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Estimating expectation values



Estimating expectation values

• Fundamental task for extracting classical information from quantum 
systems

• Entanglement allows for better accuracy in the estimation 
(Heisenberg vs shot-noise limits)

• Algorithmic perspective: focus on the statistical and computational 
challenges / limits



Estimating expectation values

Given an observable  and quantum-access to a state , computeO |ψ⟩

(1 ± ϵ) ⟨ψ |O |ψ⟩

Given classical samples from a random variable , computeX

(1 ± ϵ) E[X]

⇒



Estimating expectation values

▶︎ We know a quantum circuit that implements the reflection   

    (suffices to know a circuit that prepares )

2 |ψ⟩⟨ψ | − I
|ψ⟩

What does it mean to have quantum-access to a state  ?|ψ⟩

▶︎ Stronger than just having copies of  usually|ψ⟩

▶︎ Assumption met by many state-preparation quantum algorithms 

    (Hamiltonian simulation, quantum walks, …)



Estimating expectation values

Optimal complexity under minimal assumptions

(1 ± ϵ) E[X]

Var(X)
ϵ2

# classical samples

(1 ± ϵ) ⟨ψ |O |ψ⟩

Var(O)
ϵ

# quantum accesses
H. “Quantum Sub-Gaussian Mean Estimator”. 2021.


Kothari, O’Donnell. “Mean Estimation when You Have the Source Code; Or, Quantum Monte Carlo Methods”. 2023.



Estimating expectation values

retrieved by quantum phase estimation.

Based on encoding expectation value into an eigenphase

U |0⟩ = ef(⟨ψ|O|ψ⟩) |0⟩

Handled by combining old and new algorithmic techniques:

    Quantiles estimation, QSVT, Grover’s with complex phases, … 

Challenge: improving  into  for heavy-tailed distributions∥O∥
ϵ

Var(O)
ϵ



Estimating expectation values

Results partially extended to multivariate estimation
 ⟨ψ |O1 |ψ⟩, …, ⟨ψ |Od |ψ⟩

• For commuting observables: bounded covariance  assumptionTr(Σ)

• For non-commuting observables: bounded norms  assumption∥Oi∥

Huggins et al. “Nearly Optimal Quantum Algorithm for Estimating Multiple Expectation Values”. 2022.
Cornelissen, H., Jerbi. “Near-Optimal Quantum Algorithms for Multivariate Mean Estimation”. 2022.

 overhead over univariate estimatorsd



Estimating partition functions



H : Ω → {0,1,…, n}

Z(β) = Tr(e−βH)

Given a classical Hamiltonian

and an inverse temperature β

approximate the partition function

Estimating partition functions



- statistical physics


- combinatorics (counting matchings, independent sets…)


- linear algebra (permanents)


- convex geometry (volume of a body)


- machine learning (graphical models)


- …

• Partition functions are ubiquitous

Estimating partition functions



• Related to counting (generating functions) and phase transitions

Estimating partition functions

• Partition functions are ubiquitous

• Exact computation is often #P-hard

• … but there exists efficient approximation methods 
(MCMC, Taylor’s approximation, correlation decay, …)



≈ log1/4 |Ω | × time of classical MCMC algo .

This class of methods includes the best known algorithms for:  
- number of independent sets, colorings, matchings

- Ising, Potts, monomer-dimer,… models

- volume of convex bodies

- permanent of nonnegative matrices

The classical Markov Chain Monte Carlo (MCMC) algorithms★ for 

estimating  can be speed-up by quantum algorithms running in timeZ(β)

★ Štefankovič, Vempala, Vigoda. “Adaptive Simulated Annealing: A Near-Optimal Connection between Sampling and Counting”, 2009.

Cornelissen, H. “A Sublinear-Time Quantum Algorithm for Approximating Partition Functions”. 2023.

Estimating partition functions



Combines two branches of work:

Converting classical 

reversible Markov chains 


into quantum walks

“Enhanced” 
Quantum estimators

1 2

- Unbiased

- Non-destructive
▶︎ Restores  after estimation|ψ⟩

▶︎ Returns  in expectation⟨ψ |O |ψ⟩

Estimating partition functions

Harrow, Wei. “Adaptive Quantum Simulated Annealing for Bayesian Inference and Estimating Partition Functions”. 2020.

Linden, de Wolf. "Average-Case Verification of the Quantum Fourier Transform Enables Worst-Case Phase Estimation". 2022.


Cornelissen, H. “A Sublinear-Time Quantum Algorithm for Approximating Partition Functions”. 2023.

Szegedy. "Quantum Speed-Up of Markov Chain Based Algorithms". 2004.
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Cornelissen, H. “A Sublinear-Time Quantum Algorithm for Approximating Partition Functions”. 2023.

New phase estimation primitive



New phase estimation primitive

Standard phase estimation

Enhanced phase estimation
(symmetric, lighter tail)

Outcome distributions of:

(not exactly symmetric)



= occupied

Independent set 
(subset of non-adjacent vertices)

Example 1: 

The hard-core gas model



Ω =

Exponential size

number of  in  H(σ) = σ

number of ind. sets Z(0) =

Example 1: 

The hard-core gas model



 

(for degree  graphs)

(1 ± ϵ) Z(0)
≤ 5

Classical MCMC Quantum algorithm

Õ( (#vertices)2

ϵ2 ) Õ( (#vertices)5/4

ϵ )

Example 1: 

The hard-core gas model

⇒
Štefankovič, Vempala, Vigoda. “Adaptive Simulated Annealing: A Near-Optimal Connection between Sampling and Counting”, 2009.


Chen,Liu,Vigoda. “Optimal Mixing of Glauber Dynamics: Entropy Factorization via High-Dimensional Expansion”. 2021.

Cornelissen, H. “A Sublinear-Time Quantum Algorithm for Approximating Partition Functions”. 2023.



Example 2: 

The Potts model

number of monochromatic edgesH(σ) =
number of valid coloringsZ(∞) =



(for degree  #colors/2) 

(1 ± ϵ) Z(∞)
<Classical MCMC Quantum algo.

Õ( (#vertices)2

ϵ2 ) Õ( (#vertices)5/4

ϵ )⇒
Jerrum. “A Very Simple Algorithm for Estimating the Number of k-Colorings of a Low-Degree Graph”. 1995.


Štefankovič, Vempala, Vigoda. “Adaptive Simulated Annealing: A Near-Optimal Connection between Sampling and Counting”, 2009.

Cornelissen, H. “A Sublinear-Time Quantum Algorithm for Approximating Partition Functions”. 2023.



Future directions

• Quantum estimators with new features (robustness, differential 
privacy, …)

• Quantum estimators for NISQ devices (shadow tomography, …)

• Faster algorithms for (classical or quantum) partition functions

• Quantum estimators for high-dimensional statistics (applications 
in q. machine learning, q. linear algebra, …)


