The NISQ Complexity of Collision Finding

Yassine Hamoudi, Qipeng Liu, Makrand Sinha
CNRS, LaBRI UC San Diego U. of Illinois

arXiv:2211.12954 + work in progress

Noisy Intermediate-Scale Quantum

Limitations of short-term quantum computers:

- limited error correction
- small coherence time
- few logical qubits

NISQ complexity: understand what cannot be done with NISQ computers

Toy problems

Search problem

4	3	0	6	3	2	1

Find a 0

Collision problem

4	3	0	6	3	2	1

Find a pair of equal values

- Subroutines of many quantum algorithms and crypto. attacks
- Amenable to query complexity analysis
- Current algorithms (Grover, BHT, ...) are not considered NISQ

Can we get quantum speedups for these problems in NISQ era?

How to model NISQ complexity?

Model 2
Costly gates

Grover is not a NISQ algorithm

"NISQ-ier" Shor’s factoring

"NISQ-ier" algorithms for Search/Collision?

Search with constant-depth quantum sub circuits $+\sqrt{N}$ queries?
Search with $o(\sqrt{N})$-depth quantum sub circuits $+o(N)$ queries?

Search with 1 quantum query $+\sqrt{N}$ classical queries?
Search with $o(\sqrt{N})$ quantum query $+o(N)$ classical queries?
... and for Collision?

Main results

1/ No quantum speedups for Search and Collision problems in NISQ models

2/ Tight characterization of optimal speedups for Search and Collision in all "super-NISQ" models

For all $0 \leq d \leq \infty$
3/ New framework for analyzing NISQ complexity
Previous work on Search:
[Sun, Zheng'19] (model 1), [Chen, Cotler, Huang, Li'22] (model 1),
[Rosmanis'22] (model 2), [Rosmanis'23] (model 1)

Relaxations of NISQ models

First relaxation: query complexity

Idea: focus the analysis on oracle gates only

Motivations:

- Often the most time-consuming part of the circuit
- Toy model for analyzing crypto. protocols that require hash functions (random oracle model)
- Efficient lower bound methods on number of oracle gates (= query complexity)

First relaxation: query complexity

$F:[N] \rightarrow[N]$ accessible via an oracle (= query operator)

First relaxation: query complexity

Model 1

Shallow quantum circuits

Model 2
Costly gates

Second relaxation: dephasing noise

Idea: substitute the depth constraint (model 1)

 with dephasing noise
Motivations:

- Local decoherence is easier to analyze than global decoherence
- Dephasing noise commutes with quantum oracle gates

Second relaxation: dephasing noise

$$
\rho \stackrel{W}{\longmapsto} \varepsilon \sum_{i}\langle i| \rho|i\rangle|i\rangle\langle i| \otimes|0\rangle\langle 0|+(1-\varepsilon) \rho \otimes|1\rangle\langle 1|
$$

Model 3

Dephasing noise

Efficient simulation when $\varepsilon \leq 1 / d$

Model 1

Shallow quantum circuits

Second relaxation: dephasing noise

Observation: depolarizing channel commutes with quantum oracle

Hybrid oracle

Hybrid (ε)

 $\sim\left(\begin{array}{c}\text { Classical } \\ \text { oracle } \\ \varepsilon\end{array}\right.$

Equivalently: quantum oracle collapses into classical oracle with proba. ε
Relaxations: NISQ hardness can be deduced from query complexity with Hybrid(0) + Hybrid(1) (model 2) or Hybrid(ε) (models 1, 3)

Contribution: first generic method for analyzing such combinations of oracles

Technical overview:

NISQ hardness of Search

Find x such that $F(x)=0$ when $F:[N] \rightarrow[N]$ is random

Find x such that $F(x)=0$ when $F:[N] \rightarrow[N]$ is random

```
number of classical queries (to Hybrid(1))
```


Classical transcript $\quad(\varepsilon=1)$

x_{1}	$F\left(x_{1}\right)$
x_{2}	$F\left(x_{2}\right)$
x_{3}	$F\left(x_{3}\right)$
	\ldots

Conditioning on the transcript state

$$
\begin{aligned}
\text { Ex: } & \operatorname{Pr}[F(x)=0 \mid \text { transcript }]= \\
& \begin{cases}1 & \text { if }(x, 0) \in \text { transcrip } \\
0 & \text { if }(x, y) \in \text { transcrip } \\
1 / N & \text { otherwise }\end{cases}
\end{aligned}
$$

List of (query, answer) made by a classical algorithm

$$
(\varepsilon=1)
$$

$$
(\varepsilon=0)
$$

Classical lower bound

Quantum lower bound

Quantum transcript?

Quantum transcript $(\varepsilon=0)$

[Zhandry'19]

Step 1: purify the input F

Quantum transcript

Step 2: compress $|F(x)\rangle \mapsto|D(x)\rangle$
$\int \frac{1}{\sqrt{N}} \sum_{y \in[N]}|F(x)=y\rangle \longmapsto|D(x)=\emptyset\rangle$ $F(x)$ looks random
to the algorithm

$$
\left.\sum \alpha_{x, u, D}^{\prime}|x, u\rangle \otimes \left\lvert\, \begin{array}{c}
\frac{D(0)}{D(1)} \\
\hline \frac{D(2)}{\ldots} \\
\hline\{(N-1)
\end{array}\right.\right)
$$

Quantum transcript

 $(\varepsilon=0)$

After t queries: $\left.\quad \sum \alpha_{x, u, D}^{\prime}|x, u\rangle \otimes \left\lvert\, \begin{array}{c}D(1) \\ \hline \frac{D}{\cdots} \\ \cdots(N-1) \\ D(N)\end{array}\right.\right]$ at most t entries $\neq \varnothing$
Disturbance: $\quad \|$ Measure $(|F(x)\rangle)$ - Measure $(|D(x)\rangle) \|_{\infty} \lesssim 1 / N$
($\emptyset=$ unif. distribution)

$$
(\varepsilon=1)
$$

Classical lower bound

$$
(\varepsilon=0)
$$

Quantum lower bound

Amplitude increase

Why is the quantum progress faster?

Transcript interference:

No such phenomenon for classical transcript (time-stamped recording)

Hybrid transcript

Step 1:

Classical Quantum
transcript oracle
$\sum \alpha_{x, u, F, x_{1}, x_{2}, \ldots}|x, u\rangle \otimes$

Purification registers
Step 2: compress $\frac{1}{\sqrt{N}} \sum_{y}|F(x)=y\rangle \mapsto|D(x)=\varnothing\rangle$ if $(x, \cdot) \notin$ cl. transcript

$$
|F(x)=y\rangle \mapsto|D(x)=\emptyset\rangle \quad \text { if }(x, y) \in \mathrm{cl} . \text { transcript }
$$

Hybrid lower bound

Classical-Quantum progress:

Example:

Classical progress increases
... but interference effects are lost

Classical query

| | $t \rightarrow t+1$ | $t \longrightarrow t+1$ | $t \longrightarrow t+1$ |
| :--- | :---: | :---: | :---: | :---: |

NISQ hardness of Collision

3 types of collisions

Classical

Hybrid

Unlike for Search, not all interference effects are lost by classical queries!

Find x, y such that $F(x)=F(y)$ when $F:[N] \rightarrow[N]$ is random

Find x, y such that $F(x)=F(y)$ when $F:[N] \rightarrow[N]$ is random

```
number of
classical queries
(to Hybrid(1))
```


