
Quantum and Classical Algorithms for

Approximate Submodular Function Minimization

Yassine Hamoudi, Patrick Rebentrost,

Ansis Rosmanis, Miklos Santha

arXiv: 1907.05378

1. Approximate Submodular Function Minimization

2. Quantum speed-up for Importance Sampling

Approximate Submodular
Function Minimization

1

4Submodular Function

A submodular function is a set function satisfying the
diminishing returns property:

F : 2[n] → ℝ

∀A ⊂ B ⊂ [n] and i ∉ B, F(A ∪ {i}) − F(A) ≥ F(B ∪ {i}) − F(B)

4Submodular Function

A submodular function is a set function satisfying the
diminishing returns property:

F : 2[n] → ℝ

Example: area covered by cameras

∀A ⊂ B ⊂ [n] and i ∉ B, F(A ∪ {i}) − F(A) ≥ F(B ∪ {i}) − F(B)

A B

4Submodular Function

A submodular function is a set function satisfying the
diminishing returns property:

F : 2[n] → ℝ

Example: area covered by cameras

∀A ⊂ B ⊂ [n] and i ∉ B, F(A ∪ {i}) − F(A) ≥ F(B ∪ {i}) − F(B)

A B+ i + i

5Submodular Function

A
B

|cut(A)| = 2

|cut(B)| = 5

A submodular function is a set function satisfying the
diminishing returns property:

F : 2[n] → ℝ

Example: size of a cut

∀A ⊂ B ⊂ [n] and i ∉ B, F(A ∪ {i}) − F(A) ≥ F(B ∪ {i}) − F(B)

5Submodular Function

A
B

i

|cut(A)| = 2

|cut(B)| = 5

|cut(A+i)| = 4

|cut(B+i)| = 6

A submodular function is a set function satisfying the
diminishing returns property:

F : 2[n] → ℝ

Example: size of a cut

∀A ⊂ B ⊂ [n] and i ∉ B, F(A ∪ {i}) − F(A) ≥ F(B ∪ {i}) − F(B)

Evaluation oracle access: given S obtain F(S).

6Submodular Function Minimization

(time = #queries to the oracle)

Evaluation oracle access: given S obtain F(S).

6Submodular Function Minimization

(time = #queries to the oracle)

Submodular functions can be minimized in polynomial time
(Grotschel, Lovasz, Shrijver 1981)

find such that

Evaluation oracle access: given S obtain F(S).

6Submodular Function Minimization

Exact Minimization: F(S⋆) = min
S⊂[n]

F(S)S⋆

(time = #queries to the oracle)

Submodular functions can be minimized in polynomial time

• Lee, Sidford, Wong FOCS’15:

(Grotschel, Lovasz, Shrijver 1981)

Õ(n3) Õ(n2 log M) M = max |F(S) |or where

find such that

find such that

Evaluation oracle access: given S obtain F(S).

6Submodular Function Minimization

Exact Minimization: F(S⋆) = min
S⊂[n]

F(S)S⋆

F(S⋆) ≤ min
S⊂[n]

F(S) + ϵS⋆ε-Approx. Minimization:

(time = #queries to the oracle)

Submodular functions can be minimized in polynomial time

• Lee, Sidford, Wong FOCS’15:

(Grotschel, Lovasz, Shrijver 1981)

Õ(n3) Õ(n2 log M) M = max |F(S) |or where

(F : 2[n] → [−1,1])

find such that

find such that

Evaluation oracle access: given S obtain F(S).

6Submodular Function Minimization

Exact Minimization: F(S⋆) = min
S⊂[n]

F(S)S⋆

F(S⋆) ≤ min
S⊂[n]

F(S) + ϵS⋆ε-Approx. Minimization:

(time = #queries to the oracle)

Submodular functions can be minimized in polynomial time

• Lee, Sidford, Wong FOCS’15:

(Grotschel, Lovasz, Shrijver 1981)

Õ(n3) Õ(n2 log M) M = max |F(S) |or where

• Previous work: Õ(n5/3/ϵ2)
(Chakrabarty, Lee, Sidford, Wong STOC’17)

(classical)
(F : 2[n] → [−1,1])

find such that

find such that

Evaluation oracle access: given S obtain F(S).

6Submodular Function Minimization

Exact Minimization: F(S⋆) = min
S⊂[n]

F(S)S⋆

F(S⋆) ≤ min
S⊂[n]

F(S) + ϵS⋆ε-Approx. Minimization:

(time = #queries to the oracle)

Submodular functions can be minimized in polynomial time

• Lee, Sidford, Wong FOCS’15:

(Grotschel, Lovasz, Shrijver 1981)

Õ(n3) Õ(n2 log M) M = max |F(S) |or where

• Previous work: Õ(n5/3/ϵ2)

• Our result: Õ(n3/2/ϵ2) Õ(n5/4/ϵ5/2)(classical) (quantum)or

(Chakrabarty, Lee, Sidford, Wong STOC’17)
(classical)

(F : 2[n] → [−1,1])

7Lovász Extension
Discrete Optimization

F : 2[n] → ℝSet function:

7Lovász Extension
Discrete Optimization

Continuous Optimization

f : [0,1]n → ℝLovász extension:

F : 2[n] → ℝSet function:

7Lovász Extension
Discrete Optimization

Continuous Optimization

f : [0,1]n → ℝLovász extension:

n = 2

F({1}) = 10
F({2}) = 6
F({1,2}) = 3

F(Ø) = 0

F : 2[n] → ℝSet function:

(1,1)

7Lovász Extension
Discrete Optimization

Continuous Optimization

f : [0,1]n → ℝLovász extension:

(0,0)

(1,0)(0,1)

n = 2

F({1}) = 10
F({2}) = 6
F({1,2}) = 3

F(Ø) = 0

[0,1]2

F : 2[n] → ℝSet function:

(1,1)

7Lovász Extension
Discrete Optimization

Continuous Optimization

f : [0,1]n → ℝLovász extension:

(0,0)

(1,0)(0,1)

F(Ø)

F({2})
F({1,2})

F({1})
n = 2

F({1}) = 10
F({2}) = 6
F({1,2}) = 3

F(Ø) = 0

F : 2[n] → ℝSet function:

(1,1)

7Lovász Extension
Discrete Optimization

Continuous Optimization

f : [0,1]n → ℝLovász extension:

(0,0)

(1,0)(0,1)

F(Ø)

F({2})
F({1,2})

F({1})
n = 2

F({1}) = 10
F({2}) = 6
F({1,2}) = 3

F(Ø) = 0

F : 2[n] → ℝSet function:

8Lovász Extension

F : 2[n] → ℝSet function:

Discrete Optimization

Continuous Optimization

f : [0,1]n → ℝLovász extension:

The Lovász extension is:
(1,1)

(0,0)

(1,0)(0,1)

F(Ø)

F({2})
F({1,2})

F({1})

8Lovász Extension

F : 2[n] → ℝSet function:

Discrete Optimization

Continuous Optimization

f : [0,1]n → ℝLovász extension:

The Lovász extension is:

• Piecewise linear (1,1)

(0,0)

(1,0)(0,1)

F(Ø)

F({2})
F({1,2})

F({1})

8Lovász Extension

F : 2[n] → ℝSet function:

Discrete Optimization

Continuous Optimization

f : [0,1]n → ℝLovász extension:

• Convex iff F is submodular (Lovász 1983)

The Lovász extension is:

• Piecewise linear (1,1)

(0,0)

(1,0)(0,1)

F(Ø)

F({2})
F({1,2})

F({1})

8Lovász Extension

F : 2[n] → ℝSet function:

Discrete Optimization

Continuous Optimization

f : [0,1]n → ℝLovász extension:

• Convex iff F is submodular (Lovász 1983)

The Lovász extension is:

• Piecewise linear (1,1)

(0,0)

(1,0)(0,1)

F(Ø)

F({2})
F({1,2})

F({1})

• Evaluable using n queries to F.

9Stochastic Subgradient Descent

Convex function f : C → ℝ on a convex set C. (not necessarily differentiable)

9Stochastic Subgradient Descent

Convex function f : C → ℝ on a convex set C.

Subgradient at x: slope g(x) of any line that is below the graph of f and intersects it at x.

x

(not necessarily differentiable)

f(x)

g(x)

9Stochastic Subgradient Descent

Convex function f : C → ℝ on a convex set C.

Subgradient at x: slope g(x) of any line that is below the graph of f and intersects it at x.

x

(not necessarily differentiable)

f(x)

g(x)

9Stochastic Subgradient Descent

Convex function f : C → ℝ on a convex set C.

Subgradient at x: slope g(x) of any line that is below the graph of f and intersects it at x.

x

(not necessarily differentiable)

f(x)

g(x)

Stochastic Subgradient at x: random variable satisfying g̃(x) E[g̃(x)] = g(x)

g̃(x) w.p. 1/2

g̃(x) w.p. 1/2

10Stochastic Subgradient Descent

Convex function f : C → ℝ on a convex set C.

Subgradient at x: slope g(x) of any line that is below the graph of f and intersects it at x.

(not necessarily differentiable)

Stochastic Subgradient at x: random variable satisfying E[g̃(x)] = g(x)g̃(x)

(projected) Stochastic Subgradient Descent

10Stochastic Subgradient Descent

Convex function f : C → ℝ on a convex set C.

Subgradient at x: slope g(x) of any line that is below the graph of f and intersects it at x.

(not necessarily differentiable)

Stochastic Subgradient at x: random variable satisfying E[g̃(x)] = g(x)

C

xt

g̃(x)

(projected) Stochastic Subgradient Descent

10Stochastic Subgradient Descent

Convex function f : C → ℝ on a convex set C.

Subgradient at x: slope g(x) of any line that is below the graph of f and intersects it at x.

(not necessarily differentiable)

Stochastic Subgradient at x: random variable satisfying E[g̃(x)] = g(x)

C

xt

g̃(x)

−ηg̃(x t)

(projected) Stochastic Subgradient Descent

10Stochastic Subgradient Descent

Convex function f : C → ℝ on a convex set C.

Subgradient at x: slope g(x) of any line that is below the graph of f and intersects it at x.

(not necessarily differentiable)

Stochastic Subgradient at x: random variable satisfying E[g̃(x)] = g(x)

C

xt

g̃(x)

−ηg̃(x t)

xt+1 projection

(projected) Stochastic Subgradient Descent

If has low variance then the number of steps is the same as if we were using g(x).

10Stochastic Subgradient Descent

Convex function f : C → ℝ on a convex set C.

Subgradient at x: slope g(x) of any line that is below the graph of f and intersects it at x.

(not necessarily differentiable)

Stochastic Subgradient at x: random variable satisfying

g̃(x)

E[g̃(x)] = g(x)

C

xt

g̃(x)

−ηg̃(x t)

xt+1 projection

(projected) Stochastic Subgradient Descent

For the Lovász extension f, there exists a subgradient g(x) such that:

11Stochastic Subgradient for the Lovász extension

For the Lovász extension f, there exists a subgradient g(x) such that:

11Stochastic Subgradient for the Lovász extension

• g(x) can be computed in time O(n)

(Jegelka, Bilmes 2011) and (Hazan, Kale 2012)

• subgradient descent requires steps to get an ε-minimizer of f

For the Lovász extension f, there exists a subgradient g(x) such that:

11Stochastic Subgradient for the Lovász extension

O(n/ϵ2)
• g(x) can be computed in time O(n)

(Jegelka, Bilmes 2011) and (Hazan, Kale 2012)

• subgradient descent requires steps to get an ε-minimizer of f

For the Lovász extension f, there exists a subgradient g(x) such that:

11Stochastic Subgradient for the Lovász extension

O(n/ϵ2)
• g(x) can be computed in time O(n)

(Jegelka, Bilmes 2011) and (Hazan, Kale 2012)

O(n ⋅ n /ϵ2)Approximate minimization in time

A stochastic subgradient can be computed in time Q =

• subgradient descent requires steps to get an ε-minimizer of f

For the Lovász extension f, there exists a subgradient g(x) such that:

11Stochastic Subgradient for the Lovász extension

g̃(x)

O(n/ϵ2)
• g(x) can be computed in time O(n)

(Jegelka, Bilmes 2011) and (Hazan, Kale 2012)

• Previous work: Õ(n2/3)
(Chakrabarty, Lee, Sidford, Wong STOC’17)

O(n ⋅ n /ϵ2)Approximate minimization in time

A stochastic subgradient can be computed in time Q =

• subgradient descent requires steps to get an ε-minimizer of f

For the Lovász extension f, there exists a subgradient g(x) such that:

11Stochastic Subgradient for the Lovász extension

g̃(x)

O(n/ϵ2)
• g(x) can be computed in time O(n)

(Jegelka, Bilmes 2011) and (Hazan, Kale 2012)

• Previous work: Õ(n2/3)

• Our result: Õ(n1/2) Õ(n1/4/ϵ1/2)(classical) (quantum)or

(Chakrabarty, Lee, Sidford, Wong STOC’17)

O(n ⋅ n /ϵ2)Approximate minimization in time

A stochastic subgradient can be computed in time Q =

• subgradient descent requires steps to get an ε-minimizer of f

For the Lovász extension f, there exists a subgradient g(x) such that:

11Stochastic Subgradient for the Lovász extension

g̃(x)

O(n/ϵ2)
• g(x) can be computed in time O(n)

(Jegelka, Bilmes 2011) and (Hazan, Kale 2012)

• Previous work: Õ(n2/3)

• Our result: Õ(n1/2) Õ(n1/4/ϵ1/2)(classical) (quantum)or

(Chakrabarty, Lee, Sidford, Wong STOC’17)

O(n ⋅ n /ϵ2)Approximate minimization in time

O(Q ⋅ n /ϵ2)Approximate minimization in time

12Stochastic Subgradient for the Lovász extension

One central idea in the construction of :g̃(x)

Importance Sampling according to g(x).

Sampling from the distribution that gives

 i ∈ [n] with probability

12Stochastic Subgradient for the Lovász extension

One central idea in the construction of :

pi =
|g(x)i |
∥g(x)∥1

g̃(x)

Importance Sampling according to g(x).

| |

Sampling from the distribution that gives

 i ∈ [n] with probability

12Stochastic Subgradient for the Lovász extension

One central idea in the construction of :

pi =
|g(x)i |
∥g(x)∥1

g̃(x)

Importance Sampling according to g(x).

| |

This is where quantum computing comes in!

Quantum speed-up for
Importance Sampling

2

Problem 14

discrete probability distribution D = (p1,…,pn) on [n].Input:

Output: T independent samples i1,…,iT ~ D.

Problem 14

discrete probability distribution D = (p1,…,pn) on [n].Input:

Output: T independent samples i1,…,iT ~ D.

Evaluation oracle access

Classical Quantum

U(| i⟩ |0⟩) = | i⟩ |pi⟩i ↦ pi

Cost = # queries to the evaluation oracle

Problem 14

discrete probability distribution D = (p1,…,pn) on [n].Input:

Output: T independent samples i1,…,iT ~ D.

Evaluation oracle access

Classical Quantum

U(| i⟩ |0⟩) = | i⟩ |pi⟩i ↦ pi

Cost = # queries to the evaluation oracle

Can quantum computing help to sample faster?

Importance Sampling with a Binary Tree

p1 + p2 p3

p1 + p2 + p3 p4 + p5

p1 p2

p4 p5

15

Importance Sampling with a Binary Tree

p1 + p2 p3

p1 + p2 + p3 p4 + p5

p1 p2

p4 p5

15

Importance Sampling with a Binary Tree

p1 + p2 p3

p1 + p2 + p3 p4 + p5

p1 p2

p4 p5

15

Importance Sampling with a Binary Tree

p1 + p2 p3

p1 + p2 + p3 p4 + p5

p1 p2

p4 p5

15

Importance Sampling with a Binary Tree

p1 + p2 p3

p1 + p2 + p3 p4 + p5

p1 p2

p4 p5

15

Importance Sampling with a Binary Tree

Preprocessing time: O(n)

Cost per sample: O(log n)

p1 + p2 p3

p1 + p2 + p3 p4 + p5

p1 p2

p4 p5

15

Importance Sampling with a Binary Tree

Preprocessing time: O(n)

Cost per sample: O(log n)

Cost for T samples: O(n + T log n)

p1 + p2 p3

p1 + p2 + p3 p4 + p5

p1 p2

p4 p5

15

Importance Sampling with Quantum State preparation 16

Preprocessing:

Sampling (repeat T times):

(Grover 2000)

Importance Sampling with Quantum State preparation

1. Compute with quantum Maximum Findingpmax = max {p1, …, pn}

16

Preprocessing:

Sampling (repeat T times):

(Grover 2000)

Importance Sampling with Quantum State preparation

V(|0⟩ |0⟩) ⟼
1

n ∑
i∈[n]

| i⟩ |0⟩

1. Compute with quantum Maximum Findingpmax = max {p1, …, pn}

2. Construct the unitary

16

Preprocessing:

Sampling (repeat T times):

(Grover 2000)

Importance Sampling with Quantum State preparation

V(|0⟩ |0⟩) ⟼
1

n ∑
i∈[n]

| i⟩ |0⟩

1. Compute with quantum Maximum Findingpmax = max {p1, …, pn}

2. Construct the unitary

16

⟼
1

n ∑
i∈[n]

| i⟩(pi

pmax
|0⟩ + 1 −

pi

pmax
|1⟩)

Preprocessing:

Sampling (repeat T times):

(Grover 2000)

Importance Sampling with Quantum State preparation

V(|0⟩ |0⟩) ⟼
1

n ∑
i∈[n]

| i⟩ |0⟩

1. Compute with quantum Maximum Findingpmax = max {p1, …, pn}

2. Construct the unitary

16

=
1

npmax (∑
i

pi | i⟩) |0⟩ + … |1⟩

⟼
1

n ∑
i∈[n]

| i⟩(pi

pmax
|0⟩ + 1 −

pi

pmax
|1⟩)

Preprocessing:

Sampling (repeat T times):

(Grover 2000)

Importance Sampling with Quantum State preparation

V(|0⟩ |0⟩) ⟼
1

n ∑
i∈[n]

| i⟩ |0⟩

1. Compute with quantum Maximum Findingpmax = max {p1, …, pn}

2. Construct the unitary

1. Prepare with Amplitude Amplification on V, and measure it.∑
i

pi | i⟩

16

=
1

npmax (∑
i

pi | i⟩) |0⟩ + … |1⟩

⟼
1

n ∑
i∈[n]

| i⟩(pi

pmax
|0⟩ + 1 −

pi

pmax
|1⟩)

Preprocessing:

Sampling (repeat T times):

(Grover 2000)

Importance Sampling with Quantum State preparation

V(|0⟩ |0⟩) ⟼
1

n ∑
i∈[n]

| i⟩ |0⟩

1. Compute with quantum Maximum Findingpmax = max {p1, …, pn}

2. Construct the unitary

1. Prepare with Amplitude Amplification on V, and measure it.∑
i

pi | i⟩

16

=
1

npmax (∑
i

pi | i⟩) |0⟩ + … |1⟩

⟼
1

n ∑
i∈[n]

| i⟩(pi

pmax
|0⟩ + 1 −

pi

pmax
|1⟩)

Preprocessing time: O(n)
Cost per sample: O(npmax)

Preprocessing:

Sampling (repeat T times):

(Grover 2000)

Importance Sampling with Quantum State preparation

V(|0⟩ |0⟩) ⟼
1

n ∑
i∈[n]

| i⟩ |0⟩

1. Compute with quantum Maximum Findingpmax = max {p1, …, pn}

2. Construct the unitary

1. Prepare with Amplitude Amplification on V, and measure it.∑
i

pi | i⟩

16

=
1

npmax (∑
i

pi | i⟩) |0⟩ + … |1⟩

⟼
1

n ∑
i∈[n]

| i⟩(pi

pmax
|0⟩ + 1 −

pi

pmax
|1⟩)

Preprocessing time: O(n)
Cost per sample: O(npmax)
Cost for T samples: O(n + T npmax)

Preprocessing:

Sampling (repeat T times):

(Grover 2000)

Importance Sampling with Quantum State preparation

V(|0⟩ |0⟩) ⟼
1

n ∑
i∈[n]

| i⟩ |0⟩

1. Compute with quantum Maximum Findingpmax = max {p1, …, pn}

2. Construct the unitary

1. Prepare with Amplitude Amplification on V, and measure it.∑
i

pi | i⟩

16

=
1

npmax (∑
i

pi | i⟩) |0⟩ + … |1⟩

⟼
1

n ∑
i∈[n]

| i⟩(pi

pmax
|0⟩ + 1 −

pi

pmax
|1⟩)

Preprocessing time: O(n)
Cost per sample: O(npmax)
Cost for T samples: O(n + T npmax)

Preprocessing:

Sampling (repeat T times):

(Grover 2000)

= O(T n)

Importance Sampling

Binary Tree Quantum State Preparation

O(n + T log n) O(T n)

17

Importance Sampling

Binary Tree Quantum State Preparation

O(n + T log n) O(T n)

17

For our submodular function minimization

algorithm, we need T = √n.

Importance Sampling

Binary Tree Quantum State Preparation

O(n + T log n) O(T n)

17

For our submodular function minimization

algorithm, we need T = √n.

O(Tn)New quantum multi-sampling algorithm in

Importance Sampling with a Quantum Oracle

Our result: O(Tn) for obtaining T independent samples from D = (p1,…,pn).

18

Importance Sampling with a Quantum Oracle

Our result: O(Tn) for obtaining T independent samples from D = (p1,…,pn).

18

Element 1 2 3 4 5 6 7

Probability p1 p2 p3 p4 p5 p6 p7

Distribution D

Importance Sampling with a Quantum Oracle

Our result: O(Tn) for obtaining T independent samples from D = (p1,…,pn).

18

Element 1 2 3 4 5 6 7

Probability p1 p2 p3 p4 p5 p6 p7

Element 1 3 4

Probability
p1

PHeavy

p3

PHeavy

p4

PHeavy

Distribution D

Distribution DHeavy

pi ≥ 1/T
PHeavy = ∑

i∈Heavy

pi

Importance Sampling with a Quantum Oracle

Our result: O(Tn) for obtaining T independent samples from D = (p1,…,pn).

18

Element 1 2 3 4 5 6 7

Probability p1 p2 p3 p4 p5 p6 p7

Element 1 3 4

Probability

Element 2 5 6 7

Probability
p1

PHeavy

p3

PHeavy

p4

PHeavy

p2

PLight

p5

PLight

p6

PLight

p7

PLight

Distribution D

Distribution DHeavy Distribution DLight

pi ≥ 1/T pi < 1/T
PHeavy = ∑

i∈Heavy

pi
PLight = ∑

i∈Light
pi

Importance Sampling with a Quantum Oracle

Our result: O(Tn) for obtaining T independent samples from D = (p1,…,pn).

18

Element 1 2 3 4 5 6 7

Probability p1 p2 p3 p4 p5 p6 p7

Element 1 3 4

Probability

Element 2 5 6 7

Probability
p1

PHeavy

p3

PHeavy

p4

PHeavy

p2

PLight

p5

PLight

p6

PLight

p7

PLight

Distribution D

Distribution DHeavy Distribution DLight

Use a Binary Tree

pi ≥ 1/T pi < 1/T
PHeavy = ∑

i∈Heavy

pi
PLight = ∑

i∈Light
pi

Importance Sampling with a Quantum Oracle

Our result: O(Tn) for obtaining T independent samples from D = (p1,…,pn).

18

Element 1 2 3 4 5 6 7

Probability p1 p2 p3 p4 p5 p6 p7

Element 1 3 4

Probability

Element 2 5 6 7

Probability
p1

PHeavy

p3

PHeavy

p4

PHeavy

p2

PLight

p5

PLight

p6

PLight

p7

PLight

Distribution D

Distribution DHeavy Distribution DLight

Use a Binary Tree Use Quantum State Preparation

pi ≥ 1/T pi < 1/T
PHeavy = ∑

i∈Heavy

pi
PLight = ∑

i∈Light
pi

Importance Sampling with a Quantum Oracle 19

Preprocessing:

Sampling (repeat T times):

Importance Sampling with a Quantum Oracle 19

1. Compute the set Heavy ⊂ [n] of indices i such that pi ≥ 1/T, using Grover Search.

Preprocessing:

Sampling (repeat T times):

Importance Sampling with a Quantum Oracle 19

1. Compute the set Heavy ⊂ [n] of indices i such that pi ≥ 1/T, using Grover Search.

Preprocessing:

2. Compute PHeavy = ∑
i∈Heavy

pi

Sampling (repeat T times):

Importance Sampling with a Quantum Oracle 19

1. Compute the set Heavy ⊂ [n] of indices i such that pi ≥ 1/T, using Grover Search.

3. Apply the preprocessing step of the Binary Tree Method on DHeavy.

Preprocessing:

2. Compute PHeavy = ∑
i∈Heavy

pi

Sampling (repeat T times):

4. Apply the preprocessing step of the Quant. State Preparation method on DLight.

Importance Sampling with a Quantum Oracle 19

1. Compute the set Heavy ⊂ [n] of indices i such that pi ≥ 1/T, using Grover Search.

3. Apply the preprocessing step of the Binary Tree Method on DHeavy.

Preprocessing:

2. Compute PHeavy = ∑
i∈Heavy

pi

Sampling (repeat T times):

4. Apply the preprocessing step of the Quant. State Preparation method on DLight.

Importance Sampling with a Quantum Oracle 19

1. Compute the set Heavy ⊂ [n] of indices i such that pi ≥ 1/T, using Grover Search.

3. Apply the preprocessing step of the Binary Tree Method on DHeavy.

Preprocessing:

2. Compute PHeavy = ∑
i∈Heavy

pi

Flip a coin that is head with probability PHeavy :

Sampling (repeat T times):

4. Apply the preprocessing step of the Quant. State Preparation method on DLight.

Importance Sampling with a Quantum Oracle 19

1. Compute the set Heavy ⊂ [n] of indices i such that pi ≥ 1/T, using Grover Search.

3. Apply the preprocessing step of the Binary Tree Method on DHeavy.

Preprocessing:

2. Compute PHeavy = ∑
i∈Heavy

pi

Flip a coin that is head with probability PHeavy :

Sampling (repeat T times):

• Head: sample i ~ DHeavy with the Binary Tree Method.

4. Apply the preprocessing step of the Quant. State Preparation method on DLight.

Importance Sampling with a Quantum Oracle 19

1. Compute the set Heavy ⊂ [n] of indices i such that pi ≥ 1/T, using Grover Search.

3. Apply the preprocessing step of the Binary Tree Method on DHeavy.

Preprocessing:

2. Compute PHeavy = ∑
i∈Heavy

pi

Flip a coin that is head with probability PHeavy :

Sampling (repeat T times):

• Head: sample i ~ DHeavy with the Binary Tree Method.

• Tail: sample i ~ DLight with Quantum State Preparation.

4. Apply the preprocessing step of the Quant. State Preparation method on DLight.

Importance Sampling with a Quantum Oracle 20

1. Compute the set Heavy ⊂ [n] of indices i such that pi ≥ 1/T, using Grover Search.

3. Apply the preprocessing step of the Binary Tree Method on DHeavy.

Preprocessing:

Cost:

Cost:

Cost:

Cost:

2. Compute PHeavy = ∑
i∈Heavy

pi

4. Apply the preprocessing step of the Quant. State Preparation method on DLight.

Importance Sampling with a Quantum Oracle 20

1. Compute the set Heavy ⊂ [n] of indices i such that pi ≥ 1/T, using Grover Search.

3. Apply the preprocessing step of the Binary Tree Method on DHeavy.

Preprocessing:

Cost:

Cost:

Cost:

O(nT)

Cost:

since |Heavy| ≤ T

2. Compute PHeavy = ∑
i∈Heavy

pi

4. Apply the preprocessing step of the Quant. State Preparation method on DLight.

Importance Sampling with a Quantum Oracle 20

1. Compute the set Heavy ⊂ [n] of indices i such that pi ≥ 1/T, using Grover Search.

3. Apply the preprocessing step of the Binary Tree Method on DHeavy.

Preprocessing:

Cost:

Cost:

Cost:

O(nT)

Cost: O(T)

since |Heavy| ≤ T

2. Compute PHeavy = ∑
i∈Heavy

pi

4. Apply the preprocessing step of the Quant. State Preparation method on DLight.

Importance Sampling with a Quantum Oracle 20

1. Compute the set Heavy ⊂ [n] of indices i such that pi ≥ 1/T, using Grover Search.

3. Apply the preprocessing step of the Binary Tree Method on DHeavy.

Preprocessing:

Cost:

Cost:

Cost:

O(nT)

O(T)

Cost: O(T)

since |Heavy| ≤ T

2. Compute PHeavy = ∑
i∈Heavy

pi

4. Apply the preprocessing step of the Quant. State Preparation method on DLight.

Importance Sampling with a Quantum Oracle 20

1. Compute the set Heavy ⊂ [n] of indices i such that pi ≥ 1/T, using Grover Search.

3. Apply the preprocessing step of the Binary Tree Method on DHeavy.

Preprocessing:

Cost:

Cost:

Cost: O(n)

O(nT)

O(T)

Cost: O(T)

since |Heavy| ≤ T

2. Compute PHeavy = ∑
i∈Heavy

pi

Cost per sample:

Importance Sampling with a Quantum Oracle 21

Flip a coin that is head with probability PHeavy :

Sampling (repeat T times):

• Head: sample i ~ DHeavy with the Binary Tree Method.

• Tail: sample i ~ DLight with Quantum State Preparation.

Cost per sample:

Importance Sampling with a Quantum Oracle 21

Flip a coin that is head with probability PHeavy :

Sampling (repeat T times):

• Head: sample i ~ DHeavy with the Binary Tree Method.

• Tail: sample i ~ DLight with Quantum State Preparation.

O(log n)

Cost per sample:

Importance Sampling with a Quantum Oracle 21

Flip a coin that is head with probability PHeavy :

Sampling (repeat T times):

• Head: sample i ~ DHeavy with the Binary Tree Method.

• Tail: sample i ~ DLight with Quantum State Preparation.

O(log n) Total cost: O(T log n)

Cost per sample:

Importance Sampling with a Quantum Oracle 21

Flip a coin that is head with probability PHeavy :

Sampling (repeat T times):

• Head: sample i ~ DHeavy with the Binary Tree Method.

• Tail: sample i ~ DLight with Quantum State Preparation.

O(log n) Total cost: O(T log n)

Cost per sample:

Cost per sample:

Importance Sampling with a Quantum Oracle 21

Flip a coin that is head with probability PHeavy :

Sampling (repeat T times):

• Head: sample i ~ DHeavy with the Binary Tree Method.

• Tail: sample i ~ DLight with Quantum State Preparation.

O(log n) Total cost: O(T log n)

Cost per sample: pmax = max{ pi

PLight
: i ∈ Light}O(npmax) where

Cost per sample:

Importance Sampling with a Quantum Oracle 21

Flip a coin that is head with probability PHeavy :

Sampling (repeat T times):

• Head: sample i ~ DHeavy with the Binary Tree Method.

• Tail: sample i ~ DLight with Quantum State Preparation.

O(log n) Total cost: O(T log n)

Cost per sample: pmax = max{ pi

PLight
: i ∈ Light}O(npmax) where ≤

1
T ⋅ PLight

Cost per sample:

Importance Sampling with a Quantum Oracle 21

Flip a coin that is head with probability PHeavy :

Sampling (repeat T times):

• Head: sample i ~ DHeavy with the Binary Tree Method.

• Tail: sample i ~ DLight with Quantum State Preparation.

O(log n) Total cost: O(T log n)

Cost per sample: pmax = max{ pi

PLight
: i ∈ Light}O(npmax) where

Total expected cost:

≤
1

T ⋅ PLight

Cost per sample:

Importance Sampling with a Quantum Oracle 21

Flip a coin that is head with probability PHeavy :

Sampling (repeat T times):

• Head: sample i ~ DHeavy with the Binary Tree Method.

• Tail: sample i ~ DLight with Quantum State Preparation.

O(log n) Total cost: O(T log n)

Cost per sample: pmax = max{ pi

PLight
: i ∈ Light}O(npmax) where

Total expected cost: O(T ⋅ PLight ⋅ npmax)

≤
1

T ⋅ PLight

Cost per sample:

Importance Sampling with a Quantum Oracle 21

Flip a coin that is head with probability PHeavy :

Sampling (repeat T times):

• Head: sample i ~ DHeavy with the Binary Tree Method.

• Tail: sample i ~ DLight with Quantum State Preparation.

O(log n) Total cost: O(T log n)

Cost per sample: pmax = max{ pi

PLight
: i ∈ Light}O(npmax) where

Total expected cost: O(T ⋅ PLight ⋅ npmax) = O(n ⋅ T ⋅ PLight)

≤
1

T ⋅ PLight

Cost per sample:

Importance Sampling with a Quantum Oracle 21

Flip a coin that is head with probability PHeavy :

Sampling (repeat T times):

• Head: sample i ~ DHeavy with the Binary Tree Method.

• Tail: sample i ~ DLight with Quantum State Preparation.

O(log n) Total cost: O(T log n)

Cost per sample: pmax = max{ pi

PLight
: i ∈ Light}O(npmax) where

Total expected cost: O(T ⋅ PLight ⋅ npmax) = O(n ⋅ T ⋅ PLight)

≤
1

T ⋅ PLight

= O (nT)

Conclusion

• Axelrod, Liu, Sidford 2019: classical algorithm for
approximate submodular function minimization

Recent improvement:
Õ(n /ϵ2)

• Axelrod, Liu, Sidford 2019: classical algorithm for
approximate submodular function minimization

• Can we prepare T copies of the state in time .

arXiv: 1907.05378

Open questions:

• Can we improve the upper/lower bounds for exact/approximate
submodular function minimization?

∑
i∈[n]

pi | i⟩ O(nT)

Recent improvement:
Õ(n /ϵ2)

• What are other applications of our quantum multi-sampling algorithm?
(ongoing work: solving linear systems)

