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Limitations of short-term quantum computers:

Noisy Intermediate-Scale Quantum

NISQ complexity: understand what cannot be done with NISQ computers

- limited error correction

- small coherence time

- few logical qubits

- …



Collision problem

Toy problems

‣ Subroutines of many quantum algorithms and crypto. attacks

‣ Amenable to query complexity analysis

‣ Current algorithms (Grover, BHT, …) are not considered NISQ
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Search problem

Find a 0 Find a pair of equal values

Can we get quantum speedups for these problems in NISQ era?



How to model NISQ complexity?
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Grover is not a NISQ algorithm
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“NISQ-ier” Shor’s factoring
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“NISQ-ier” algorithms for Search/Collision? 

Search with constant-depth quantum sub circuits +  queries?N
Search with -depth quantum sub circuits +  queries?o( N) o(N)

… and for Collision?

Search with 1 quantum query +  classical queries?N
Search with  quantum query +  classical queries?o( N) o(N)



Main results

1/ No quantum speedups for Search and Collision problems in NISQ models

3/ New framework for analyzing NISQ complexity
Previous work on Search: 

[Sun, Zheng’19] (model 1), [Chen, Cotler, Huang, Li’22] (model 1),  
                                          [Rosmanis’22] (model 2), [Rosmanis’23] (model 1)

2/ Tight characterization of optimal speedups for Search and Collision

    in all “super-NISQ” models

For all  0 ≤ d ≤ ∞



Relaxations of NISQ models



Motivations:

‣ Toy model for analyzing crypto. protocols that require hash 
functions (random oracle model)

‣ Often the most time-consuming part of the circuit 

‣ Efficient lower bound methods on number of oracle gates 

   (= query complexity)

Idea: focus the analysis on oracle gates only

First relaxation: query complexity



4 3 0 6 3 2 1The input is represented as a (random) function

 accessible via an oracle (= query operator)F : [N] → [N]

F(0) F(1) F(N − 1)…
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First relaxation: query complexity
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Second relaxation: dephasing noise

Idea: substitute the depth constraint (model 1) 

         with dephasing noise

Motivations:

‣ Local decoherence is easier to analyze than global 
decoherence

‣ Dephasing noise commutes with quantum oracle gates



ρ ⟼ ε∑i
⟨i|ρ|i⟩ |i⟩⟨i| ⊗ |0⟩⟨0| + (1 − ε)ρ ⊗ |1⟩⟨1|

Second relaxation: dephasing noise
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Observation: depolarizing channel commutes with quantum oracle

Quantum 

oracle = Quantum 


oracle

Second relaxation: dephasing noise

=

Classical 

oracle

proba. 1 − εQuantum

oracle

proba. ε



Classical 

oracle

Quantum 

oracleHybrid(ε) ∼ ,

Equivalently: quantum oracle collapses into classical oracle with proba. ε

1 − εε

Relaxations: NISQ hardness can be deduced from query complexity with 

                      Hybrid  + Hybrid  (model 2) or Hybrid  (models 1, 3)(0) (1) (ε)

Contribution: first generic method for analyzing such combinations of oracles

Hybrid oracle



Technical overview:


NISQ hardness of Search
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x1 F(x1)

x2 F(x2)

x3 F(x3)

⋯

List of (query, answer)

made by a classical algorithm

Classical transcript

Conditioning on the transcript state

       if 


0       if  and 

   otherwise

1 (x, 0) ∈ transcript
(x, y) ∈ transcript y ≠ 0

1/N

Pr[F(x) = 0 | transcript] =Ex:

(ε = 1)



Classical lower bound

t = 0 t → t + 1…

≤ 1/N

t ≳ N

≥ 2/3

…

= Pr[0 ∈ cl . transcript]



   

⋯
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Quantum lower bound

Quantum transcript?

(ε = 1) (ε = 0)



Step 1:

Quantum transcript

Step 2: 

∑ α′ x,u,D |x, u⟩ ⊗

∈ {Ø,0,…, N − 1}
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[Zhandry’19]

∑ αx,u,F |x, u⟩ ⊗
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compress |F(x)⟩ ↦ |D(x)⟩

(ε = 0)
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After  queries:t ∑ α′ x,u,D |x, u⟩ ⊗
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Classical lower bound Quantum lower bound

t = 0 t → t + 1…

≤ 1/N

t ≳ N

≥ 2/3

… t = 0 t ≳ N…t → t + 1…
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Amplitude increase
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Why is the quantum progress faster?

Transcript interference:

No such phenomenon for classical transcript  (time-stamped recording)

Quantum

query x

p |D(x) = 0⟩ + 1 − p |D(x) = Ø⟩ p

∼ p |D(x) = 0⟩ +
1 − p

N
|D(x) = 0⟩ + … p +

1 − p
N



Hybrid transcript

∑ αx,u,F,x1,x2,… |x, u⟩ ⊗
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Step 2:  compress if (x, ⋅ ) ∉ cl . transcript1

N
∑y |F(x) = y⟩ ↦ |D(x) = Ø⟩

if (x, y) ∈ cl . transcript|F(x) = y⟩ ↦ |D(x) = Ø⟩

(0 ≤ ε ≤ 1)



Hybrid lower bound

Grover search

Classical-Quantum progress:

Noise

Example:

Classical progress increases
… but interference effects are lost

Queries to Hybrid(0) Query to Hybrid(0.9)



Classical query
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NISQ hardness of Collision



3 types of collisions
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Unlike for Search, not all interference 

effects are lost by classical queries! 
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