Yassine Hamoudi, Qipeng Liu, Makrand Sinha

CNRS, LaBRI UC San Diego U. of Illinois

arXiv:2211.12954 + work in progress

The NISQ Complexity of **Collision Finding**

Noisy Intermediate-Scale Quantum

Limitations of short-term quantum computers:

- limited error correction
- small coherence time
- few logical qubits

NISQ complexity: understand what cannot be done with NISQ computers

Search problem

Find a 0

- Subroutines of many quantum algorithms and crypto. attacks Amenable to query complexity analysis
- Current algorithms (Grover, BHT, ...) are not considered NISQ

Toy problems

Collision problem

Find a pair of equal values

Can we get quantum speedups for these problems in NISQ era?

How to model NISQ complexity?

Model 1 Shallow quantum circuits

Model 2 Costly gates

Grover is not a NISQ algorithm

extremely costly

"NISQ-ier" algorithms for Search/Collision?

Search with constant-depth quantum sub circuits + \sqrt{N} queries? Search with $o(\sqrt{N})$ -depth quantum sub circuits + o(N) queries?

Search with 1 quantum query + \sqrt{N} classical queries? Search with $o(\sqrt{N})$ quantum query + o(N) classical queries?

... and for Collision?

Main results

1/ No quantum speedups for Search and Collision problems in NISQ models

2/ Tight characterization of optimal speedups for Search and Collision in all "super-NISQ" models

3/ New framework for analyzing NISQ complexity

For all $0 \le d \le \infty$

Previous work on Search:

[Sun, Zheng'19] (model 1), [Chen, Cotler, Huang, Li'22] (model 1), [Rosmanis'22] (model 2), [Rosmanis'23] (model 1)

Relaxations of NISQ models

First relaxation: query complexity

- Idea: focus the analysis on oracle gates only
- **Motivations:**
 - Often the most time-consuming part of the circuit
 - functions (random oracle model)
 - (= query complexity)

Toy model for analyzing crypto. protocols that require hash

Efficient lower bound methods on number of oracle gates

First relaxation: query complexity

F(0) F(1)F(N-1)• • • The input 3 | 2 | 6 3 0 4

- ¹ is represented as a (random) function
- $F: [N] \rightarrow [N]$ accessible via an oracle (= query operator)

First relaxation: query complexity

Model 1 Shallow quantum circuits

Second relaxation: dephasing noise

Idea: substitute the depth constraint (model 1) with dephasing noise

Motivations:

- Local decoherence is easier to analyze than global decoherence

Dephasing noise commutes with quantum oracle gates

Second relaxation: dephasing noise

 $\rho \stackrel{\mathsf{M}}{\longrightarrow} \varepsilon \sum_{i} \langle i | \rho | i \rangle \langle i | \otimes | 0 \rangle \langle 0 | + (1 - \varepsilon) \rho \otimes | 1 \rangle \langle 1 |$

Model 3 Dephasing noise

Model 1 Shallow quantum circuits

Second relaxation: dephasing noise

Observation: depolarizing channel commutes with quantum oracle

Equivalently: quantum oracle collapses into classical oracle with proba. E

Relaxations: NISQ hardness can be deduced from query complexity with

- Hybrid(0) + Hybrid(1) (model 2) or Hybrid(ε) (models 1, 3)
- **Contribution:** first generic method for analyzing such combinations of oracles

Technical overview: NISQ hardness of Search

Find x such that F(x) = 0

Find x such that F(x) = 0when $F: [N] \rightarrow [N]$ is random

number of quantum queries (to Hybrid(0))

Classical transcript

List of (query, answer) made by a classical algorithm

$(\varepsilon = 1)$

Conditioning on the transcript state

$$: \Pr[F(x) = 0 | \text{transcript}] = \\ \begin{cases} 1 & \text{if } (x, 0) \in \text{transcript} \\ 0 & \text{if } (x, y) \in \text{transcript} \text{ and } y \\ 1/N & \text{otherwise} \end{cases}$$

$(\varepsilon = 1)$

Classical lower bound

Quantum lower bound

 $(\varepsilon = 0)$

Quantum transcript?

Quantum transcript

Step 1: purify the input *F*

Quantum transcript Step 2: compress $|F(x)\rangle \mapsto |D(x)\rangle$ $\frac{1}{N} \sum_{y \in [N]} |F(x) = y\rangle \longmapsto |D(x) = \emptyset\rangle \qquad \begin{array}{c} F(x) \text{ looks random} \\ \text{to the algorithm} \end{array}$

Identity elsewhere

[Zhandry'19]

 $\sum \alpha'_{x,u,D} | x, u \rangle \otimes$

Initial state:
$$|0\rangle \otimes \frac{1}{N^{N/2}} \sum_{F} \begin{bmatrix} F(0) \\ F(1) \\ F(2) \\ \cdots \\ F(N-1) \end{bmatrix}$$

After *t* queries:

 $\sum \alpha'_{x,u,D} | x, u \rangle \otimes$

Disturbance:

$\left\| \text{Measure}(|F(x)\rangle) - \text{Measure}(|D(x)\rangle) \right\|_{\infty} \leq 1/N$

(Oracle basis)

(Transcript basis)

 $(\emptyset = unif. distribution)$

$(\varepsilon = 1)$

Classical lower bound

Why is the quantum progress faster?

Transcript interference:

 $\sqrt{p} |D(x) = 0\rangle + \sqrt{1-p} |D(x) = \emptyset\rangle$ Quantum query x $\sim \sqrt{p} |D(x) = 0\rangle + \sqrt{\frac{1-p}{N}} |D(x) = 0\rangle + \dots$ $\sqrt{\frac{1-p}{N}} \sqrt{\frac{1-p}{N}}$

No such phenomenon for classical transcript (time-stamped recording)

Step 1:

 $\sum \alpha_{x,u,F,x_1,x_2,\dots} | x, u \rangle \otimes$

Step 2: compress $\frac{1}{\sqrt{N}} \sum_{y} |F(x)| =$

$(0 \leq \varepsilon \leq 1)$ Hybrid transcript

Purification registers

$$y \mapsto |D(x) = \emptyset\rangle$$
 if $(x, \cdot) \notin cl. transc$

 $|F(x) = y\rangle \mapsto |D(x) = \emptyset\rangle$ if $(x, y) \in cl$. transcript

Hybrid lower bound

Classical-Quantum progress:

Example:

... but interference effects are lost

NISQ hardness of Collision

Unlike for Search, not all interference effects are lost by classical queries!

Find x, y such that F(x) = F(y)when $F: [N] \rightarrow [N]$ is random

Find *x*, *y* such that F(x) = F(y)when $F : [N] \rightarrow [N]$ is random

