Quantum Chebyshev's Inequality and Applications

Yassine Hamoudi, Frédéric Magniez

IRIF, Université de Paris, CNRS

How many i.i.d. samples $x_1, x_2,...$ from some unknown bounded r.v. $X \in [0,B]$ do we need to compute $\tilde{\mu}$ such that

 $|\widetilde{\mu} - E(X)| \le \epsilon E(X)$ with proba. 2/3

How many i.i.d. samples $x_1, x_2,...$ from some unknown bounded r.v. $X \in [0,B]$ do we need to compute $\tilde{\mu}$ such that

 $|\widetilde{\mu} - E(X)| \le \epsilon E(X)$ with proba. 2/3

Sample mean: $\widetilde{\mu} = \frac{x_1 + \ldots + x_n}{n}$

How many i.i.d. samples $x_1, x_2,...$ from some unknown bounded r.v. $X \in [0,B]$ do we need to compute $\tilde{\mu}$ such that

 $|\widetilde{\mu} - E(X)| \le \epsilon E(X)$ with proba. 2/3

Sample mean:
$$\widetilde{\mu} = \frac{x_1 + \ldots + x_n}{n}$$

--> Chernoff's Bound:

$$\frac{B}{\epsilon^2 \mathbf{E}(X)}$$

How many i.i.d. samples $x_1, x_2,...$ from some unknown bounded r.v. $X \in [0,B]$ do we need to compute $\tilde{\mu}$ such that $|\widetilde{\mu} - E(X)| \le \epsilon E(X)$ with proba. 2/3 **Sample mean:** $\widetilde{\mu} = \frac{x_1 + \ldots + x_n}{n}$ B **Chernoff's Bound:** $\epsilon^2 E(X)$ $\frac{\operatorname{Var}(X)}{\epsilon^2 \operatorname{E}(X)^2} + \frac{B}{\epsilon \operatorname{E}(X)}$ $\left(\operatorname{Var}(X) \leq B \cdot \operatorname{E}(X)\right)$ **Bernstein's Inequality:**

How many i.i.d. samples x_1, x_2, \dots from some unknown bounded r.v. $X \in [0,B]$ do we need to compute $\tilde{\mu}$ such that $|\widetilde{\mu} - E(X)| \le \epsilon E(X)$ with proba. 2/3 **Sample mean:** $\widetilde{\mu} = \frac{x_1 + \ldots + x_n}{1 + \ldots + x_n}$ B **Chernoff's Bound:** $\epsilon^{2} \mathrm{E}(X)$ $\frac{\operatorname{Var}(X)}{\epsilon^2 \operatorname{E}(X)^2} + \frac{B}{\epsilon \operatorname{E}(X)}$ $\left(\operatorname{Var}(X) \leq B \cdot \operatorname{E}(X)\right)$ Bernstein's Inequality: Var(X)**Chebyshev's Inequality:** $\epsilon^{2} \mathrm{E}(X)^{2}$

How many i.i.d. samples x_1, x_2, \dots from some unknown bounded r.v. $X \in [0,B]$ do we need to compute $\tilde{\mu}$ such that $|\widetilde{\mu} - E(X)| \leq \epsilon E(X)$ with proba. 2/3 **Sample mean:** $\widetilde{\mu} = \frac{x_1 + \ldots + x_n}{n}$ $\frac{z}{\epsilon^2 E(X)}$ **Chernoff's Bound:** $\frac{\operatorname{Var}(X)}{\epsilon^2 \operatorname{E}(X)^2} + \frac{B}{\epsilon \operatorname{E}(X)}$ $\left(\operatorname{Var}(X) \leq B \cdot \operatorname{E}(X)\right)$ Bernstein's Inequality: $\frac{\operatorname{Var}(X)}{\epsilon^2 \operatorname{E}(X)^2}$ **Chebyshev's Inequality:** In practice: we often know $\Delta^2 \ge \frac{E(X^2)}{E(X)^2} = \frac{Var(X^2)}{E(X)^2} + 1$ \longrightarrow take $\frac{\Delta^2}{C^2}$ samples

Counting with Markov chain Monte Carlo methods:

Counting vs. sampling [Jerrum, Sinclair'96] [Štefankovič et al.'09], Volume of convex bodies [Dyer, Frieze'91], Permanent [Jerrum, Sinclair, Vigoda'04]

Data stream model:

Frequency moments, Collision probability [Alon, Matias, Szegedy'99] [Monemizadeh, Woodruff'] [Andoni et al.'11] [Crouch et al.'16]

Testing properties of distributions:

Closeness [Goldreich, Ron'11] [Batu et al.'13] [Chan et al.'14], Conditional independence [Canonne et al.'18]

Estimating graph parameters:

Number of connected components, Minimum spanning tree weight [Chazelle, Rubinfeld, Trevisan'05], Average distance [Goldreich, Ron'08], Number of triangles [Eden et al. 17]

etc.

Classical sample: one value $x \in \Omega$, sampled with probability p_x

Classical sample: one value $x \in \Omega$, sampled with probability p_x

Quantum sample: one use of a unitary operator S_X or S_X^{-1} satisfying

$$S_X | 0 \rangle = \sum_{x \in \Omega} \sqrt{p_x} | x \rangle$$

Classical sample: one value $x \in \Omega$, sampled with probability p_x

Quantum sample: one use of a unitary operator S_X or S_X^{-1} satisfying

$$S_X | 0 \rangle = \sum_{x \in \Omega} \sqrt{p_x} |x\rangle |\psi_x\rangle$$

with ψ_x = arbitrary unit vector

Classical sample: one value $x \in \Omega$, sampled with probability p_x

Quantum sample: one use of a unitary operator S_X or S_X^{-1} satisfying

$$S_X |0\rangle = \sum_{x \in \Omega} \sqrt{p_x} |x\rangle |\psi_x\rangle$$

with ψ_x = arbitrary unit vector

Question: can we estimate E(X) with less samples in the quantum setting?

Our Approach

$$- If B \leq \frac{E(X^2)}{E(X)}$$

Amplitude-Estimation:
$$O\left(\frac{\sqrt{B}}{\epsilon\sqrt{E(X)}}\right)$$
 quantum samples to estimate E(X)
 \longrightarrow If $B \leq \frac{E(X^2)}{E(X)}$: the number of samples is $O\left(\frac{\sqrt{E(X^2)}}{\epsilon E(X)}\right)$

Lemma: If
$$b \ge \frac{E(X^2)}{\epsilon E(X)}$$
 then $(1 - \epsilon)E(X) \le E(X_b) \le E(X)$.

Lemma: If
$$b \ge \frac{E(X^2)}{\epsilon E(X)}$$
 then $(1 - \epsilon)E(X) \le E(X_b) \le E(X)$.

Problem:
$$\frac{E(X^2)}{E(X)}$$
 is unknown...

Lemma: If
$$b \ge \frac{E(X^2)}{\epsilon E(X)}$$
 then $(1 - \epsilon)E(X) \le E(X_b) \le E(X)$.

Problem:
$$\frac{E(X^2)}{E(X)}$$
 is unknown... but we know $\Delta^2 \ge \frac{E(X^2)}{E(X)^2}$

Lemma: If
$$b \ge \frac{E(X^2)}{\epsilon E(X)}$$
 then $(1 - \epsilon)E(X) \le E(X_b) \le E(X)$.

Problem:
$$\frac{\mathrm{E}(X^2)}{\mathrm{E}(X)}$$
 is unknown... but we know $\Delta^2 \ge \frac{\mathrm{E}(X^2)}{\mathrm{E}(X)^2} \longrightarrow b \approx \mathrm{E}(X) \cdot \Delta^2$?

Objective: given
$$\Delta^2 \ge \frac{E(X^2)}{E(X)^2}$$
 how to find a threshold $b \approx E(X) \cdot \Delta^2$?

Objective: given
$$\Delta^2 \ge \frac{E(X^2)}{E(X)^2}$$
 how to find a threshold $b \approx E(X) \cdot \Delta^2$?

Solution: use the Amplitude Estimation algorithm (again) to do a logarithmic search on b

Objective: given $\Delta^2 \ge \frac{E(X^2)}{E(X)^2}$ how to find a threshold $b \approx E(X) \cdot \Delta^2$?

Solution: use the Amplitude Estimation algorithm (again) to do a logarithmic search on b

Threshold	Input r.v.	Number of samples	Amplitude Estimation
$b_0 = B\Delta^2$	X_{b_0}	Δ	$\widetilde{\mu}_0$
$b_1 = (B/2)\Delta^2$	X_{b_1}	Δ	$\widetilde{\mu}_1$
$b_2 = (B/4)\Delta^2$	X_{b_2}	Δ	$\widetilde{\mu}_2$
 Stopp	ing rule: $\widetilde{\mu}_i$ 7	40 Output: ℓ	b_i

Objective: given $\Delta^2 \ge \frac{E(X^2)}{E(X)^2}$ how to find a threshold $b \approx E(X) \cdot \Delta^2$?

Solution: use the Amplitude Estimation algorithm (again) to do a logarithmic search on b

Threshold	Input r.v.	Number of samples	Amplitude Estimation		
$b_0 = B\Delta^2$	X_{b_0}	Δ	$\widetilde{\mu}_0$		
$b_1 = (B/2)\Delta^2$	X_{b_1}	Δ	$\widetilde{\mu}_1$		
$b_2 = (B/4)\Delta^2$	X_{b_2}	Δ	$\widetilde{\mu}_2$		
Stopping rule: $\tilde{\mu}_i \neq 0$ Output: b_i					
Theorem: the first non-zero $\tilde{\mu}_i$ is obtained w.h.p. when: 2. $E(\mathbf{X}) \wedge^2 < h < 10$. $E(\mathbf{X}) \wedge^2$					

Theorem: the first non-zero $\tilde{\mu}_i$ is obtained w.h.p. when: $2 \cdot E(X)\Delta^2 \le b_i \le 10 \cdot E(X)\Delta^2$

Theorem: the first non-zero $\tilde{\mu}_i$ is obtained w.h.p. when: $2 \cdot E(X)\Delta^2 \le b_i \le 10 \cdot E(X)\Delta^2$

Ingredient 1: The output of **Amplitude-Estimation** is 0 w.h.p. if and only if the **Estimated amplitude** is below the **inverse number** of samples.

 $1/\Delta$

Theorem: the first non-zero $\widetilde{\mu_i}$ is obtained w.h.p. when: $2 \cdot E(X)\Delta^2 \le b_i \le 10 \cdot E(X)\Delta^2$

Ingredient 1: The output of **Amplitude-Estimation** is 0 w.h.p. if and only if the **estimated amplitude** is below the **inverse number** of samples.

$$\sqrt{\frac{\mathrm{E}(X_b)}{b}}$$

 $1/\Delta$

Ingredient 2: If $b \ge 10 \cdot E(X)\Delta^2$ then $\frac{E(X_b)}{b} \le \frac{E(X)}{b} \le \frac{1}{10 \cdot \Delta^2}$

Theorem: the first non-zero $\tilde{\mu}_i$ is obtained w.h.p. when: $2 \cdot E(X)\Delta^2 \le b_i \le 10 \cdot E(X)\Delta^2$

Ingredient 1: The output of **Amplitude-Estimation** is 0 w.h.p. if and only if the [Brassard et al.'02] **estimated amplitude** is below the **inverse number** of samples.

$$\sqrt{\frac{\mathrm{E}(X_b)}{b}}$$

 $1/\Delta$

Ingredient 2: If $b \ge 10 \cdot E(X)\Delta^2$ then $\frac{E(X_b)}{b} \le \frac{E(X)}{b} \le \frac{1}{10 \cdot \Delta^2}$

Ingredient 3: If
$$b \approx E(X) \cdot \Delta^2$$
 then $\frac{E(X_b)}{b} \approx \frac{E(X)}{b} \approx \frac{1}{\Delta^2}$

Applications

Input: graph G=(V,E) with **n** vertices, **m** edges, **t** triangles

Input: graph G=(V,E) with **n** vertices, **m** edges, **t** triangles

Query access: unitaries $O_{deg} |v\rangle |0\rangle = |v\rangle |deg(v)\rangle$ (degree query) $O_{pair} |v\rangle |w\rangle |0\rangle = |v\rangle |w\rangle |(v, w) \in E$?) (pair query) $O_{ngh} |v\rangle |i\rangle |0\rangle = |v\rangle |i\rangle |v_i\rangle$ (neighbor query) ith neighbor of v

Result: $\longrightarrow \widetilde{\Theta}\left(\frac{\sqrt{n}}{m^{1/4}}\right)$

quantum queries for edge estimation

$$\longrightarrow \widetilde{\Theta}\left(\frac{\sqrt{n}}{t^{1/6}}+\frac{m^{3/4}}{\sqrt{t}}\right)$$

quantum queries to triangle estimation

Input: graph G=(V,E) with **n** vertices, **m** edges, **t** triangles

Query access: unitaries $O_{deg} |v\rangle |0\rangle = |v\rangle |deg(v)\rangle$ (degree query) $O_{\text{pair}} |v\rangle |w\rangle |0\rangle = |v\rangle |w\rangle |(v, w) \in E ?\rangle$ (pair query) $O_{\text{ngh}} |v\rangle |i\rangle |0\rangle = |v\rangle |i\rangle |v_i\rangle$ (neighbor query) ith neighbor of v **Result:** $\rightarrow \widetilde{\Theta}\left(\frac{\sqrt{n}}{m^{1/4}}\right)$ quantum queries for edge estimation (vs. $\widetilde{\Theta}\left(\frac{n}{\sqrt{m}}\right)$ classical queries) [Goldreich, Ron'08] [Seshadhri'15] $\widehat{\Theta}\left(\frac{\sqrt{n}}{t^{1/6}} + \frac{m^{3/4}}{\sqrt{t}}\right)$ quantum queries to triangle estimation (vs. $\widetilde{\Theta}\left(\frac{n}{t^{1/3}} + \frac{m^{3/2}}{t}\right)$ classical queries) [Eden, Levi, Ron'15] [Eden, Levi, Ron, Seshadhri'17] **Initially: x** = (0,...,0) of dimension n

Input: stream of updates $\mathbf{x_i} \leftarrow \mathbf{x_i} + \delta$ to x

Output: (at the end of the stream) estimate of $F_k = \sum_{i=1}^n |x_i|^k$ (moment of order k \ge 3)

Initially: x = (0,...,0) of dimension n

Input: stream of updates $\mathbf{x_i} \leftarrow \mathbf{x_i} + \delta$ to x

Output: (at the end of the stream) estimate of $F_k = \sum_{i=1}^n |x_i|^k$ (moment of order $k \ge 3$)

What is the smallest memory size M needed to estimate F_k using P passes over the same stream?

Initially: x = (0,...,0) of dimension n

Input: stream of updates $\mathbf{x_i} \leftarrow \mathbf{x_i} + \delta$ to x

Output: (at the end of the stream) estimate of $F_k = \sum_{i=1}^n |x_i|^k$ (moment of order $k \ge 3$)

What is the smallest **memory size M** needed to estimate F_k using **P** passes over the same stream?

Result:
$$M = \widetilde{O}\left(\frac{n^{1-2/k}}{P^2}\right)$$
 qubits of memory

(vs.
$$M = \widetilde{\Theta}\left(\frac{n^{1-2/k}}{P}\right)$$
 classical bits of memory)
[Monemizadeh, Woodruff'10]
[Andoni, Krauthgamer, Onak'11]

Conclusion

The mean of a random variable X can be estimated with multiplicative
error
$$\varepsilon$$
 using $\widetilde{O}\left(\frac{\Delta}{\epsilon} \cdot \log^3\left(\frac{M_{\Omega}}{E(X)}\right)\right)$ quantum samples, given $\Delta^2 \ge \frac{E(X^2)}{E(X)^2}$.

Lower bound:
$$\Omega\left(\frac{\Delta-1}{\epsilon}\right)$$
 quantum samples

or
$$\Omega\left(\frac{\Delta^2 - 1}{\epsilon^2}\right)$$
 copies of the state $S_X|0\rangle = \sum_{x \in \Omega} \sqrt{p_x} |\psi_x\rangle |x\rangle$

Open questions:

- Can we improve the complexity to $O(\Delta/\epsilon)$ exactly?
- Lower bound for the Frequency Moments estimation problem?
- Other applications ?

