
Yassine Hamoudi, Qipeng Liu, Makrand Sinha

The NISQ Complexity of

Collision Finding

arXiv:2211.12954 + work in progress

CNRS, LaBRI UC San Diego U. of Illinois

Limitations of short-term quantum computers:

Noisy Intermediate-Scale Quantum

NISQ complexity: understand what cannot be done with NISQ computers

- limited error correction

- small coherence time

- few logical qubits

- …

Collision problem

Toy problems

‣ Subroutines of many quantum algorithms and crypto. attacks

‣ Amenable to query complexity analysis

‣ Current algorithms (Grover, BHT, …) are not considered NISQ

4 3 0 6 3 2 14 3 0 6 3 2 1

Search problem

Find a 0 Find a pair of equal values

Can we get quantum speedups for these problems in NISQ era?

How to model NISQ complexity?

Quantum
circuit Classical circuit

Model 1
Shallow quantum

circuits

depth ≤ d

Quantum
circuit Classical circuit Quantum

circuit

Model 2
Costly gates

G1

G3G2

G6
G7

G5

G4

number of high-cost
gates ≤ d

Grover is not a NISQ algorithm

Oracle

gate

|0⟩

|0⟩

|0⟩

| − ⟩

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

Oracle

gate

Oracle

gate

Oracle

gate

O(N) Large circuit

SHA-3

Depth of reversible circuit Oracle gates are

extremely costly

“NISQ-ier” Shor’s factoring

Shor’99 Classical

circuit Quantum circuit

depth and size = O(log2 N)

Classical

circuit

Cleve,
Watrous’00
(low-depth QFT)

Classical circuit Quantum

circuit

Classical circuit

depth = , size = O(log log N) O(log5 N)

Regev’23 Classical

circuit

Quantum circuit Classical

circuit

Quantum circuit

depth = , size = O(log3/2 N) O(log3/2 N)

“NISQ-ier” algorithms for Search/Collision?

Search with constant-depth quantum sub circuits + queries?N
Search with -depth quantum sub circuits + queries?o(N) o(N)

… and for Collision?

Search with 1 quantum query + classical queries?N
Search with quantum query + classical queries?o(N) o(N)

Main results

1/ No quantum speedups for Search and Collision problems in NISQ models

3/ New framework for analyzing NISQ complexity
Previous work on Search:

[Sun, Zheng’19] (model 1), [Chen, Cotler, Huang, Li’22] (model 1),
 [Rosmanis’22] (model 2), [Rosmanis’23] (model 1)

2/ Tight characterization of optimal speedups for Search and Collision

 in all “super-NISQ” models

For all 0 ≤ d ≤ ∞

Relaxations of NISQ models

Motivations:

‣ Toy model for analyzing crypto. protocols that require hash
functions (random oracle model)

‣ Often the most time-consuming part of the circuit

‣ Efficient lower bound methods on number of oracle gates

 (= query complexity)

Idea: focus the analysis on oracle gates only

First relaxation: query complexity

4 3 0 6 3 2 1The input is represented as a (random) function

 accessible via an oracle (= query operator)F : [N] → [N]

F(0) F(1) F(N − 1)…

Classical

oracle

F

x F(x) ∑ αx |x,0⟩ ∑ αx |x, F(x)⟩Quantum

oracle

F

First relaxation: query complexity

Quantum
circuit Classical circuit

Model 1
Shallow quantum

circuits

number of quantum
oracle gates ≤ d

Classical circuit Quantum
circuit

First relaxation: query complexity

F

F

Model 2
Costly gates

G1

F
G2

F
F

G5

G4

number of quantum
oracle gates ≤ d

F

F

Second relaxation: dephasing noise

Idea: substitute the depth constraint (model 1)

 with dephasing noise

Motivations:

‣ Local decoherence is easier to analyze than global
decoherence

‣ Dephasing noise commutes with quantum oracle gates

ρ ⟼ ε∑i
⟨i|ρ|i⟩ |i⟩⟨i| ⊗ |0⟩⟨0| + (1 − ε)ρ ⊗ |1⟩⟨1|

Second relaxation: dephasing noise

Quantum
circuit Classical circuit

Model 1
Shallow quantum

circuits

Quantum
circuit Classical circuit Quantum

circuit

Efficient simulation
when ε ≤ 1/d

depth ≤ d

Model 3
Dephasing noise

G1

F
G2

F
F

G5

G4

Observation: depolarizing channel commutes with quantum oracle

Quantum

oracle = Quantum

oracle

Second relaxation: dephasing noise

=

Classical

oracle

proba. 1 − εQuantum

oracle

proba. ε

Classical

oracle

Quantum

oracleHybrid(ε) ∼ ,

Equivalently: quantum oracle collapses into classical oracle with proba. ε

1 − εε

Relaxations: NISQ hardness can be deduced from query complexity with

 Hybrid + Hybrid (model 2) or Hybrid (models 1, 3)(0) (1) (ε)

Contribution: first generic method for analyzing such combinations of oracles

Hybrid oracle

Technical overview:

NISQ hardness of Search

NISQ

ε ↦ εN

number of queries
to Hybrid (ε)

0

N

Find such that

when is random

x F(x) = 0
F : [N] → [N]

ε
1/ N

Naive search

N
Grover search

1

0

N

Find such that

when is random

x F(x) = 0
F : [N] → [N]

N
number of

quantum queries
(to Hybrid)(0)

number of
classical queries

(to Hybrid)(1)

NISQ

Naive search

Grover search

x1 F(x1)

x2 F(x2)

x3 F(x3)

⋯

List of (query, answer)

made by a classical algorithm

Classical transcript

Conditioning on the transcript state

 if

0 if and

 otherwise

1 (x, 0) ∈ transcript
(x, y) ∈ transcript y ≠ 0

1/N

Pr[F(x) = 0 | transcript] =Ex:

(ε = 1)

Classical lower bound

t = 0 t → t + 1…

≤ 1/N

t ≳ N

≥ 2/3

…

= Pr[0 ∈ cl . transcript]

⋯

⋆ 0
⋯

Quantum lower bound

Quantum transcript?

(ε = 1) (ε = 0)

Step 1:

Quantum transcript

Step 2:

∑ α′ x,u,D |x, u⟩ ⊗

∈ {Ø,0,…, N − 1}

D(0)
D(1)
D(2)
⋯

D(N − 1)

[Zhandry’19]

∑ αx,u,F |x, u⟩ ⊗

F(0)
F(1)
F(2)
⋯

F(N − 1)

purify the input F

 looks random

to the algorithm

F(x)1

N ∑
y∈[N]

|F(x) = y⟩ ⟼ |D(x) = Ø⟩

Identity elsewhere

Quantum transcript

compress |F(x)⟩ ↦ |D(x)⟩

(ε = 0)

Initial state: |0⟩ ⊗
1

NN/2
∑F

F(0)
F(1)
F(2)
⋯

F(N − 1)

Compress
|0⟩ ⊗

Ø
Ø
Ø
⋯
Ø

Quantum transcript

After queries:t ∑ α′ x,u,D |x, u⟩ ⊗

D(0)
D(1)
D(2)
⋯

D(N − 1)

at most entries t ≠ Ø⋮

(= unif. distribution)Ø

Measure(|F(x)⟩) − Measure(|D(x)⟩) ∞ ≲ 1/NDisturbance:
(Oracle basis) (Transcript basis)

(ε = 0)

Classical lower bound Quantum lower bound

t = 0 t → t + 1…

≤ 1/N

t ≳ N

≥ 2/3

… t = 0 t ≳ N…t → t + 1…

≲ 1/ N

Amplitude increase

= Pr[0 ∈ cl . transcript]

⋯

⋆ 0
⋯

= Pr[0 ∈ qu . transcript]

⋯
0
⋯

(ε = 1) (ε = 0)

Why is the quantum progress faster?

Transcript interference:

No such phenomenon for classical transcript (time-stamped recording)

Quantum

query x

p |D(x) = 0⟩ + 1 − p |D(x) = Ø⟩ p

∼ p |D(x) = 0⟩ +
1 − p

N
|D(x) = 0⟩ + … p +

1 − p
N

Hybrid transcript

∑ αx,u,F,x1,x2,… |x, u⟩ ⊗

F(0)
⋯

F(x1)
⋯

F(N − 1)

⊗

x1 F(x1)
x2 F(x2)
x3 F(x3)

⋯

Quantum

oracle

Classical

transcriptStep 1:

Purification registers

Step 2: compress if (x, ⋅) ∉ cl . transcript1

N
∑y |F(x) = y⟩ ↦ |D(x) = Ø⟩

if (x, y) ∈ cl . transcript|F(x) = y⟩ ↦ |D(x) = Ø⟩

(0 ≤ ε ≤ 1)

Hybrid lower bound

Grover search

Classical-Quantum progress:

Noise

Example:

Classical progress increases
… but interference effects are lost

Queries to Hybrid(0) Query to Hybrid(0.9)

Classical query

Pr[0 ∈ cl . transcript]

Pr[0 ∈ qu . transcript]

Quantum query

≲
1
N

≤ 2h

−h≥

t ⟶ t + 1 t ⟶ t + 1

=

≲
h
N

+
1
N

Hybrid query(ε)
t ⟶ t + 1

≲
ε
N

≤ 2εh

≲ −εh

+
(1 − ε)

N

+(1 − ε)
h
N

= + 3 ≲
1

εN

NISQ hardness of Collision

3 types of collisions

Classical

⊗

x1 F(x1)
x2 F(x2)
x3 F(x3)

⋯

D(1)
D(2)
D(3)
⋯

⊗

x1 F(x1)
x2 F(x2)
x3 F(x3)

⋯

D(1)
D(2)
D(3)
⋯

⊗

x1 F(x1)
x2 F(x2)
x3 F(x3)

⋯

D(1)
D(2)
D(3)
⋯

QuantumHybrid

Unlike for Search, not all interference

effects are lost by classical queries!

0

N

N1/3
BHT algorithm

Birthday paradox

Find such that

when is random

x, y F(x) = F(y)
F : [N] → [N]

1
ε

ε ↦ εN

NISQ

1/N1/3

number of queries
to Hybrid (ε)

NISQ

0

N
Birthday paradox

N1/3

BHT algo. number of
quantum queries

(to Hybrid)(0)

number of
classical queries

(to Hybrid)(1)

Find such that

when is random

x, y F(x) = F(y)
F : [N] → [N]

x ↦ N/x2

N1/4

N1/3

