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Buffon’s needle

Buffon, G., Essai d'arithmétique morale, 1777.

A needle dropped randomly on a floor with equally spaced 

parallel lines will cross one of the lines with probability 2/π. 
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Use repeated random sampling and statistical 

analysis to estimate parameters of interest

Monte Carlo algorithms:
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Use repeated random sampling and statistical 

analysis to estimate parameters of interest

Monte Carlo algorithms:

Empirical mean:

2/ Output: (x1 +…+ xn)/n

1/ Repeat the experiment n times: n i.i.d. samples x1, …, xn ~ X
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Use repeated random sampling and statistical 

analysis to estimate parameters of interest

Monte Carlo algorithms:

Empirical mean:

2/ Output: (x1 +…+ xn)/n

Law of large numbers:
x1 + . . . + xn

n
n→∞ E(X)

1/ Repeat the experiment n times: n i.i.d. samples x1, …, xn ~ X
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Empirical mean: μ̃ =
x1 + . . . + xn

n
with x1, . . . , xn ∼ X

How fast does it converge to E(X) ?
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Empirical mean: μ̃ =
x1 + . . . + xn

n
with x1, . . . , xn ∼ X

Chebyshev’s Inequality:

How fast does it converge to E(X) ?

| μ̃ − E(X) | ≤ ϵE(X)Objective:

multiplicative error 0 < ε < 1

with high probability
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(                         finite)E(X ), Var(X ) ≠ 0



(in fact                                          )

Empirical mean: μ̃ =
x1 + . . . + xn

n
with x1, . . . , xn ∼ X

Chebyshev’s Inequality:

How fast does it converge to E(X) ?

| μ̃ − E(X) | ≤ ϵE(X)Objective:

multiplicative error 0 < ε < 1

with high probability

Number of samples needed: O ( E(X2)
ϵ2E(X)2 ) O( Var(X )

ϵ2E(X )2 ) = O( 1
ϵ2 ( E(X2)

E(X )2
− 1))
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(in fact                                          )

Empirical mean: μ̃ =
x1 + . . . + xn

n
with x1, . . . , xn ∼ X

Chebyshev’s Inequality:

How fast does it converge to E(X) ?

| μ̃ − E(X) | ≤ ϵE(X)Objective:

multiplicative error 0 < ε < 1

with high probability

Number of samples needed: O ( E(X2)
ϵ2E(X)2 ) O( Var(X )

ϵ2E(X )2 ) = O( 1
ϵ2 ( E(X2)

E(X )2
− 1))

In practice: given an upper-bound                  ,  take                        samplesΔ2 ≥
E(X2)
E(X)2
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n = Ω ( Δ2

ϵ2 )

Relative second  
moment

(                         finite)E(X ), Var(X ) ≠ 0



Example: edge counting
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Problem: approximate the number m of edges in an n-vertex graph G



Example: edge counting

Estimator X :=
1. Sample a vertex v ∈ V uniformly at random


2. Sample a neighbor w of v uniformly at random


3. If deg(v) < deg(w)   (or deg(v) = deg(w) and v <lex w)


         Output n*deg(v) 

      Else


         Output 0
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Problem: approximate the number m of edges in an n-vertex graph G



Example: edge counting

Estimator X :=
1. Sample a vertex v ∈ V uniformly at random


2. Sample a neighbor w of v uniformly at random


3. If deg(v) < deg(w)   (or deg(v) = deg(w) and v <lex w)


         Output n*deg(v) 

      Else


         Output 0

Lemma: E(X) = m and E(X2)/E(X)2 ≤ O(√n).    (when m ≥ Ω(n)) 
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[Seshadhri’15]

Problem: approximate the number m of edges in an n-vertex graph G



Example: edge counting

Estimator X :=
1. Sample a vertex v ∈ V uniformly at random


2. Sample a neighbor w of v uniformly at random


3. If deg(v) < deg(w)   (or deg(v) = deg(w) and v <lex w)


         Output n*deg(v) 

      Else


         Output 0

Lemma: E(X) = m and E(X2)/E(X)2 ≤ O(√n).    (when m ≥ Ω(n)) 

�5
Consequence: O(√n/ε2) samples to approximate m with error ε.

[Goldreich, Ron’08]  
[Seshadhri’15]

Problem: approximate the number m of edges in an n-vertex graph G



Data stream model:  
Frequency moments, Collision probability [Alon, Matias, Szegedy’99] 
[Monemizadeh, Woodruff’] [Andoni et al.’11] [Crouch et al.’16]

Other applications

Testing properties of distributions:  
Closeness [Goldreich, Ron’11] [Batu et al.’13] [Chan et al.’14], Conditional 
independence [Canonne et al.’18]

Estimating graph parameters:  
Number of connected components, Minimum spanning tree weight 
[Chazelle, Rubinfeld, Trevisan’05], Average distance [Goldreich, Ron’08], Number 
of triangles [Eden et al. 17]

Counting with Markov chain Monte Carlo methods: 
Counting vs. sampling [Jerrum, Sinclair’96] [Štefankovič et al.’09], Volume of 
convex bodies [Dyer, Frieze'91], Permanent [Jerrum, Sinclair, Vigoda’04]

etc.
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Random variable X over sample space Ω ⊂ R+

Classical sample: one value x ∈ Ω, sampled with probability px
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Quantum sample: one (controlled-)execution of a quantum sampler      or      , where

Random variable X over sample space Ω ⊂ R+

Classical sample: one value x ∈ Ω, sampled with probability px

SX |0⟩ = ∑
x∈Ω

px |ψx⟩ |x⟩

with ψx = arbitrary unit vector

SX S−1
X
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Quantum sample: one (controlled-)execution of a quantum sampler      or      , where

Random variable X over sample space Ω ⊂ R+

Classical sample: one value x ∈ Ω, sampled with probability px

SX |0⟩ = ∑
x∈Ω

px |ψx⟩ |x⟩

with ψx = arbitrary unit vector

SX S−1
X
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Question: can we estimate E(X) with less samples in  
the quantum setting? 



Previous Works



SX |0⟩ = ∑
x∈Ω

px |ψx⟩ |x⟩
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The Amplitude Estimation algorithm [Brassard et al.’11] [Brassard et al.’11] [Wocjan et al.’09]

Given one can obtain (with 1 ancillary qubit + controlled rotation):



SX |0⟩ = ∑
x∈Ω

px |ψx⟩ |x⟩
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SY |0⟩ = ∑
x∈Ω

px |ψx⟩ |x⟩( 1 −
x

MΩ
|0⟩ +

x
MΩ

|1⟩)

The Amplitude Estimation algorithm [Brassard et al.’11] [Brassard et al.’11] [Wocjan et al.’09]

where MΩ = max{x ∈ Ω}

Given one can obtain (with 1 ancillary qubit + controlled rotation):



SX |0⟩ = ∑
x∈Ω

px |ψx⟩ |x⟩
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SY |0⟩ = ∑
x∈Ω

px |ψx⟩ |x⟩( 1 −
x

MΩ
|0⟩ +

x
MΩ

|1⟩)

The Amplitude Estimation algorithm [Brassard et al.’11] [Brassard et al.’11] [Wocjan et al.’09]

where MΩ = max{x ∈ Ω}

= 1 −
E(X)
MΩ

|φ0⟩ |0⟩ +
E(X)
MΩ

|φ1⟩ |1⟩

Given one can obtain (with 1 ancillary qubit + controlled rotation):

and |φ0⟩, |φ1⟩ are some unit vectors.



SX |0⟩ = ∑
x∈Ω

px |ψx⟩ |x⟩
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SY |0⟩ = ∑
x∈Ω

px |ψx⟩ |x⟩( 1 −
x

MΩ
|0⟩ +

x
MΩ

|1⟩)

The Amplitude Estimation algorithm [Brassard et al.’11] [Brassard et al.’11] [Wocjan et al.’09]

where MΩ = max{x ∈ Ω}

= 1 −
E(X)
MΩ

|φ0⟩ |0⟩ +
E(X)
MΩ

|φ1⟩ |1⟩

Given one can obtain (with 1 ancillary qubit + controlled rotation):

and |φ0⟩, |φ1⟩ are some unit vectors.

Observation: The Grover's operator                                                                 


                       has eigenvalues         ,  where                                  .
G = S−1

Y (I − 2 |0⟩⟨0 | )SY(I − 2I ⊗ |1⟩⟨1 | )

e±2iθ θ = sin−1( E(X)/MΩ)
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The Amplitude Estimation algorithm [Brassard et al.’11] [Brassard et al.’11] [Wocjan et al.’09]

where MΩ = max{x ∈ Ω}

= 1 −
E(X)
MΩ

|φ0⟩ |0⟩ +
E(X)
MΩ

|φ1⟩ |1⟩

Given one can obtain (with 1 ancillary qubit + controlled rotation):

and |φ0⟩, |φ1⟩ are some unit vectors.

Observation: The Grover's operator                                                                 


                       has eigenvalues         ,  where                                  .
G = S−1

Y (I − 2 |0⟩⟨0 | )SY(I − 2I ⊗ |1⟩⟨1 | )

e±2iθ θ = sin−1( E(X)/MΩ)

2/ Output                           as an estimate to E(X).μ̃ = MΩ ⋅ sin2(θ̃)

Algorithm: 1/ Apply Phase Estimation on G for                                     steps                                  


                       to get an estimate     s.t.                        .     θ̃

t ≥ Ω( MΩ /(ϵ E(X)))

| θ̃ − |θ | | ≤ 1/t



SX |0⟩ = ∑
x∈Ω

px |ψx⟩ |x⟩
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The Amplitude Estimation algorithm [Brassard et al.’02] [Brassard et al.’11] [Wocjan et al.’09]

Given one can obtain (with 1 ancillary qubit + controlled rotation):

Result: O (
MΩ

ϵ E(X) ) quantum samples to obtain | μ̃ − E(X) | ≤ ϵE(X)

where MΩ = max{x ∈ Ω}

= 1 −
E(X)
MΩ

|φ0⟩ |0⟩ +
E(X)
MΩ

|φ1⟩ |1⟩

and |φ0⟩, |φ1⟩ are some unit vectors.

SY |0⟩ = ∑
x∈Ω

px |ψx⟩ |x⟩( 1 −
x

MΩ
|0⟩ +

x
MΩ

|1⟩)



SX |0⟩ = ∑
x∈Ω

px |ψx⟩ |x⟩
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The Amplitude Estimation algorithm [Brassard et al.’02] [Brassard et al.’11] [Wocjan et al.’09]

Given one can obtain (with 1 ancillary qubit + controlled rotation):

Result: O (
MΩ

ϵ E(X) ) quantum samples to obtain | μ̃ − E(X) | ≤ ϵE(X)

…not efficient if MΩ is large (worst than the classical algorithm sometimes)

where MΩ = max{x ∈ Ω}

= 1 −
E(X)
MΩ

|φ0⟩ |0⟩ +
E(X)
MΩ

|φ1⟩ |1⟩

and |φ0⟩, |φ1⟩ are some unit vectors.

SY |0⟩ = ∑
x∈Ω

px |ψx⟩ |x⟩( 1 −
x

MΩ
|0⟩ +

x
MΩ

|1⟩)



Can we use quadratically less samples in the quantum setting?
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 Number of samples Conditions

Classical samples 
(Chebyshev’s 

inequality)

[Brassard et al.’02]
[Brassard et al.’11] 
[Wocjan et al.’09]

[Montanaro’15]

Our result

Δ2 ≥
E(X2)
E(X)2

Δ2

ϵ2

Δ2 ≥
E(X2)
E(X)2

Sample space 

Ω ⊂ [0, MΩ]

MΩ

ϵ E(X)

Δ2 ≥
E(X2)
E(X)2

Δ2

ϵ

Δ
ϵ

⋅ log3 ( MΩ

E(X) )
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Our Approach



Input:

Ampl-Est: O (
MΩ

ϵ E(X) ) quantum samples to obtain

Random variable X on sample space Ω ⊂ [0,MΩ]
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Amplitude Estimation Algorithm [Brassard et al.’02] [Brassard et al.’11] [Wocjan et al.’09]

| μ̃ − E(X) | ≤ ϵ ⋅ E(X)



If                     : the number of samples is          MΩ ≤
E(X2)
E(X)

O
E(X2)

ϵE(X)
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Amplitude Estimation Algorithm [Brassard et al.’02] [Brassard et al.’11] [Wocjan et al.’09]

Ampl-Est: O (
MΩ

ϵ E(X) ) quantum samples to obtain | μ̃ − E(X) | ≤ ϵ ⋅ E(X)

Input: Random variable X on sample space Ω ⊂ [0,MΩ]



If                     : the number of samples is          MΩ ≤
E(X2)
E(X)

O
E(X2)

ϵE(X)

If                    ?MΩ ≫
E(X2)
E(X)
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Amplitude Estimation Algorithm [Brassard et al.’02] [Brassard et al.’11] [Wocjan et al.’09]

Ampl-Est: O (
MΩ

ϵ E(X) ) quantum samples to obtain | μ̃ − E(X) | ≤ ϵ ⋅ E(X)

Input: Random variable X on sample space Ω ⊂ [0,MΩ]



0

1

Random variable X
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0 MΩ

Largest outcome

px

x



0

1

Random variable XM
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0 M
New largest outcome

px

x
≈

E(X2)
E(X )

MΩ



If                     : the number of samples is          MΩ ≤
E(X2)
E(X)

O
E(X2)

ϵE(X)

If                     : map the outcomes larger than              to 0E(X2)
E(X)

MΩ ≫
E(X2)
E(X)
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?

Ampl-Est: O (
MΩ

ϵ E(X) ) quantum samples to obtain | μ̃ − E(X) | ≤ ϵ ⋅ E(X)

Input: Random variable X on sample space Ω ⊂ [0,MΩ]



If                     : the number of samples is          MΩ ≤
E(X2)
E(X)

O
E(X2)

ϵE(X)

If                     : map the outcomes larger than              to 0E(X2)
E(X)

MΩ ≫
E(X2)
E(X)
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Lemma: If                    thenM ≥
E(X2)
ϵE(X)

(1 − ϵ)E(X) ≤ E(XM) ≤ E(X) .

Ampl-Est: O (
MΩ

ϵ E(X) ) quantum samples to obtain | μ̃ − E(X) | ≤ ϵ ⋅ E(X)

Input: Random variable X on sample space Ω ⊂ [0,MΩ]



If                     : the number of samples is          MΩ ≤
E(X2)
E(X)

O
E(X2)

ϵE(X)

If                     : map the outcomes larger than              to 0E(X2)
E(X)

MΩ ≫
E(X2)
E(X)
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Problem:             is unknown…

Lemma: If                    thenM ≥
E(X2)
ϵE(X)

(1 − ϵ)E(X) ≤ E(XM) ≤ E(X) .

Ampl-Est: O (
MΩ

ϵ E(X) ) quantum samples to obtain | μ̃ − E(X) | ≤ ϵ ⋅ E(X)

Input: Random variable X on sample space Ω ⊂ [0,MΩ]

E(X2)
E(X)
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If                     : the number of samples is          MΩ ≤
E(X2)
E(X)

O
E(X2)

ϵE(X)

If                     : map the outcomes larger than              to 0E(X2)
E(X)

MΩ ≫
E(X2)
E(X)
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Problem:             is unknown… Δ2 ≥
E(X2)
E(X)2

Lemma: If                    thenM ≥
E(X2)
ϵE(X)

(1 − ϵ)E(X) ≤ E(XM) ≤ E(X) .

Ampl-Est: O (
MΩ

ϵ E(X) ) quantum samples to obtain | μ̃ − E(X) | ≤ ϵ ⋅ E(X)

Input: Random variable X on sample space Ω ⊂ [0,MΩ]

E(X2)
E(X)

M ≈ E(X) ⋅ Δ2 ?but we have
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Objective: given                     how to find a threshold                       ?Δ2 ≥
E(X2)
E(X)2

M ≈ E(X) ⋅ Δ2



Solution: use the Amplitude Estimation algorithm to do a

                logarithmic search on M

�18

Objective: given                     how to find a threshold                       ?Δ2 ≥
E(X2)
E(X)2

M ≈ E(X) ⋅ Δ2



Threshold Input r.v. Number of samples Estimation

Solution: use the Amplitude Estimation algorithm to do a

                logarithmic search on M
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Objective: given                     how to find a threshold                       ?Δ2 ≥
E(X2)
E(X)2

M ≈ E(X) ⋅ Δ2

M0 = MΩΔ2

M1 = (MΩ/2)Δ2

M2 = (MΩ/4)Δ2

μ̃0

…

XM0 Δ

Δ

Δ

μ̃1

μ̃2

…… …
Stopping rule: μ̃i ≠ 0 Output: Mi

XM1

XM2



Threshold Input r.v. Number of samples Estimation

Solution: use the Amplitude Estimation algorithm to do a

                logarithmic search on M
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Objective: given                     how to find a threshold                       ?Δ2 ≥
E(X2)
E(X)2

M ≈ E(X) ⋅ Δ2

M0 = MΩΔ2

M1 = (MΩ/2)Δ2

M2 = (MΩ/4)Δ2

μ̃0

…

XM0 Δ

Δ

Δ

μ̃1

μ̃2

…

Theorem: the first non-zero     is obtained w.h.p. when:μ̃i

2 ⋅ E(X)Δ2 ≤ Mi ≤ 10 ⋅ E(X)Δ2

… …
Stopping rule: μ̃i ≠ 0 Output: Mi

XM1

XM2
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Analysis

Theorem: the first non-zero     is obtained w.h.p. when:μ̃i

2 ⋅ E(X)Δ2 ≤ Mi ≤ 10 ⋅ E(X)Δ2



Ingredient 1:

1/Δ
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E(XM)
M

Analysis

Theorem: the first non-zero     is obtained w.h.p. when:μ̃i

2 ⋅ E(X)Δ2 ≤ Mi ≤ 10 ⋅ E(X)Δ2

The output of Amplitude-Estimation is 0 w.h.p. if and only if the 

estimated amplitude is below the inverse number of samples.[Brassard et al.’02]



Ingredient 1:

1/Δ
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E(XM)
M

Analysis

If                            thenM ≥ 10 ⋅ E(X)Δ2 E(XM)
M

≤
E(X)

M
≤

1
10 ⋅ Δ2

Theorem: the first non-zero     is obtained w.h.p. when:μ̃i

2 ⋅ E(X)Δ2 ≤ Mi ≤ 10 ⋅ E(X)Δ2

Ingredient 2:

The output of Amplitude-Estimation is 0 w.h.p. if and only if the 

estimated amplitude is below the inverse number of samples.[Brassard et al.’02]



Ingredient 1:

1/Δ
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E(XM)
M

If                        then E(XM)
M

≈
E(X)

M
≈

1
Δ2

M ≈ E(X) ⋅ Δ2

Analysis

If                            thenM ≥ 10 ⋅ E(X)Δ2 E(XM)
M

≤
E(X)

M
≤

1
10 ⋅ Δ2

Theorem: the first non-zero     is obtained w.h.p. when:μ̃i

2 ⋅ E(X)Δ2 ≤ Mi ≤ 10 ⋅ E(X)Δ2

Ingredient 2:

Ingredient 3:

The output of Amplitude-Estimation is 0 w.h.p. if and only if the 

estimated amplitude is below the inverse number of samples.[Brassard et al.’02]
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Analysis

Theorem: the first non-zero     is obtained w.h.p. when:μ̃i

2 ⋅ E(X)Δ2 ≤ Mi ≤ 10 ⋅ E(X)Δ2

0 M
0

E(XM)
M

1
Δ2

E(X)Δ2



Step 1: Logarithmic search on M until Amplitude-Estimation(XM, Δ) ≠ 0

2 ⋅ E(X)Δ2 ≤ M ≤ 104 ⋅ E(X)Δ2 with high probability

Δ ⋅ log3 ( MΩ

E(X) )

Final algorithm:
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Step 1: Logarithmic search on M until Amplitude-Estimation(XM, Δ) ≠ 0

2 ⋅ E(X)Δ2 ≤ M ≤ 104 ⋅ E(X)Δ2 with high probability

Step 2: Set threshold                  and outputN = M/ϵ

with high probability| μ̃ − E(X) | ≤ ϵE(X)

Δ ⋅ log3 ( MΩ

E(X) )

Δ/ϵ3/2

Final algorithm:
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μ̃ = N ⋅ Amplitude-Estimation(XN, Δ/ϵ3/2)



Step 1: Logarithmic search on M until Amplitude-Estimation(XM, Δ) ≠ 0

2 ⋅ E(X)Δ2 ≤ M ≤ 104 ⋅ E(X)Δ2 with high probability

Step 2: Set threshold                  and outputN = M/ϵ

with high probability| μ̃ − E(X) | ≤ ϵE(X)

Δ ⋅ log3 ( MΩ

E(X) )

Δ/ϵ3/2

Final algorithm:

Step 2bis: Slightly refined algorithm, adapted from [Heinrich’01, Montanaro’15] 

Δ/ϵ
�21

μ̃ = N ⋅ Amplitude-Estimation(XN, Δ/ϵ3/2)



Optimality
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For any Δ, ε there exists two samplers
SX |0⟩ = 1 − p⟩ |0⟩ + p |1⟩

SY |0⟩ = 1 − q⟩ |0⟩ + q |1⟩

with E(Y ) ≥ (1 + 2ϵ) ⋅ E(X) E(X2)
E(X)2

,
E(Y2)
E(Y )2

∈ [Δ2,2Δ2]and

such that distinguishing between X and Y requires:

Quantum samples 

from SX / SY

Ω ( Δ − 1
ϵ )

{
Lower bounds
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For any Δ, ε there exists two samplers
SX |0⟩ = 1 − p⟩ |0⟩ + p |1⟩

SY |0⟩ = 1 − q⟩ |0⟩ + q |1⟩

with E(Y ) ≥ (1 + 2ϵ) ⋅ E(X) E(X2)
E(X)2

,
E(Y2)
E(Y )2

∈ [Δ2,2Δ2]and

such that distinguishing between X and Y requires:

Quantum samples 

from SX / SY

Ω ( Δ − 1
ϵ )

Copies of the states

Ω ( Δ2 − 1
ϵ2 )

SX |0⟩ / SY |0⟩

or

{
Lower bounds
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A generic quantization method

Randomized algorithm A  
with output X = A()

SX |0⟩ =
1

R ∑
r∈[R]

|r⟩ |C(r)⟩

Deterministic algorithm B with random  
seed r as input and output X = B(r)

Reversible algorithm C with random 
seed r as input and output X = C(r)

Quantum sampler

Δ2

ϵ2

# samples to approximate E(X)

Δ
ϵ

⋅ log3 ( MΩ

E(X) )
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First obstacle: time complexity

Randomized algorithm A  
with output X = A()

SX |0⟩ =
1

R ∑
r∈[R]

|r⟩ |C(r)⟩

Deterministic algorithm B with random  
seed r as input and output X = B(r)

Reversible algorithm C with random 
seed r as input and output X = C(r)

Quantum sampler

Tavg = average running time of A 

Tmax = maximum running time of A 

N samples in average time N*Tavg

N samples in maximum time N*Tmax

N quantum samples in 

maximum/average time O(N*Tmax)
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First obstacle: time complexity

New tool: Variable-Time Amplitude Estimation

Quantum sampler SX

(≠ Variable-Time Amplitude Amplification)

Randomized algorithm A 

with output X in time Tmax,Tavg

Estimate of E(X) in (average) time: 

Δ2

ϵ2
⋅ Tavg

Estimate of E(X) in time: 

Δ
ϵ2

⋅ Tavg,2 ⋅ polylog ( MΩ

E(X)
, Tmax)

where Tavg,2 = L2-average running time of A
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Input: graph G=(V,E) with n vertices, m edges, t triangles

Query access: unitaries Odeg |v⟩ |0⟩ = |v⟩ |deg(v)⟩

Opair |v⟩ |w⟩ |0⟩ = |v⟩ |w⟩ | (v, w) ∈ E ?⟩

Ongh |v⟩ | i⟩ |0⟩ = |v⟩ | i⟩ |vi⟩

ith neighbor of v

(degree query)

(pair query)

(neighbor query)

Application: triangle counting
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Input: graph G=(V,E) with n vertices, m edges, t triangles

Θ̃ (
n

t1/6
+

m3/4

t ) degree/pair/neighbor quantum queries to approximate tResult:

(vs. Θ̃ ( n
t1/3

+
m3/2

t ) classical degree/pair/neighbor queries)

Query access: unitaries Odeg |v⟩ |0⟩ = |v⟩ |deg(v)⟩

Opair |v⟩ |w⟩ |0⟩ = |v⟩ |w⟩ | (v, w) ∈ E ?⟩

Ongh |v⟩ | i⟩ |0⟩ = |v⟩ | i⟩ |vi⟩

ith neighbor of v

(degree query)

(pair query)

(neighbor query)

Application: triangle counting

[Eden, Levi, Ron’15] [Eden, Levi, Ron, Seshadhri’17]
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Second obstacle: reversibility and streaming algorithms

Randomized algorithm A  
with output X = A()

SX |0⟩ =
1

R ∑
r∈[R]

|r⟩ |C(r)⟩

Deterministic algorithm B with random  
seed r as input and output X = B(r)

Reversible algorithm C with random 
seed r as input and output X = C(r)

Quantum sampler
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�30

u = 
1 2 3 n

0 0 0 0 0

Stream of updates to u:                              

-6

Goal: approximate some function f(u) of the final vector u

(3,+5) ; (2,-6) ; (3,-1)

Algorithm with smallest possible memory M ≪ n using 

P passes over the same stream to approximate f(u)?  

Standard method (Alon, Matias, Szegedy’99):

Design an algorithm A with memory M that produces in 1 pass a 

sample X = A(1 pass) such that E(X) = f(u) and E(X2)/E(X)2 ≤ P

(example: f(u) = # of distinct elements in u)

the average of P samples over P passes is a good approximation of f(u)
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Second obstacle: reversibility and streaming algorithms

Randomized algorithm A  
with output X = A()

SX |0⟩ =
1

R ∑
r∈[R]

|r⟩ |C(r)⟩

Deterministic algorithm B with random  
seed r as input and output X = B(r)

Reversible algorithm C with random 
seed r as input and output X = C(r)

Quantum sampler

S−1
X

Usually, C-1 needs to read the 
input of A in reverse order.

If A is a streaming algorithm, it 
means reading the stream in 
the reverse direction!

We showed that linear sketch 
streaming algorithms can be 
made reversible efficiently.

(= C-1 and        can be implemented 

with one pass in the direct direction)

S−1
X
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Application: frequency moments in the streaming model
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|ui |
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Best P-pass algorithm with memory M approximating fk?  

u = 
1 2 3 n
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[Monemizadeh, Woodruff’10]

[Andoni, Krauthgamer, Onak’11]

1 sample from a random variable X with 
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Application: frequency moments in the streaming model

Classically: PM = Θ(n1-2/k)

�32

fk(u) =
n

∑
i=1

|ui |
k

Best P-pass algorithm with memory M approximating fk?  

u = 
1 2 3 n

0 0 0 0 0

Frequency moment of order k ≥ 3:

Quantumly: P2M = O(n1-2/k)

[Monemizadeh, Woodruff’10]

[Andoni, Krauthgamer, Onak’11]

1 sample from a random variable X with 

                        and      E(X2)/E(X)2 ≤ P

1 pass + memory M =
n1−2/k

P
| |

1 pass + memory M =
n1−2/k

P2

1 quantum sample SX from a r.v. X with   


                       and

| |

E(X) ≈ fk(u) E(X) ≈ fk(u) E(X2)/E(X)2 ≤ P2



Conclusion
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The mean of a random variable X can be estimated with multiplicative  

error ε using                                     quantum samples, given                   .Δ2 ≥
E(X2)
E(X)2Õ ( Δ

ϵ
⋅ log3 ( MΩ

E(X) ))

Open questions:

• Can we improve the complexity to O(Δ/ε) ?


• Sample space Ω with negative values?


• Lower bound for the Frequency Moments estimation problem?


• Other applications ?

arXiv: 1807.06456

(would follow from an                        lower bound for the 2-player t-round cc of L∞ problem) Ω(t + nm−2/t)



Extra slides



No a priori information on E(X2)/E(X)2

�36

Result: There is an optimal algorithm that approximates the mean of any 

  quantum sampler SX over Ω ⊂ [0,B] with


  quantum samples, when there is no a priori information on X.

Θ̃ (
B

ϵE(X)
+

E(X2)
ϵE(X) )

→ Quantization of [Dagum, Karp, Luby, Ross’00]
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Lemma: If                    thenb ≥
E(X2)
ϵE(X)

If                             thenb ≥ 104 ⋅ E(X)Δ2Lemma: E(X<b)
b

≤
1

104 ⋅ Δ2

(1 − ϵ)E(X) ≤ E(X<b) ≤ E(X) .
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Lemma: If                    thenb ≥
E(X2)
ϵE(X)

∙ E(X<b) = E(X) − E(X≥b) ≥ (1 − ϵ)E(X)

If                             thenb ≥ 104 ⋅ E(X)Δ2Lemma: E(X<b)
b

≤
1

104 ⋅ Δ2

Proof:

(1 − ϵ)E(X) ≤ E(X<b) ≤ E(X) .

∙ E(X≥b) ≤
E(X2)

b
≤ ϵE(X)

Proof:
E(X<b)

b
≤

E(X)
104E(X)Δ2

≤
1

104 ⋅ Δ2


