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Two player model

F : {0, 1}n × {0, 1}n → {0, 1}

Alice Bob

x ∈ {0, 1}n y ∈ {0, 1}n

0, 1

channel

F(x, y) =? F(x, y) =?

Number of bits communicated?

• D2(F) : cost of the most efficient deterministic protocol
• R2(F) : cost of the most efficient randomized protocol with error 1/3
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Two player simultaneous model

Alice Bob

Referee
x ∈ {0, 1}n y ∈ {0, 1}n

F(x, y) =?

Simultaneous communication complexity: D||
2 (F) and R

||
2 (F)
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Number On the Forehead model

x1

x2

x3

x4

F(x1, . . . , xk) = ?

Number On the Forehead (NOF) model:

• Player i does not see xi. Communicate by broadcasting
• Communication cost: Dk(F), Rk(F), D||

k (F) and R
||
k (F) 3



Number On the Forehead model

A protocol is efficient if it has cost polylog n

Two lines of research:

• Efficient protocols for ”interesting” functions← this talk

• Strong lower bounds for some functions← harder as k grows up
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Outline

The log n barrier problem

Efficient simultaneous protocols for Maj ◦Majt

(Far) Beyond log n players

Conclusion
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The log n barrier problem



The log n barrier

What are the best lower bounds in the NOF model so far?

Ω̃
(
n/2k

)
→ no hard function is known for k ≥ log n players

The log n barrier:

Find a function F such that D||
k (F)� log n when k & log n.

Why is it interesting?

• A uniformly random function is almost surely hard [BNS92, For06]

• The only general lower bound technique known so far (discrepancy
method) seems intrinsically stuck at log n players

• Connections with ACC0 lower bounds
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ACC0

P vs NP and circuits lower bounds

• P/poly = languages recognized by polysize circuits

• Conjecture: NP * P/poly (which implies P 6= NP)← way too hard

A weaker class: ACC0

• ACC0 = languages recognized by polysize constant-depth circuits made
of And, OR, Not and Modm gates

• Conjectures:
- Maj /∈ ACC0
- NP * ACC0

• Current (breakthrough) result: NEXP * ACC0 [Wil14]
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ACC0 and SYM+

SYM+(s, k) = depth-2 circuits whose top gate are any symmetric function (i.e.
only depends on the number of 1), and bottom gates are And functions

SYM

And And· · ·

s

k k

y1 yk y(k−1)s yks

For any partition of y1, . . . , yks between k+ 1 players in the NOF model, each
And gate can be computed by at least one player.

−→ simultaneous protocol of cost O (k log s) for computing the whole circuit
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ACC0 and the log n barrier

f is computed by a SYM+(s, k) circuit
⇓

For any partition of the input between k+ 1 players, there is a simultaneous
NOF protocol of cost O (k log s) computing f

Theorem ([Yao90, BT94])
ACC0 ⊂ SYM+(2polylog n, polylog n)

→ ∀ function f ∈ ACC0 and ∀ partition of the input between ∼ polylog n
players, there is a simultaneous NOF protocol for f of cost O (polylog n).

Consequences:

• Contraposition: if a function breaks the log n barrier then we could
obtain ”something” that is not in ACC0

• Conjecture: Majority /∈ ACC0 → good candidates for breaking the log n
barrier are the ”Majority-like” functions
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Efficient simultaneous protocols for
Maj ◦Majt



Maj ◦Maj1

The Majority of Majority (Maj ◦Maj1) function:

· · ·...

0 1 0

0 1 1

1 0 1

0

0

0

Player 1 (x1)

Player 2 (x2)

Player k (xk)

n

k

Maj1 Maj1 Maj1 Maj1 Maj

Conjecture ([BKL95]): Maj ◦Maj1 breaks the log n barrier
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Maj ◦Maj1

Conjecture ([BKL95]): Maj ◦Maj1 breaks the log n barrier

• [BGKL04] D||
k (Maj ◦Maj1) = O

(
log3 n

)
when k > 1+ log n

• [ACFN15] D||
k (f ◦ g) = O

(
log3 n

)
when k > 1+ 2 log n and f is symmetric

A function h : is symmetric if it is invariant
under any permutation of its input variables.

h(z1, . . . , zm) = h(zπ(1), . . . , zπ(m)) for all permutations π
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Maj ◦Majt

Majority of Majority (Maj ◦Majt) with larger block-width t:

· · · · · ·...

1 1

0 1

0 0

0

1

1

Player 1 (x1)

Player 2 (x2)

Player k (xk)

t · n

k

Majt Majt Maj

Conjecture ([BGKL04]): Maj ◦Maj√n breaks the log n barrier
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Maj ◦Majt

Conjecture ([BGKL04]): Maj ◦Maj√n breaks the log n barrier

Previous result ([CS14]) for t = O (log log n):

• Dk(Maj ◦Majt) = O
(
log3 n

)
when k > logO(1)n

• R||
k (Maj ◦Majt) = O

(
log3 n

)
when k > logO(1)n

Our result: first efficient deterministic simultaneous protocol for some t > 1

Theorem

If k ≥ 52
t−1

log n, then D||
k (Maj ◦Majt) = O

(
k2

t
log n

)
.

Our protocol : generalization of [BGKL04] to t > 1
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The Equation Solving protocol of [BGKL04]

Maj1 Maj1 Maj1 Maj
· · ·

0 0 1 1 0 1 1 1 1 1

1 0 1 1 0 1 1 0 1 0

0 0 1 1 0 0 1 1 1 0

0 0 1 1 0 1 1 1 1 0

1 0 0 1 1 0 1 0 1 0

yi = # columns with i one’s

Recovering the yi’s is enough to compute Maj ◦Maj1
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The Equation Solving protocol of [BGKL04]

0 0 1 1 0 1 1 1 1 1

1 0 1 1 0 1 1 0 1 0

0 0 1 1 0 0 1 1 1 0

0 0 1 1 0 1 1 1 1 0

1 0 0 1 1 0 1 0 1 0

• Player 1 sends to the referee:

a1i = # columns she sees with i one’s

→ a10 = 2, a11 = 1, a12 = 3, . . .

• Players 2 to 5 do the same
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The Equation Solving protocol of [BGKL04]

Let (bi)0≤i≤k−1 be integers. Consider the system of equations: (k− i)yi + (i+ 1)yi+1 = bi

0 ≤ i ≤ k− 1

Assume further that

yi ≥ 0, 0 ≤ i ≤ k and
∑
i

yi = n

Theorem ([BGKL04])
If k > 1+ log n then it admits at most one integral solution.

→ the referee recovers the yi’s and computes Maj ◦Maj1
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Generalizing the Equation Solving protocol to Maj ◦Majt

Theorem ([BGKL04])

If k ≥ 1+ log n, then D||
k (Maj ◦Maj1) = O

(
k2 log n

)
.

We generalize the equation of [BGKL04] to block-width t > 1 and show that it
admits at most one integral solution when k ≥ 52

t−1
log n:

Theorem

If k ≥ 52
t−1

log n, then D||
k (Maj ◦Majt) = O

(
k2

t
log n

)
.

→ The protocol is efficient for all constant t and k = polylog n

→ Maj ◦Majt cannot break the log n barrier for constant t
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(Far) Beyond log n players



(Far) Beyond log n players

Theorem

If k ≥ 52
t−1

log n, then D||
k (Maj ◦Majt) = O

(
k2

t
log n

)
.

What if k� log n?

• The protocol is not efficient (cost� polylog n)

• We don’t want all players to speak!

Let’s generalize our previous protocol first:

Theorem

If k ≥ 52
t
log n, then D||

k (f ◦ (g1, . . . , gn)) = O
(
k2

t+1
log n

)
for any symmetric

functions f , g1, . . . , gn.

→ the proof needs some work (Fourier analysis of boolean functions)

19
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(Far) Beyond log n players

Different (symmetric) inner functions on each block:

· · · · · ·...

x1,1 x1,t
x2,1 x2,t

xk,1 xk,t

x1,tn
x2,tn

xk,tn

Player 1 (x1)

Player 2 (x2)

Player k (xk)

t · n

k

g1 gn f

20



(Far) Beyond log n players

Lemma
If g : X1 × · · · × Xk → {0, 1} is symmetric, then for any ` ≤ k and
(x`+1, . . . , xk) ∈ X`+1 × · · · × Xk

g′ : X1 × · · · × X` −→ {0, 1}
(x1, . . . , x`) 7−→ g(x1, . . . , x`, x`+1, . . . , xk)

is also symmetric.

If k� log n, set ` = 52
t
log n and let the first ` players apply the previous

protocol on f ◦ (g′1, ..., g′n).

Theorem

If k ≥ 52
t
log n, then D||

k (f ◦ (g1, ..., gn)) = O
(
log2

t+1
n
)
for any symmetric

functions f , g1, . . . , gn.
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Conclusion

Our results (for all constant t):

• Maj ◦Majt cannot break the log n barrier

• Efficient protocols for all f ◦ (g1, . . . , gn) when k ≥ polylog n

Future work : extend to non-constant t

arXiv:1710.01969

Major open problem: stronger lower bounds techniques in the NOF model

→ Maj ◦Maj√n is conjectured to break the log n barrier

→ The discrepancy method is stuck at log n players

→ Last week on ECCC (Podolskii, Sherstov): first superconstant (Ω(log n))
lower-bound for k� log n players

22
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