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Estimating expectation values



Estimating expectation values

 Fundamental task for extracting classical information from quantum
systems

 Entanglement allows for better accuracy in the estimation
(Heisenberg vs shot-noise limits)

* Algorithmic perspective: focus on the statistical and computational
challenges / limits



Estimating expectation values

Given classical samples from a random variable X, compute

(1 £¢) E|X]

|

Given an observable O and quantum-access to a state | ), compute

(Ixe) (w|O|y)



Estimating expectation values

What does it mean to have quantum-access to a state |y) ?

» We know a quantum circuit that implements the reflection 2 |y){(y| — 1

(suffices to know a circuit that prepares |y))

» Assumption met by many state-preparation quantum algorithms
(Hamiltonian simulation, quantum walks, ...)

» Stronger than just having copies of |y) usually



Estimating expectation values

Optimal complexity under minimal assumptions

(1 xe) E[X] (I1xe) (w|O|y)
Var(X) Var(O
. v Yaro)
€2 €
# classical samples # quantum accesses

H. “Quantum Sub-Gaussian Mean Estimator”. 2021.
Kothari, O’'Donnell. “Mean Estimation when You Have the Source Code; Or, Quantum Monte Carlo Methods”. 2023.



Estimating expectation values

Based on encoding expectation value into an eigenphase

U|0) = /w10l 0)

retrieved by quantum phase estimation.

\/ Var(O
Challenge: improving 19] Into J for heavy-tailed distributions
€ €

Handled by combining old and new algorithmic techniques:
Quantiles estimation, QSVT, Grover’s with complex phases, ...



Estimating expectation values

Results partially extended to multivariate estimation
(w1 Oy, ....<w| Oyl w)

\ﬁi overhead over univariate estimators

» For commuting observables: bounded covariance 1r(2) assumption

» For non-commuting observables: bounded norms || O;|| assumption

Cornelissen, H., Jerbi. “Near-Optimal Quantum Algorithms for Multivariate Mean Estimation”. 2022.
Huggins et al. “Nearly Optimal Quantum Algorithm for Estimating Multiple Expectation Values”. 2022.



Estimating partition functions



Estimating partition functions

Given a classical Hamiltonian H : Q — {0,1,...,n}
and an inverse temperature /)

approximate the partition function ~ Z(f}) = Tr(e ™)



Estimating partition functions

e Partition functions are ubiquitous

- statistical physics

- combinatorics (counting matchings, independent sets...)
- linear algebra (permanents)

- convex geometry (volume of a body)

- machine learning (graphical models)



Estimating partition functions

e Partition functions are ubiquitous

* Related to counting (generating functions) and phase transitions

 Exact computation is often #P-hara

e ... but there exists efficient approximation methods
(MCMC, Taylor’s approximation, correlation decay, ...)



Estimating partition functions

The classical Markov Chain Monte Carlo (MCMC) algorithms™* for

estimating Z(/) can be speed-up by quantum algorithms running in time

~ log!*| Q| x 4/time of classical MCMC algo .

This class of methods includes the best known algorithms for:
- number of independent sets, colorings, matchings
- Ising, Potts, monomer-dimer,... models
- volume of convex bodies
- permanent of nonnegative matrices

* Stefankovi¢, Vempala, Vigoda. “Adaptive Simulated Annealing: A Near-Optimal Connection between Sampling and Counting”, 2009.
Cornelissen, H. “A Sublinear-Time Quantum Algorithm for Approximating Partition Functions”. 2023.



Estimating partition functions

Combines two branches of work:

] 2

Converting classical “Enhanced”
reversible Markov chains Quantum estimators
iInto quantum walks - Unbiased

» Returns (y| O |y) in expectation

- Non-destructive

» Restores |y) after estimation

Szegedy. "Quantum Speed-Up of Markov Chain Based Algorithms"

Harrow, Wei. “Adaptive Quantum Simulated Annealing for Bayesian Inference and Estimating Partition Functions”
Linden, de Wolf. "Average-Case Verification of the Quantum Fourier Transform Enables Worst-Case Phase Estimation”
Cornelissen, H. “A Sublinear-Time Quantum Algorithm for Approximating Partition Functions’

. 2004.

. 2020.
. 2022.
. 2023.



New phase estimation primitive

Random
phase shift Phase estimation Inverse Phase estimation

Phase
correction

Cornelissen, H. “A Sublinear-Time Quantum Algorithm for Approximating Partition Functions”. 2023.




New phase estimation primitive

Outcome distributions of:

B Standard phase estimation

(not exactly symmetric)

- | e Enhanced phase estimation

(symmetric, lighter tail)




Example 1:
The hard-core gas model

L

Independent set

@ = occupied

(subset of non-adjacent vertices)



Example 1:
The hard-core gas model

0P
o=<T3 T T T

i:I Z(0) = number of ind. sets

H(o) = number of @ in o

Exponential size



Example 1:
The hard-core gas model

(1 xe€) Z(0)

(for degree < 5 graphs)

Classical MCMC Quantum algorithm
- [ (#vertices)” - [ (#vertices)’”
N = o

Stefankovi¢, Vempala, Vigoda. “Adaptive Simulated Annealing: A Near-Optimal Connection between Sampling and Counting”, 2009.
Chen,Liu,Vigoda. “Optimal Mixing of Glauber Dynamics: Entropy Factorization via High-Dimensional Expansion”. 2021.
Cornelissen, H. “A Sublinear-Time Quantum Algorithm for Approximating Partition Functions”. 2023.



Example 2:
The Potts model

H(o) = number of monochromatic edges

Z(00) = number of valid colorings

(Ixe€) Z(oo)

Classical MCMC (for degree < #colors/2) Quantum algO-
)5/4

5 (#vertices)” 5 (#vertices
> —> :

Jerrum. “A Very Simple Algorithm for Estimating the Number of k-Colorings of a Low-Degree Graph”. 1995.
Stefankovi¢, Vempala, Vigoda. “Adaptive Simulated Annealing: A Near-Optimal Connection between Sampling and Counting”, 2009.
Cornelissen, H. “A Sublinear-Time Quantum Algorithm for Approximating Partition Functions”. 2023.




Future directions

 Quantum estimators with new features (robustness, differential
privacy, ...)

* Quantum estimators for NISQ devices (shadow tomography, ...)

 Quantum estimators for high-dimensional statistics (applications
IN g. machine learning, qg. linear algebra, ...)

* Faster algorithms for (classical or qguantum) partition functions



