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Data stream model:  
Frequency moments, Collision probability [Alon, Matias, Szegedy’99] 
[Monemizadeh, Woodruff’] [Andoni et al.’11] [Crouch et al.’16]

Applications

Testing properties of distributions:  
Closeness [Goldreich, Ron’11] [Batu et al.’13] [Chan et al.’14], Conditional 
independence [Canonne et al.’18]

Estimating graph parameters:  
Number of connected components, Minimum spanning tree weight 
[Chazelle, Rubinfeld, Trevisan’05], Average distance [Goldreich, Ron’08], Number 
of triangles [Eden et al. 17]

Counting with Markov chain Monte Carlo methods: 
Counting vs. sampling [Jerrum, Sinclair’96] [Štefankovič et al.’09], Volume of 
convex bodies [Dyer, Frieze'91], Permanent [Jerrum, Sinclair, Vigoda’04]

etc.
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Random variable X on finite sample space Ω ⊂ [0,B].

Classical sample: one value x ∈ Ω, sampled with probability px
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Quantum Mean Estimation Problem



Quantum sample: one use of a unitary operator      or        satisfying

Random variable X on finite sample space Ω ⊂ [0,B].

Classical sample: one value x ∈ Ω, sampled with probability px

SX |0⟩ = ∑
x∈Ω

px |x⟩

SX S−1
X
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Question: can we estimate E(X) with less samples in  
the quantum setting? 

Quantum Mean Estimation Problem

|ψx⟩



Classical samples Quantum samples

(Chernoff) (Amplitude Estimation)


(Chebyshev)
[Montanaro’15]:

Our contribution:

B

ϵ E(X)

Δ2

ϵ

Δ
ϵ

⋅ log3 ( B
E(X) )
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Amplitude-Estimation: quantum samples to estimate E(X)O (
B

ϵ E(X) )
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Objective: given                     how to find a threshold                       ?Δ2 ≥
E(X2)
E(X)2

b ≈ E(X) ⋅ Δ2



Solution: use the Amplitude Estimation algorithm (again) to do 

                a logarithmic search on b
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Analysis

Theorem: the first non-zero     is obtained w.h.p. when:μ̃i

2 ⋅ E(X)Δ2 ≤ bi ≤ 10 ⋅ E(X)Δ2



Ingredient 1:

1/Δ
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E(Xb)
b

Analysis

Theorem: the first non-zero     is obtained w.h.p. when:μ̃i

2 ⋅ E(X)Δ2 ≤ bi ≤ 10 ⋅ E(X)Δ2

The output of Amplitude-Estimation is 0 w.h.p. if and only if the 

estimated amplitude is below the inverse number of samples.[Brassard et al.’02]
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Input: graph G=(V,E) with n vertices, m edges, t triangles

Query access: unitaries Odeg |v⟩ |0⟩ = |v⟩ |deg(v)⟩

Opair |v⟩ |w⟩ |0⟩ = |v⟩ |w⟩ | (v, w) ∈ E ?⟩

Ongh |v⟩ | i⟩ |0⟩ = |v⟩ | i⟩ |vi⟩

ith neighbor of v

(degree query)

(pair query)

(neighbor query)

Application 1: approximating graph parameters
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Application 1: approximating graph parameters

Θ̃ (
n

m1/4 ) quantum queries for edge estimation

(vs. Θ̃ ( n

m )
[Goldreich, Ron’08] [Seshadhri’15]

[Eden, Levi, Ron’15] [Eden, Levi, Ron, Seshadhri’17]



Application 2: frequency moments in the streaming model
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Fk =
n

∑
i=1

|xi |
k (moment of order k ≥ 3)

Input: stream of updates                      to x

Output: (at the end of the stream) estimate of 

xi ← xi + δ

Initially: x = (0,…,0) of dimension n
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Application 2: frequency moments in the streaming model

14

Fk =
n

∑
i=1

|xi |
k

What is the smallest memory size M needed to 

estimate Fk using P passes over the same stream?  

(moment of order k ≥ 3)

[Monemizadeh, Woodruff’10]

[Andoni, Krauthgamer, Onak’11]

M = Õ ( n1−2/k

P2 )

Input: stream of updates                      to x

Output: (at the end of the stream) estimate of 

Result:

xi ← xi + δ

qubits of memory

(vs. classical bits of memory)M = Θ̃ ( n1−2/k

P )

Initially: x = (0,…,0) of dimension n



Conclusion
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The mean of a random variable X can be estimated with multiplicative  

error ε using                                     quantum samples, given                   .Δ2 ≥
E(X2)
E(X)2Õ ( Δ

ϵ
⋅ log3 ( MΩ

E(X) ))

Open questions:

• Can we improve the complexity to O(Δ/ε) exactly?


• Lower bound for the Frequency Moments estimation problem?


• Other applications ?

arXiv: 1807.06456

Lower bound: quantum samplesΩ ( Δ − 1
ϵ )

copies of the stateΩ ( Δ2 − 1
ϵ2 )or SX |0⟩ = ∑

x∈Ω

px |ψx⟩ |x⟩


