\rangle + \dots |1\rangle$

Sampling (repeat T times):

1. Prepare $\sum_{i} \sqrt{p_i} |i\rangle$ with Amplitude Amplification on V, and measure it.

Preprocessing time: $O(\sqrt{n})$ Cost per sample: $O(\sqrt{np_{\max}})$ Cost for T samples: $O(\sqrt{n} + T\sqrt{np_{\max}}) = O(T\sqrt{n})$

Quantum State Preparation

Binary Tree

Binary Tree Quantum State Preparation

 $O(n + T \log n)$

For our submodular function minimization algorithm, we need $T = \sqrt{n}$.

Binary Tree Quantum State Preparation

 $O(n + T \log n)$

For our submodular function minimization algorithm, we need $T = \sqrt{n}$.

New quantum multi-sampling algorithm in $O(\sqrt{Tn})$

Our result: $O(\sqrt{Tn})$ for obtaining T independent samples from D = (p₁,...,p_n).

Our result: $O(\sqrt{Tn})$ for obtaining T independent samples from D = (p₁,...,p_n).

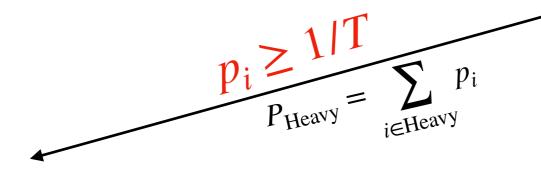
Element	1	2	3	4	5	6	7
Probability	<i>p</i> 1	<i>p</i> ₂	р3	<i>p</i> 4	<i>p</i> 5	<i>p</i> 6	<i>p</i> 7

Distribution D

Our result: $O(\sqrt{Tn})$ for obtaining T independent samples from D = (p₁,...,p_n).

Element	1	2	3	4	5	6	7
Probability	<i>p</i> 1	<i>p</i> ₂	р3	<i>p</i> 4	<i>p</i> 5	<i>p</i> 6	<i>p</i> ₇

Distribution D



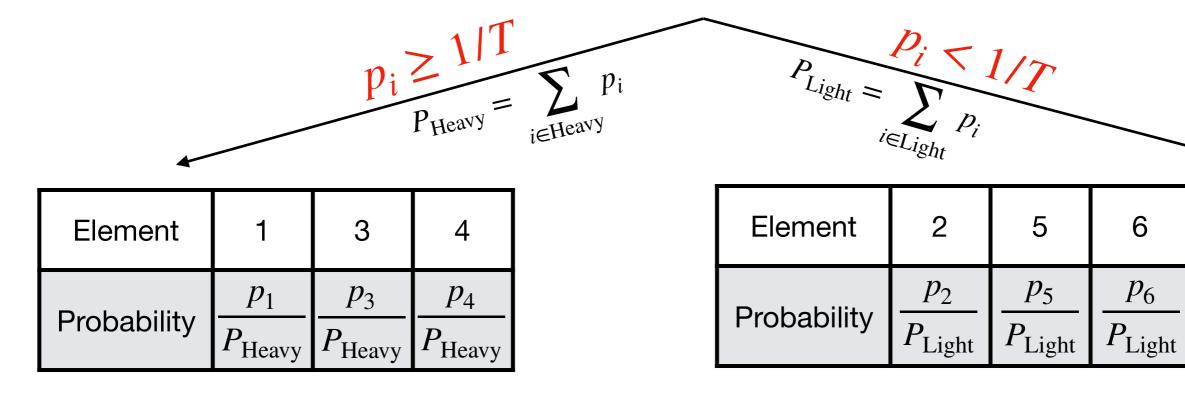
Element	1	3	4	
Duch chillte	<i>p</i> ₁	<i>p</i> ₃	<i>p</i> ₄	
Probability	P _{Heavy}	P _{Heavy}	P _{Heavy}	

Distribution D_{Heavy}

Our result: $O(\sqrt{Tn})$ for obtaining T independent samples from D = (p₁,...,p_n).

Element	1	2	3	4	5	6	7
Probability	<i>p</i> 1	<i>p</i> ₂	<i>p</i> 3	<i>p</i> 4	<i>p</i> 5	<i>p</i> 6	<i>p</i> 7

Distribution D



Distribution D_{Heavy}

Distribution DLight

7

 p_7

P_{Light}

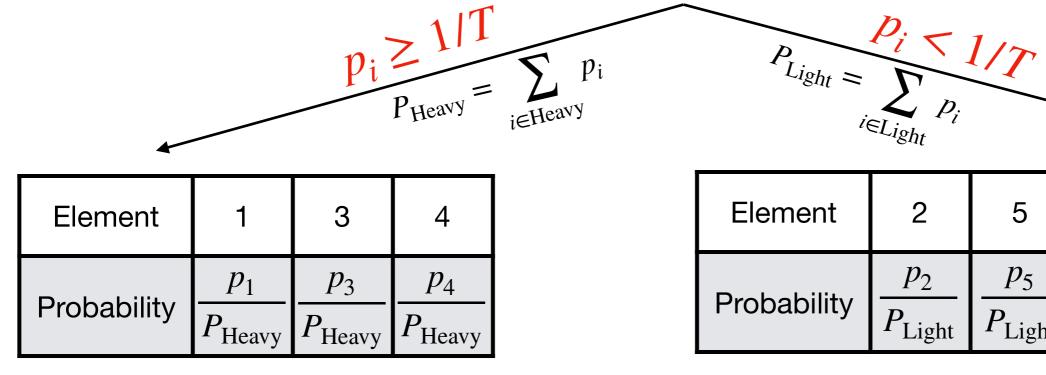
6

 p_6

Our result: $O(\sqrt{Tn})$ for obtaining T independent samples from D = (p₁,...,p_n).

Element	1	2	3	4	5	6	7
Probability	<i>p</i> 1	<i>p</i> ₂	<i>p</i> ₃	<i>p</i> 4	<i>p</i> 5	<i>p</i> 6	<i>p</i> ₇

Distribution D



i	ELight			*
Element	2	5	6	7
Probability	$\frac{p_2}{p}$	$\frac{p_5}{D}$	$\frac{p_6}{P}$	$\frac{p_7}{D}$

Distribution	D Light

P_{Light} P_{Light} P_{Light} P_{Light}

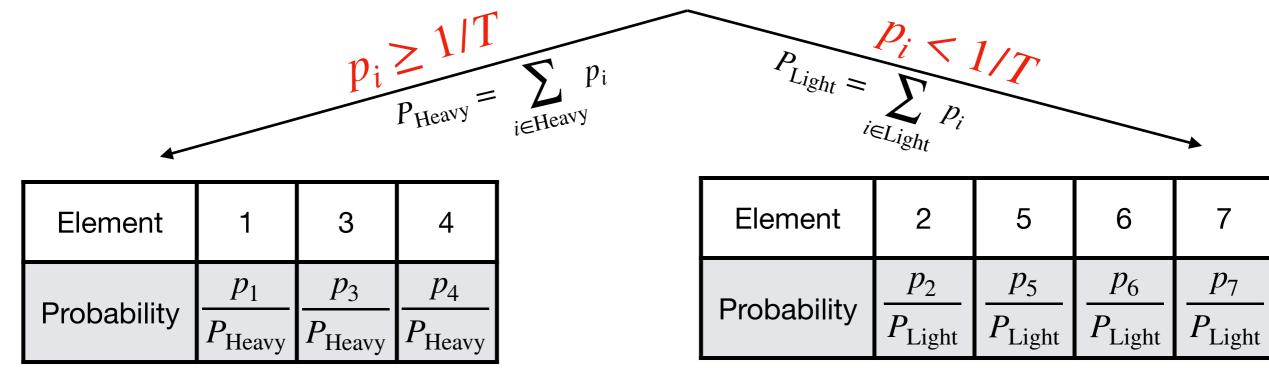
Distribution D_{Heavy}

Use a Binary Tree

Our result: $O(\sqrt{Tn})$ for obtaining T independent samples from D = (p₁,...,p_n).

Element	1	2	3	4	5	6	7
Probability	p_1	<i>p</i> ₂	<i>p</i> 3	<i>p</i> 4	<i>p</i> 5	<i>p</i> 6	<i>p</i> 7

Distribution D



Distribution DLight

Use Quantum State Preparation

Use a Binary Tree

1. Compute the set Heavy \subset [n] of indices i such that $p_i \ge 1/T$, using Grover Search.

1. Compute the set Heavy \subset [n] of indices i such that $p_i \ge 1/T$, using Grover Search.

2. Compute
$$P_{\text{Heavy}} = \sum_{i \in \text{Heavy}} p_i$$

1. Compute the set Heavy \subset [n] of indices i such that $p_i \ge 1/T$, using Grover Search.

2. Compute
$$P_{\text{Heavy}} = \sum_{i \in \text{Heavy}} p_i$$

3. Apply the preprocessing step of the **Binary Tree Method** on **D_{Heavy}**.

1. Compute the set Heavy \subset [n] of indices i such that $p_i \ge 1/T$, using Grover Search.

2. Compute
$$P_{\text{Heavy}} = \sum_{i \in \text{Heavy}} p_i$$

- 3. Apply the preprocessing step of the **Binary Tree Method** on **D_{Heavy}**.
- 4. Apply the preprocessing step of the Quant. State Preparation method on DLight.

1. Compute the set Heavy \subset [n] of indices i such that $p_i \ge 1/T$, using Grover Search.

2. Compute
$$P_{\text{Heavy}} = \sum_{i \in \text{Heavy}} p_i$$

- 3. Apply the preprocessing step of the **Binary Tree Method** on **D_{Heavy}**.
- 4. Apply the preprocessing step of the Quant. State Preparation method on DLight.

Sampling (repeat T times):

Flip a coin that is head with probability P_{Heavy} :

1. Compute the set Heavy \subset [n] of indices i such that $p_i \ge 1/T$, using Grover Search.

2. Compute
$$P_{\text{Heavy}} = \sum_{i \in \text{Heavy}} p_i$$

- 3. Apply the preprocessing step of the **Binary Tree Method** on **D_{Heavy}**.
- 4. Apply the preprocessing step of the Quant. State Preparation method on DLight.

Sampling (repeat T times):

Flip a coin that is head with probability P_{Heavy}:

Head: sample i ~ D_{Heavy} with the Binary Tree Method.

1. Compute the set Heavy \subset [n] of indices i such that $p_i \ge 1/T$, using Grover Search.

2. Compute
$$P_{\text{Heavy}} = \sum_{i \in \text{Heavy}} p_i$$

- 3. Apply the preprocessing step of the **Binary Tree Method** on **D_{Heavy}**.
- 4. Apply the preprocessing step of the Quant. State Preparation method on DLight.

Sampling (repeat T times):

Flip a coin that is head with probability P_{Heavy}:

- Head: sample i ~ D_{Heavy} with the Binary Tree Method.
- Tail: sample i ~ D_{Light} with Quantum State Preparation.

1. Compute the set Heavy \subset [n] of indices i such that $p_i \ge 1/T$, using Grover Search.

Cost:

2. Compute
$$P_{\text{Heavy}} = \sum_{i \in \text{Heavy}} p_i$$

Cost:

3. Apply the preprocessing step of the **Binary Tree Method** on **D_{Heavy}**.

Cost:

4. Apply the preprocessing step of the Quant. State Preparation method on D_{Light}.

1. Compute the set Heavy \subset [n] of indices i such that $p_i \ge 1/T$, using Grover Search.

Cost: $O(\sqrt{nT})$ since **|Heavy| \leq T**

2. Compute
$$P_{\text{Heavy}} = \sum_{i \in \text{Heavy}} p_i$$

Cost:

3. Apply the preprocessing step of the **Binary Tree Method** on **D_{Heavy}**.

Cost:

4. Apply the preprocessing step of the Quant. State Preparation method on D_{Light}.

1. Compute the set Heavy \subset [n] of indices i such that $p_i \ge 1/T$, using Grover Search.

Cost: $O(\sqrt{nT})$ since **|Heavy| \leq T**

2. Compute
$$P_{\text{Heavy}} = \sum_{i \in \text{Heavy}} p_i$$

Cost: $O(T)$

3. Apply the preprocessing step of the **Binary Tree Method** on **D_{Heavy}**.

Cost:

4. Apply the preprocessing step of the Quant. State Preparation method on D_{Light}.

1. Compute the set Heavy \subset [n] of indices i such that $p_i \ge 1/T$, using Grover Search.

Cost: $O(\sqrt{nT})$ since **|Heavy| \leq T**

2. Compute
$$P_{\text{Heavy}} = \sum_{i \in \text{Heavy}} p_i$$

Cost: $O(T)$

3. Apply the preprocessing step of the **Binary Tree Method** on **D_{Heavy}**.

Cost: O(T)

4. Apply the preprocessing step of the Quant. State Preparation method on DLight.

1. Compute the set Heavy \subset [n] of indices i such that $p_i \ge 1/T$, using Grover Search.

Cost: $O(\sqrt{nT})$ since **|Heavy| \leq T**

2. Compute
$$P_{\text{Heavy}} = \sum_{i \in \text{Heavy}} p_i$$

Cost: $O(T)$

3. Apply the preprocessing step of the **Binary Tree Method** on **D_{Heavy}**.

Cost: O(T)

4. Apply the preprocessing step of the Quant. State Preparation method on D_{Light}. Cost: $O(\sqrt{n})$

Flip a coin that is head with probability P_{Heavy}:

• Head: sample i ~ D_{Heavy} with the Binary Tree Method.

Cost per sample:

Flip a coin that is head with probability P_{Heavy}:

• Head: sample i ~ D_{Heavy} with the Binary Tree Method.

Cost per sample: $O(\log n)$

Flip a coin that is head with probability P_{Heavy}:

• Head: sample i ~ D_{Heavy} with the Binary Tree Method.

Cost per sample: $O(\log n)$ **Total cost:** $O(T \log n)$

Flip a coin that is head with probability P_{Heavy}:

• Head: sample i ~ D_{Heavy} with the Binary Tree Method.

Cost per sample: $O(\log n)$ **Total cost:** $O(T \log n)$

• Tail: sample i ~ D_{Light} with Quantum State Preparation.

Cost per sample:

Flip a coin that is head with probability P_{Heavy}:

• Head: sample i ~ D_{Heavy} with the Binary Tree Method.

Cost per sample: $O(\log n)$ **Total cost:** $O(T \log n)$

Cost per sample:
$$O(\sqrt{np_{\max}})$$
 where $p_{\max} = \max\left\{\frac{p_i}{P_{\text{Light}}}: i \in \text{Light}\right\}$

Flip a coin that is head with probability P_{Heavy}:

• Head: sample i ~ D_{Heavy} with the Binary Tree Method.

Cost per sample: $O(\log n)$ **Total cost:** $O(T \log n)$

Cost per sample:
$$O(\sqrt{np_{\max}})$$
 where $p_{\max} = \max\left\{\frac{p_i}{P_{\text{Light}}}: i \in \text{Light}\right\} \leq \frac{1}{T \cdot P_{\text{Light}}}$

Flip a coin that is head with probability P_{Heavy}:

• Head: sample i ~ D_{Heavy} with the Binary Tree Method.

Cost per sample: $O(\log n)$ **Total cost:** $O(T \log n)$

• Tail: sample i ~ D_{Light} with Quantum State Preparation.

Cost per sample:
$$O(\sqrt{np_{\max}})$$
 where $p_{\max} = \max\left\{\frac{p_i}{P_{\text{Light}}}: i \in \text{Light}\right\} \leq \frac{1}{T \cdot P_{\text{Light}}}$

Total expected cost:

Flip a coin that is head with probability P_{Heavy}:

Head: sample i ~ D_{Heavy} with the Binary Tree Method.

Cost per sample: $O(\log n)$ **Total cost:** $O(T \log n)$

• Tail: sample i ~ D_{Light} with Quantum State Preparation.

Cost per sample: $O(\sqrt{np_{\max}})$ where $p_{\max} = \max\left\{\frac{p_i}{P_{\text{Light}}}: i \in \text{Light}\right\} \leq \frac{1}{T \cdot P_{\text{Light}}}$

Total expected cost: $O(T \cdot P_{\text{Light}} \cdot \sqrt{np_{\text{max}}})$

Flip a coin that is head with probability P_{Heavy}:

Head: sample i ~ D_{Heavy} with the Binary Tree Method.

Cost per sample: $O(\log n)$ **Total cost:** $O(T \log n)$

Tail: sample i ~ D_{Light} with Quantum State Preparation.

Cost per sample: $O(\sqrt{np_{\max}})$ where $p_{\max} = \max\left\{\frac{p_i}{P_{\text{Light}}}: i \in \text{Light}\right\} \leq \frac{1}{T \cdot P_{\text{Light}}}$

Total expected cost: $O(T \cdot P_{\text{Light}} \cdot \sqrt{np_{\text{max}}}) = O(\sqrt{n \cdot T \cdot P_{\text{Light}}})$

Flip a coin that is head with probability P_{Heavy}:

Head: sample i ~ D_{Heavy} with the Binary Tree Method.

Cost per sample: $O(\log n)$ **Total cost:** $O(T \log n)$

• Tail: sample i ~ D_{Light} with Quantum State Preparation.

Cost per sample: $O(\sqrt{np_{\max}})$ where $p_{\max} = \max\left\{\frac{p_i}{P_{\text{Light}}}: i \in \text{Light}\right\} \leq \frac{1}{T \cdot P_{\text{Light}}}$

Total expected cost:
$$O(T \cdot P_{\text{Light}} \cdot \sqrt{np_{\text{max}}}) = O(\sqrt{n \cdot T \cdot P_{\text{Light}}}) = O(\sqrt{nT})$$

Conclusion

Recent improvement:

• Axelrod, Liu, Sidford 2019: classical $\tilde{O}(n/\epsilon^2)$ algorithm for approximate submodular function minimization

Recent improvement:

• Axelrod, Liu, Sidford 2019: classical $\tilde{O}(n/\epsilon^2)$ algorithm for approximate submodular function minimization

Open questions:

- Can we improve the upper/lower bounds for exact/approximate submodular function minimization?
- What are other applications of our quantum multi-sampling algorithm? (ongoing work: solving linear systems)
- Can we prepare T copies of the state $\sum_{i \in [n]} \sqrt{p_i} |i\rangle$ in time $O(\sqrt{nT})$.

arXiv: 1907.05378