Quantum Chebyshev's Inequality and Applications

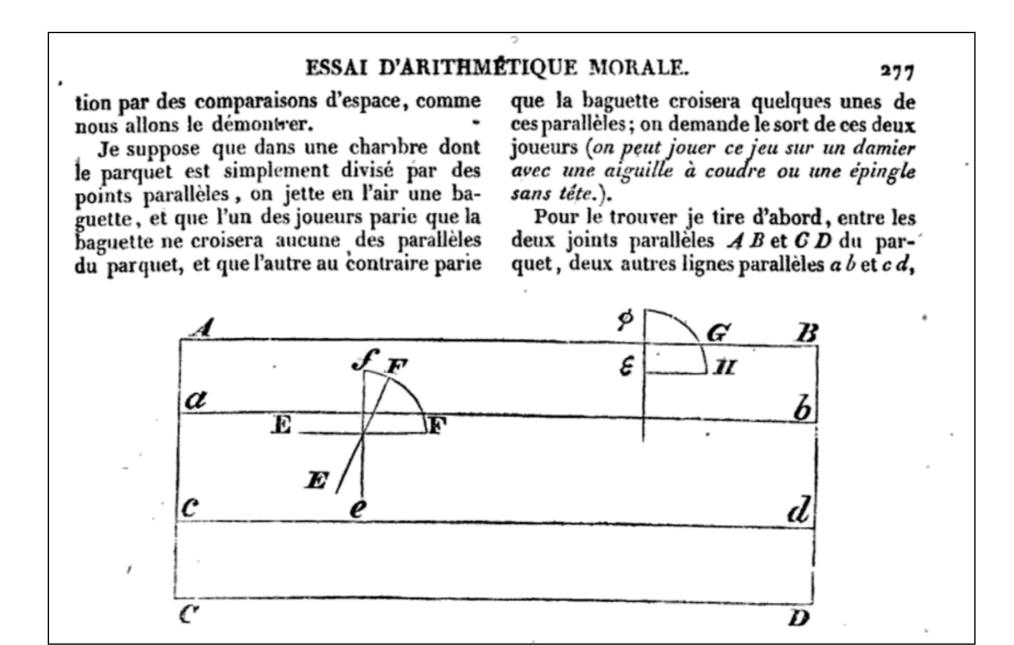
Yassine Hamoudi, Frédéric Magniez

IRIF, Université Paris Diderot, CNRS

CQT 2019

arXiv: 1807.06456

A needle dropped randomly on a floor with equally spaced parallel lines will cross one of the lines with probability $2/\pi$.



Buffon, G., Essai d'arithmétique morale, 1777.

Monte Carlo algorithms: Use repeated random sampling and statistical analysis to estimate parameters of interest

Monte Carlo algorithms: Use repeated random sampling and statistical analysis to estimate parameters of interest

Empirical mean:

1/ Repeat the experiment n times: n i.i.d. samples $x_1, ..., x_n \sim X$

2/ Output: (x₁ +...+ x_n)/n

Monte Carlo algorithms: Use repeated random sampling and statistical analysis to estimate parameters of interest

Empirical mean:

- 1/ Repeat the experiment n times: n i.i.d. samples $x_1, ..., x_n \sim X$
- 2/ Output: (x₁ +...+ x_n)/n

Law of large numbers:
$$\frac{x_1 + \ldots + x_n}{n} \xrightarrow{n \to \infty} \mathbf{E}(X)$$

Empirical mean:
$$\widetilde{\mu} = \frac{x_1 + \ldots + x_n}{n}$$
 with $x_1, \ldots, x_n \sim X$

How fast does it converge to E(X)?

How fast does it converge to E(X)?

Chebyshev's Inequality:

multiplicative error $0 < \varepsilon < 1$ **Objective:** $|\widetilde{\mu} - \mathbf{E}(X)| \leq \epsilon \mathbf{E}(X)$ with high probability ($\mathbf{E}(X), \mathbf{Var}(X) \neq 0$ finite)

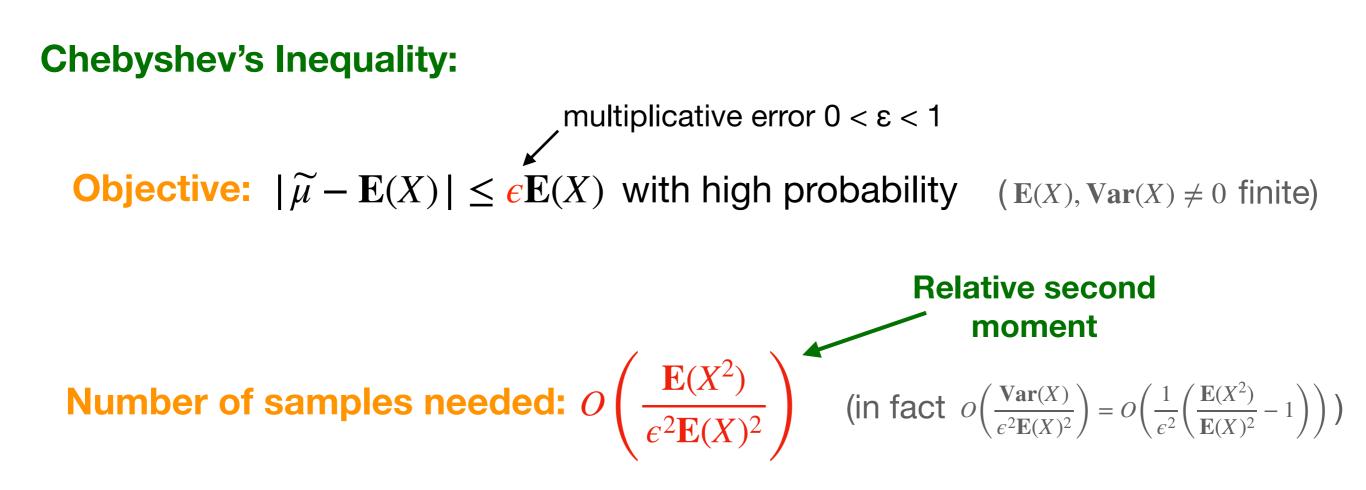
How fast does it converge to E(X)?

Chebyshev's Inequality:

multiplicative error $0 < \varepsilon < 1$ **Objective:** $|\widetilde{\mu} - \mathbf{E}(X)| \le \epsilon \mathbf{E}(X)$ with high probability ($\mathbf{E}(X), \mathbf{Var}(X) \neq 0$ finite)

Number of samples needed:
$$O\left(\frac{\mathbf{E}(X^2)}{\epsilon^2 \mathbf{E}(X)^2}\right)$$
 (in fact $o\left(\frac{\mathbf{Var}(X)}{\epsilon^2 \mathbf{E}(X)^2}\right) = O\left(\frac{1}{\epsilon^2}\left(\frac{\mathbf{E}(X^2)}{\mathbf{E}(X)^2} - 1\right)\right)$)

How fast does it converge to E(X)?



How fast does it converge to E(X)?

Chebyshev's Inequality:

$$\begin{array}{c} \text{multiplicative error } 0 < \varepsilon < 1 \\ \text{Objective: } |\widetilde{\mu} - \mathbf{E}(X)| \leq e\mathbf{E}(X) \text{ with high probability } (\mathbf{E}(X), \mathbf{Var}(X) \neq 0 \text{ finite}) \\ \end{array}$$

$$\begin{array}{c} \text{Relative second} \\ \text{moment} \\ \text{(in fact } o\left(\frac{\mathbf{Var}(X)}{e^{2}\mathbf{E}(X)^{2}}\right) = o\left(\frac{1}{e^{2}}\left(\frac{\mathbf{E}(X^{2})}{\mathbf{E}(X)^{2}} - 1\right)\right)) \\ \end{array}$$

$$\begin{array}{c} \text{In practice: given an upper-bound } \Delta^{2} \geq \frac{\mathbf{E}(X^{2})}{\mathbf{E}(X)^{2}}, \text{ take } n = \Omega\left(\frac{\Delta^{2}}{e^{2}}\right) \text{ samples } \end{array}$$

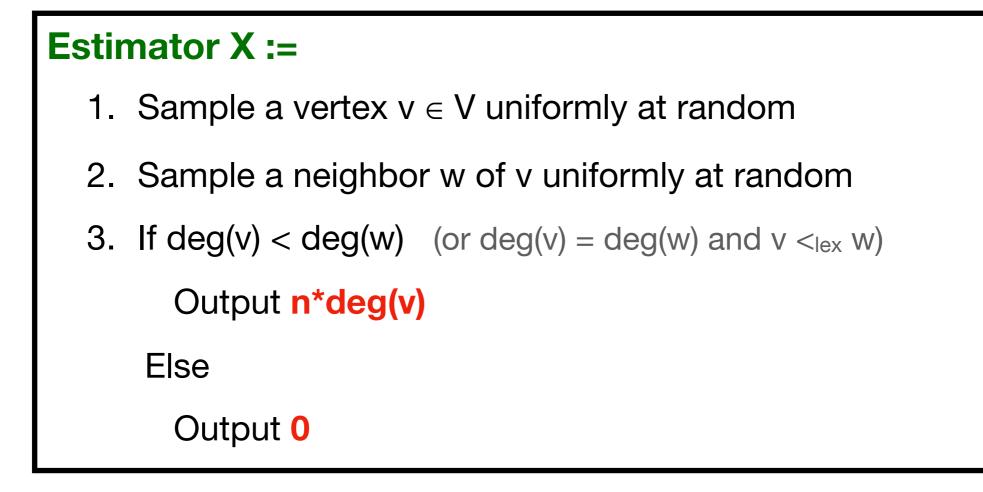
Estimator X :=

- 1. Sample a vertex $v \in V$ uniformly at random
- 2. Sample a neighbor w of v uniformly at random
- 3. If deg(v) < deg(w) (or deg(v) = deg(w) and $v <_{lex} w$)

Output n*deg(v)

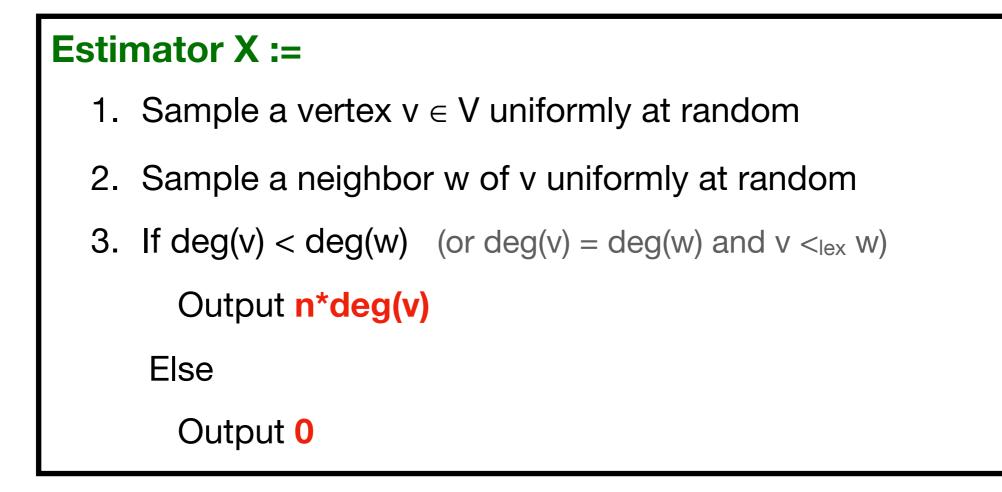
Else

Output 0



Lemma: E(X) = m and $E(X^2)/E(X)^2 \le O(\sqrt{n})$. (when $m \ge \Omega(n)$)

[Goldreich, Ron'08] [Seshadhri'15]



Lemma: E(X) = m and $E(X^2)/E(X)^2 \le O(\sqrt{n})$. (when $m \ge \Omega(n)$)

[Goldreich, Ron'08] [Seshadhri'15]

Consequence: $O(\sqrt{n/\epsilon^2})$ samples to approximate m with error ϵ .

Counting with Markov chain Monte Carlo methods:

Counting vs. sampling [Jerrum, Sinclair'96] [Štefankovič et al.'09], Volume of convex bodies [Dyer, Frieze'91], Permanent [Jerrum, Sinclair, Vigoda'04]

Data stream model:

Frequency moments, Collision probability [Alon, Matias, Szegedy'99] [Monemizadeh, Woodruff'] [Andoni et al.'11] [Crouch et al.'16]

Testing properties of distributions:

Closeness [Goldreich, Ron'11] [Batu et al.'13] [Chan et al.'14], Conditional independence [Canonne et al.'18]

Estimating graph parameters:

Number of connected components, Minimum spanning tree weight [Chazelle, Rubinfeld, Trevisan'05], Average distance [Goldreich, Ron'08], Number of triangles [Eden et al. 17]

etc.

Random variable X over sample space $\Omega \subset \mathbb{R}^+$

Classical sample: one value $x \in \Omega$, sampled with probability p_x

Random variable X over sample space $\Omega \subset \mathbb{R}^+$

Classical sample: one value $x \in \Omega$, sampled with probability p_x

Quantum sample: one (controlled-)execution of a quantum sampler S_X or S_X^{-1} , where

$$S_X | 0 \rangle = \sum_{x \in \Omega} \sqrt{p_x} | \psi_x \rangle | x \rangle$$

with ψ_x = arbitrary unit vector

Random variable X over sample space $\Omega \subset \mathbb{R}^+$

Classical sample: one value $x \in \Omega$, sampled with probability p_x

Quantum sample: one (controlled-)**execution** of a **quantum sampler** S_X or S_X^{-1} , where

$$S_X | 0 \rangle = \sum_{x \in \Omega} \sqrt{p_x} | \psi_x \rangle | x \rangle$$

with ψ_x = arbitrary unit vector

Question: can we estimate E(X) with less samples in the quantum setting?

Previous Works

$$S_{Y}|0\rangle = \sum_{x \in \Omega} \sqrt{p_{x}} |\psi_{x}\rangle |x\rangle \left(\sqrt{1 - \frac{x}{M_{\Omega}}} |0\rangle + \sqrt{\frac{x}{M_{\Omega}}} |1\rangle\right)$$

where $M_{\Omega} = \max\{x \in \Omega\}$

$$S_{Y}|0\rangle = \sum_{x \in \Omega} \sqrt{p_{x}} |\psi_{x}\rangle |x\rangle \left(\sqrt{1 - \frac{x}{M_{\Omega}}} |0\rangle + \sqrt{\frac{x}{M_{\Omega}}} |1\rangle\right)$$
$$= \sqrt{1 - \frac{\mathbf{E}(\mathbf{X})}{\mathbf{M}_{\Omega}}} |\varphi_{0}\rangle |0\rangle + \sqrt{\frac{\mathbf{E}(\mathbf{X})}{\mathbf{M}_{\Omega}}} |\varphi_{1}\rangle |1\rangle$$

where $M_{\Omega} = \max\{x \in \Omega\}$ and $|\varphi_0\rangle, |\varphi_1\rangle$ are some unit vectors.

$$S_{Y}|0\rangle = \sum_{x \in \Omega} \sqrt{p_{x}} |\psi_{x}\rangle |x\rangle \left(\sqrt{1 - \frac{x}{M_{\Omega}}} |0\rangle + \sqrt{\frac{x}{M_{\Omega}}} |1\rangle\right)$$
$$= \sqrt{1 - \frac{\mathbf{E}(\mathbf{X})}{\mathbf{M}_{\Omega}}} |\varphi_{0}\rangle |0\rangle + \sqrt{\frac{\mathbf{E}(\mathbf{X})}{\mathbf{M}_{\Omega}}} |\varphi_{1}\rangle |1\rangle$$

where $M_{\Omega} = \max\{x \in \Omega\}$ and $|\varphi_0\rangle, |\varphi_1\rangle$ are some unit vectors.

Observation: The Grover's operator $\mathbf{G} = \mathbf{S}_{\mathbf{Y}}^{-1}(I - 2 | 0 \rangle \langle 0 |) \mathbf{S}_{\mathbf{Y}}(I - 2I \otimes | 1 \rangle \langle 1 |)$ has eigenvalues $e^{\pm 2i\theta}$, where $\theta = \sin^{-1}(\sqrt{\mathbf{E}(X)/M_{\Omega}})$.

$$S_{Y}|0\rangle = \sum_{x \in \Omega} \sqrt{p_{x}} |\psi_{x}\rangle |x\rangle \left(\sqrt{1 - \frac{x}{M_{\Omega}}} |0\rangle + \sqrt{\frac{x}{M_{\Omega}}} |1\rangle\right)$$
$$= \sqrt{1 - \frac{\mathbf{E}(\mathbf{X})}{\mathbf{M}_{\Omega}}} |\varphi_{0}\rangle |0\rangle + \sqrt{\frac{\mathbf{E}(\mathbf{X})}{\mathbf{M}_{\Omega}}} |\varphi_{1}\rangle |1\rangle$$

where $M_{\Omega} = \max\{x \in \Omega\}$ and $|\varphi_0\rangle, |\varphi_1\rangle$ are some unit vectors.

Observation: The Grover's operator $\mathbf{G} = \mathbf{S}_{\mathbf{Y}}^{-1}(I - 2 | 0 \rangle \langle 0 |) \mathbf{S}_{\mathbf{Y}}(I - 2I \otimes | 1 \rangle \langle 1 |)$ has eigenvalues $e^{\pm 2i\theta}$, where $\theta = \sin^{-1}(\sqrt{\mathbf{E}(X)/M_{\Omega}})$.

Algorithm: 1/ Apply Phase Estimation on G for $t \ge \Omega(\sqrt{M_{\Omega}}/(\epsilon\sqrt{\mathbf{E}(X)}))$ steps to get an estimate $\tilde{\theta}$ s.t. $|\tilde{\theta} - |\theta|| \le 1/t$. 2/ Output $\tilde{\mu} = M_{\Omega} \cdot \sin^2(\tilde{\theta})$ as an estimate to E(X).

$$S_{Y}|0\rangle = \sum_{x \in \Omega} \sqrt{p_{x}} |\psi_{x}\rangle |x\rangle \left(\sqrt{1 - \frac{x}{M_{\Omega}}} |0\rangle + \sqrt{\frac{x}{M_{\Omega}}} |1\rangle\right)$$
$$= \sqrt{1 - \frac{\mathbf{E}(\mathbf{X})}{\mathbf{M}_{\Omega}}} |\varphi_{0}\rangle |0\rangle + \sqrt{\frac{\mathbf{E}(\mathbf{X})}{\mathbf{M}_{\Omega}}} |\varphi_{1}\rangle |1\rangle$$

where $M_{\Omega} = \max\{x \in \Omega\}$ and $|\varphi_0\rangle, |\varphi_1\rangle$ are some unit vectors.

Result:
$$O\left(\frac{\sqrt{M_{\Omega}}}{\epsilon\sqrt{E(X)}}\right)$$
 quantum samples to obtain $|\widetilde{\mu} - E(X)| \le \epsilon E(X)$

$$S_{Y}|0\rangle = \sum_{x \in \Omega} \sqrt{p_{x}} |\psi_{x}\rangle |x\rangle \left(\sqrt{1 - \frac{x}{M_{\Omega}}} |0\rangle + \sqrt{\frac{x}{M_{\Omega}}} |1\rangle\right)$$
$$= \sqrt{1 - \frac{\mathbf{E}(\mathbf{X})}{\mathbf{M}_{\Omega}}} |\varphi_{0}\rangle |0\rangle + \sqrt{\frac{\mathbf{E}(\mathbf{X})}{\mathbf{M}_{\Omega}}} |\varphi_{1}\rangle |1\rangle$$

where $M_{\Omega} = \max\{x \in \Omega\}$ and $|\varphi_0\rangle, |\varphi_1\rangle$ are some unit vectors.

Result:
$$O\left(\frac{\sqrt{M_{\Omega}}}{\epsilon\sqrt{E(X)}}\right)$$
 quantum samples to obtain $|\widetilde{\mu} - E(X)| \le \epsilon E(X)$

...not efficient if M_{Ω} is large (worst than the classical algorithm sometimes)

11

	Number of samples	Conditions
Classical samples (Chebyshev's inequality)	$\frac{\Delta^2}{\epsilon^2}$	$\Delta^2 \ge \frac{\mathbf{E}(X^2)}{\mathbf{E}(X)^2}$

	Number of samples	Conditions
Classical samples (Chebyshev's inequality)	$\frac{\Delta^2}{\epsilon^2}$	$\Delta^2 \ge \frac{\mathbf{E}(X^2)}{\mathbf{E}(X)^2}$
[Brassard et al.'02] [Brassard et al.'11] [Wocjan et al.'09]	$\frac{\sqrt{\mathbf{M}_{\mathbf{\Omega}}}}{\epsilon\sqrt{\mathbf{E}(X)}}$	Sample space Ω ⊂ [0, M _Ω]

	Number of samples	Conditions
Classical samples (Chebyshev's inequality)	$\frac{\Delta^2}{\epsilon^2}$	$\Delta^2 \ge \frac{\mathbf{E}(X^2)}{\mathbf{E}(X)^2}$
[Brassard et al.'02] [Brassard et al.'11] [Wocjan et al.'09]	$\frac{\sqrt{\mathbf{M}_{\boldsymbol{\Omega}}}}{\epsilon\sqrt{\mathbf{E}(X)}}$	Sample space Ω ⊂ [0, M _Ω]
[Montanaro'15]	$\frac{\Delta^2}{\epsilon}$	$\Delta^2 \ge \frac{\mathbf{E}(X^2)}{\mathbf{E}(X)^2}$

	Number of samples	Conditions
Classical samples (Chebyshev's inequality)	$\frac{\Delta^2}{\epsilon^2}$	$\Delta^2 \ge \frac{\mathbf{E}(X^2)}{\mathbf{E}(X)^2}$
[Brassard et al.'02] [Brassard et al.'11] [Wocjan et al.'09]	$\frac{\sqrt{\mathbf{M}_{\mathbf{\Omega}}}}{\epsilon\sqrt{\mathbf{E}(X)}}$	Sample space Ω ⊂ [0, M _Ω]
[Montanaro'15]	$\frac{\Delta^2}{\epsilon}$	$\Delta^2 \ge \frac{\mathbf{E}(X^2)}{\mathbf{E}(X)^2}$
Our result	$\frac{\Delta}{\epsilon} \cdot \log^3\left(\frac{M_{\Omega}}{\mathbf{E}(X)}\right)$	$\Delta^2 \ge \frac{\mathbf{E}(X^2)}{\mathbf{E}(X)^2} \qquad \begin{array}{l} \text{Sample space} \\ \mathbf{\Omega} \in \llbracket 0, \mathbb{M}_{\Omega} \end{bmatrix}$

Our Approach

Input: Random variable X on sample space $\Omega \subset [0, M_{\Omega}]$

Ampl-Est:
$$O\left(\frac{\sqrt{\mathbf{M}_{\Omega}}}{\epsilon\sqrt{\mathbf{E}(X)}}\right)$$
 quantum samples to obtain $|\widetilde{\mu} - \mathbf{E}(X)| \le \epsilon \cdot \mathbf{E}(X)$

Input: Random variable X on sample space $\Omega \subset [0, M_{\Omega}]$

Ampl-Est: $O\left(\frac{\sqrt{M_{\Omega}}}{\epsilon\sqrt{E(X)}}\right)$ quantum samples to obtain $|\widetilde{\mu} - E(X)| \le \epsilon \cdot E(X)$

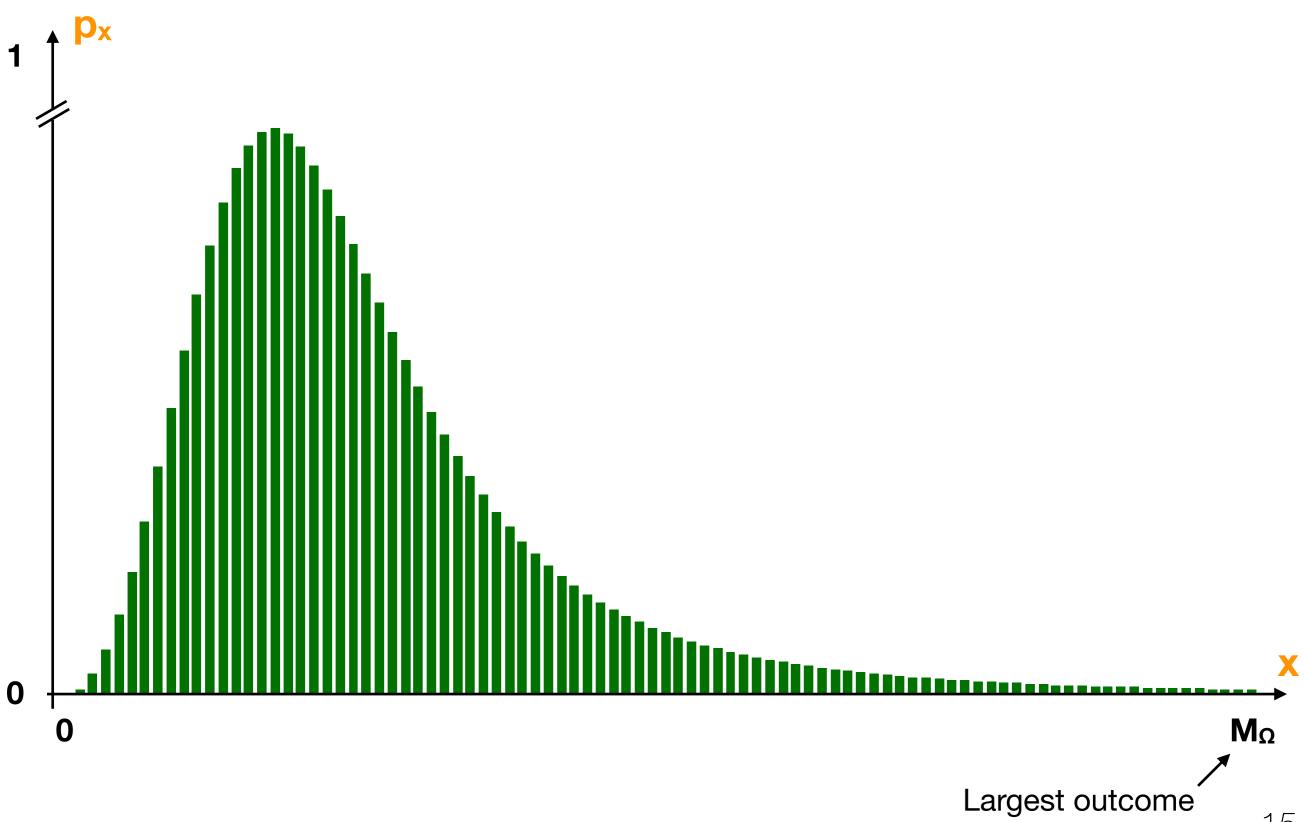
If
$$M_{\Omega} \leq \frac{\mathbf{E}(X^2)}{\mathbf{E}(X)}$$
: the number of samples is $O\left(\frac{\sqrt{\mathbf{E}(X^2)}}{\epsilon \mathbf{E}(X)}\right)$

Input: Random variable X on sample space $\Omega \subset [0, M_{\Omega}]$

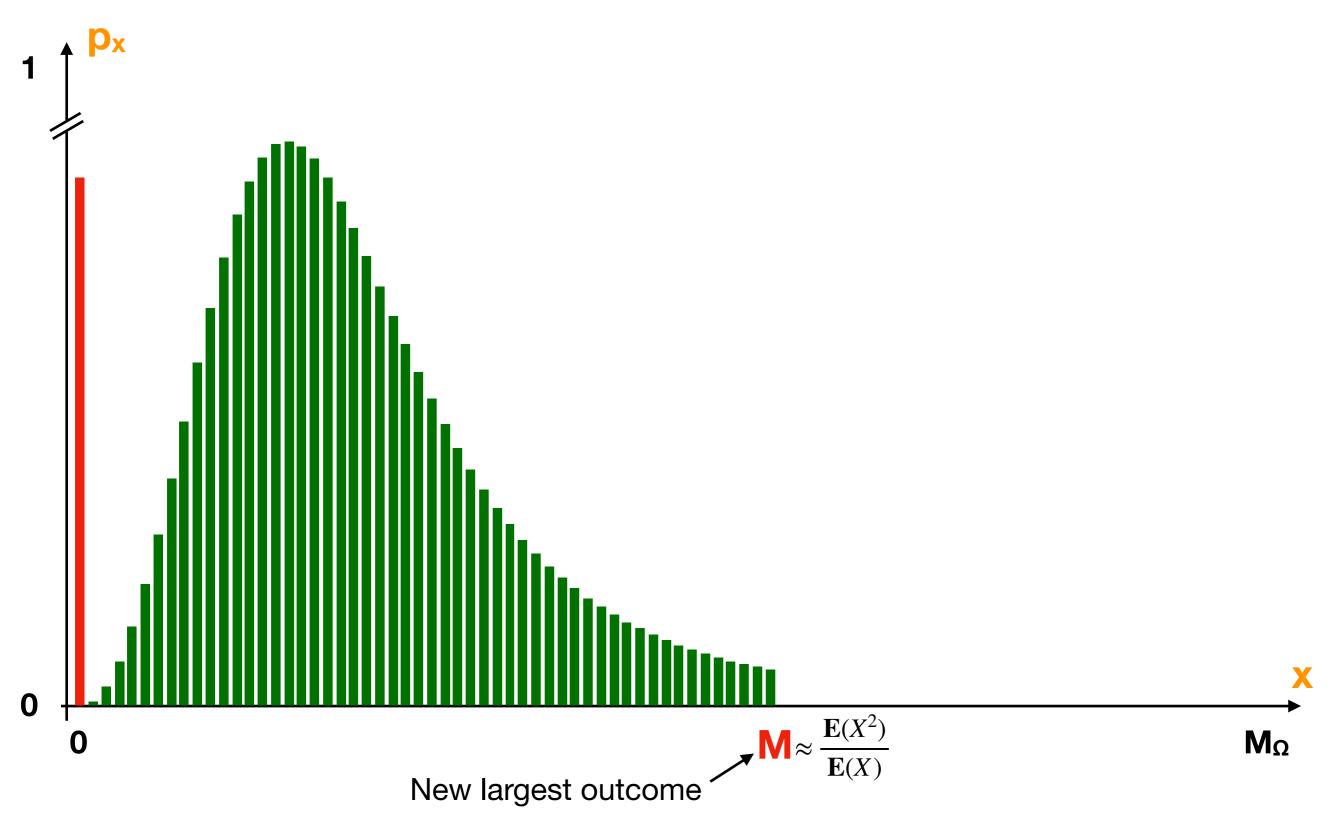
Ampl-Est: $O\left(\frac{\sqrt{M_{\Omega}}}{\epsilon\sqrt{E(X)}}\right)$ quantum samples to obtain $|\widetilde{\mu} - E(X)| \le \epsilon \cdot E(X)$

If
$$M_{\Omega} \leq \frac{\mathbf{E}(X^2)}{\mathbf{E}(X)}$$
: the number of samples is $O\left(\frac{\sqrt{\mathbf{E}(X^2)}}{\epsilon \mathbf{E}(X)}\right)$
If $M_{\Omega} \gg \frac{\mathbf{E}(X^2)}{\mathbf{E}(X)}$

Random variable X



Random variable X_M



Ampl-Est: $O\left(\frac{\sqrt{M_{\Omega}}}{\epsilon\sqrt{E(X)}}\right)$ quantum samples to obtain $|\widetilde{\mu} - E(X)| \le \epsilon \cdot E(X)$

If
$$M_{\Omega} \leq \frac{\mathbf{E}(X^2)}{\mathbf{E}(X)}$$
: the number of samples is $O\left(\frac{\sqrt{\mathbf{E}(X^2)}}{\epsilon \mathbf{E}(X)}\right)$

If $M_{\Omega} \gg \frac{\mathbf{E}(X^2)}{\mathbf{E}(X)}$: map the outcomes larger than $\frac{\mathbf{E}(X^2)}{\mathbf{E}(X)}$ to 0 ?

Ampl-Est: $O\left(\frac{\sqrt{M_{\Omega}}}{\epsilon\sqrt{E(X)}}\right)$ quantum samples to obtain $|\widetilde{\mu} - E(X)| \le \epsilon \cdot E(X)$ If $M_{\Omega} \leq \frac{\mathbf{E}(X^2)}{\mathbf{E}(X)}$: the number of samples is $O\left[\frac{\sqrt{\mathbf{E}(X^2)}}{\epsilon \mathbf{E}(X)}\right]$ If $M_{\Omega} \gg \frac{\mathbf{E}(X^2)}{\mathbf{E}(X)}$: map the outcomes larger than $\frac{\mathbf{E}(X^2)}{\mathbf{E}(X)}$ to 0 **Lemma:** If $M \ge \frac{\mathbf{E}(X^2)}{\epsilon \mathbf{E}(X)}$ then $(1 - \epsilon)\mathbf{E}(X) \le \mathbf{E}(X_M) \le \mathbf{E}(X)$.

Ampl-Est: $O\left(\frac{\sqrt{M_{\Omega}}}{\epsilon\sqrt{E(X)}}\right)$ quantum samples to obtain $|\widetilde{\mu} - E(X)| \le \epsilon \cdot E(X)$ If $M_{\Omega} \leq \frac{\mathbf{E}(X^2)}{\mathbf{E}(X)}$: the number of samples is $O\left(\frac{\sqrt{\mathbf{E}(X^2)}}{\epsilon \mathbf{E}(X)}\right)$ If $M_{\Omega} \gg \frac{\mathbf{E}(X^2)}{\mathbf{E}(X)}$: map the outcomes larger than $\frac{\mathbf{E}(X^2)}{\mathbf{E}(X)}$ to 0 **Lemma:** If $M \ge \frac{\mathbf{E}(X^2)}{\epsilon \mathbf{E}(X)}$ then $(1 - \epsilon)\mathbf{E}(X) \le \mathbf{E}(X_M) \le \mathbf{E}(X)$.

Problem: $\frac{\mathbf{E}(X^2)}{\mathbf{E}(X)}$ is unknown...

Ampl-Est: $O\left(\frac{\sqrt{M_{\Omega}}}{\epsilon\sqrt{E(X)}}\right)$ quantum samples to obtain $|\widetilde{\mu} - E(X)| \le \epsilon \cdot E(X)$ If $M_{\Omega} \leq \frac{\mathbf{E}(X^2)}{\mathbf{E}(X)}$: the number of samples is $O\left[\frac{\sqrt{\mathbf{E}(X^2)}}{\epsilon \mathbf{E}(X)}\right]$ If $M_{\Omega} \gg \frac{\mathbf{E}(X^2)}{\mathbf{E}(X)}$: map the outcomes larger than $\frac{\mathbf{E}(X^2)}{\mathbf{E}(X)}$ to 0 **Lemma:** If $M \ge \frac{\mathbf{E}(X^2)}{\epsilon \mathbf{E}(X)}$ then $(1 - \epsilon)\mathbf{E}(X) \le \mathbf{E}(X_M) \le \mathbf{E}(X)$.

Problem: $\frac{\mathbf{E}(X^2)}{\mathbf{E}(X)}$ is unknown... but we have $\Delta^2 \ge \frac{\mathbf{E}(X^2)}{\mathbf{E}(X)^2}$

 $\mathbf{E}(X)$

Ampl-Est:
$$O\left(\frac{\sqrt{M_{\Omega}}}{e\sqrt{E(X)}}\right)$$
 quantum samples to obtain $|\tilde{\mu} - E(X)| \le \epsilon \cdot E(X)$
If $M_{\Omega} \le \frac{E(X^2)}{E(X)}$: the number of samples is $O\left(\frac{\sqrt{E(X^2)}}{\epsilon E(X)}\right)$
If $M_{\Omega} \gg \frac{E(X^2)}{E(X)}$: map the outcomes larger than $\frac{E(X^2)}{E(X)}$ to 0
Lemma: If $M \ge \frac{E(X^2)}{\epsilon E(X)}$ then $(1 - \epsilon)E(X) \le E(X_M) \le E(X)$.
Problem: $\frac{E(X^2)}{E(X)}$ is unknown... but we have $\Delta^2 \ge \frac{E(X^2)}{E(X)^2} \longrightarrow M \approx E(X) \cdot \Delta^2$?

 $\mathbf{E}(X)^2$

Objective: given
$$\Delta^2 \ge \frac{\mathbf{E}(X^2)}{\mathbf{E}(X)^2}$$
 how to find a threshold $M \approx \mathbf{E}(X) \cdot \Delta^2$?

Objective: given
$$\Delta^2 \ge \frac{\mathbf{E}(X^2)}{\mathbf{E}(X)^2}$$
 how to find a threshold $M \approx \mathbf{E}(X) \cdot \Delta^2$?

Solution: use the Amplitude Estimation algorithm to do a logarithmic search on M

Objective: given $\Delta^2 \ge \frac{\mathbf{E}(X^2)}{\mathbf{E}(X)^2}$ how to find a threshold $M \approx \mathbf{E}(X) \cdot \Delta^2$?

Solution: use the Amplitude Estimation algorithm to do a logarithmic search on M

Threshold	Input r.v.	Number of samples	Estimation	
$M_0 = M_\Omega \Delta^2$	X_{M_0}	Δ	$\widetilde{\mu}_0$	
$M_1 = (M_\Omega/2)\Delta^2$	X_{M_1}	Δ	$\widetilde{\mu}_1$	
$M_2 = (M_{\Omega}/4)\Delta^2$	X_{M_2}	Δ	$\widetilde{\mu}_2$	
Stopping rule: $\tilde{\mu}_i \neq 0$ Output: M_i				

Objective: given $\Delta^2 \ge \frac{\mathbf{E}(X^2)}{\mathbf{E}(X)^2}$ how to find a threshold $M \approx \mathbf{E}(X) \cdot \Delta^2$?

Solution: use the Amplitude Estimation algorithm to do a logarithmic search on M

Threshold	Input r.v.	Number of samples	Estimation	
$M_0 = M_\Omega \Delta^2$	X_{M_0}	Δ	$\widetilde{\mu_0}$	
$M_1 = (M_\Omega/2)\Delta^2$	X_{M_1}	Δ	$\widetilde{\mu}_1$	
$M_2 = (M_{\Omega}/4)\Delta^2$	X_{M_2}	Δ	$\widetilde{\mu}_2$	
Stopping rule: $\tilde{\mu}_i \neq 0$ Output: M_i				
Theorem: the first non-zero $\tilde{\mu}_i$ is obtained w.h.p. when: $2 \cdot \mathbf{E}(X) \Delta^2 \leq M_i \leq 10 \cdot \mathbf{E}(X) \Delta^2$				

Theorem: the first non-zero $\tilde{\mu}_i$ is obtained w.h.p. when: $2 \cdot \mathbf{E}(X) \Delta^2 \leq M_i \leq 10 \cdot \mathbf{E}(X) \Delta^2$ **Theorem:** the first non-zero $\tilde{\mu}_i$ is obtained w.h.p. when: $2 \cdot \mathbf{E}(X) \Delta^2 \leq M_i \leq 10 \cdot \mathbf{E}(X) \Delta^2$

Ingredient 1: The output of **Amplitude-Estimation** is 0 w.h.p. if and only if the **estimated amplitude** is below the **inverse number** of samples.

$$\sqrt{\frac{\mathbf{E}(X_M)}{M}}$$

 $1/\Delta$

Theorem: the first non-zero $\tilde{\mu}_i$ is obtained w.h.p. when: $2 \cdot \mathbf{E}(X) \Delta^2 \leq M_i \leq 10 \cdot \mathbf{E}(X) \Delta^2$

Ingredient 1: The output of **Amplitude-Estimation** is 0 w.h.p. if and only if the **estimated amplitude** is below the **inverse number** of samples.

$$\sqrt{\frac{\mathbf{E}(X_M)}{M}}$$

 $1/\Delta$

Ingredient 2: If $M \ge 10 \cdot \mathbf{E}(X)\Delta^2$ then $\frac{\mathbf{E}(X_M)}{M} \le \frac{\mathbf{E}(X)}{M} \le \frac{1}{10 \cdot \Delta^2}$

Theorem: the first non-zero $\tilde{\mu}_i$ is obtained w.h.p. when: $2 \cdot \mathbf{E}(X)\Delta^2 \leq M_i \leq 10 \cdot \mathbf{E}(X)\Delta^2$

Ingredient 1: The output of **Amplitude-Estimation** is 0 w.h.p. if and only if the [Brassard et al.'02] **estimated amplitude** is below the **inverse number** of samples.

$$\sqrt{\frac{\mathbf{E}(X_M)}{M}}$$

 $1/\Delta$

Ingredient 2: If $M \ge 10 \cdot \mathbf{E}(X)\Delta^2$ then $\frac{\mathbf{E}(X_M)}{M} \le \frac{\mathbf{E}(X)}{M}$

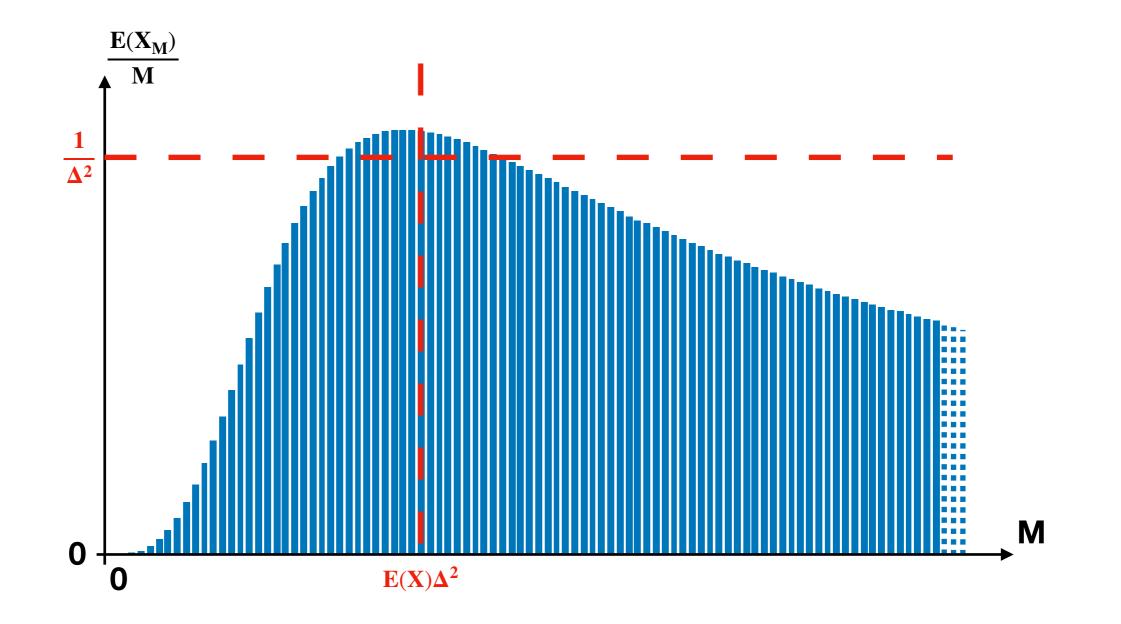
$$\frac{L(M_M)}{M} \le \frac{L(M)}{M} \le \frac{1}{10 \cdot \Delta^2}$$

1

Ingredient 3: If
$$M \approx \mathbf{E}(X) \cdot \Delta^2$$
 then $\frac{\mathbf{E}(X_M)}{M} \approx \frac{\mathbf{E}(X)}{M} \approx \frac{1}{\Delta^2}$

Analysis

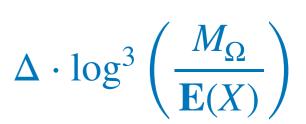
Theorem: the first non-zero $\tilde{\mu}_i$ is obtained w.h.p. when: $2 \cdot \mathbf{E}(X) \Delta^2 \leq M_i \leq 10 \cdot \mathbf{E}(X) \Delta^2$



Final algorithm:

Step 1: Logarithmic search on M until **Amplitude-Estimation**(X_M, Δ) $\neq 0$

 $\longrightarrow 2 \cdot \mathbf{E}(X)\Delta^2 \le M \le 10^4 \cdot \mathbf{E}(X)\Delta^2$ with high probability



Final algorithm:

Step 1: Logarithmic search on M until **Amplitude-Estimation**(X_M, Δ) $\neq 0$

→
$$2 \cdot \mathbf{E}(X)\Delta^2 \le M \le 10^4 \cdot \mathbf{E}(X)\Delta^2$$
 with high probability
 $\Delta \cdot \log^3\left(\frac{M_\Omega}{\mathbf{E}(X)}\right)$

Step 2: Set threshold $N = M/\epsilon$ and output $\tilde{\mu} = N \cdot \text{Amplitude-Estimation}(X_N, \Delta/\epsilon^{3/2})$ $\longrightarrow |\tilde{\mu} - \mathbf{E}(X)| \le \epsilon \mathbf{E}(X)$ with high probability $\Lambda/\epsilon^{3/2}$

Final algorithm:

Step 1: Logarithmic search on M until **Amplitude-Estimation**(X_M, Δ) $\neq 0$

→
$$2 \cdot \mathbf{E}(X)\Delta^2 \le M \le 10^4 \cdot \mathbf{E}(X)\Delta^2$$
 with high probability
 $\Delta \cdot \log^3\left(\frac{M_\Omega}{\mathbf{E}(X)}\right)$

Step 2: Set threshold $N = M/\epsilon$ and output $\tilde{\mu} = N \cdot \text{Amplitude-Estimation}(X_N, \Delta/\epsilon^{3/2})$ $\longrightarrow |\tilde{\mu} - \mathbf{E}(X)| \le \epsilon \mathbf{E}(X)$ with high probability $\Delta/\epsilon^{3/2}$

Step 2bis: Slightly refined algorithm, adapted from [Heinrich'01, Montanaro'15]

 Δ/ϵ

Optimality

For any Δ , ε there exists two samplers $\begin{cases} S_X | 0 \rangle = \sqrt{1 - p} \rangle | 0 \rangle + \sqrt{p} | 1 \rangle \\ S_Y | 0 \rangle = \sqrt{1 - q} \rangle | 0 \rangle + \sqrt{q} | 1 \rangle \end{cases}$

with
$$\mathbf{E}(Y) \ge (1+2\epsilon) \cdot \mathbf{E}(X)$$
 and $\frac{\mathbf{E}(X^2)}{\mathbf{E}(X)^2}, \frac{\mathbf{E}(Y^2)}{\mathbf{E}(Y)^2} \in [\Delta^2, 2\Delta^2]$

such that distinguishing between X and Y requires:

$$\Omega\left(\frac{\Delta-1}{\epsilon}\right)$$

Quantum samples from S_X / S_Y

For any Δ , ε there exists two samplers $\begin{cases} S_X | 0 \rangle = \sqrt{1 - p} \rangle | 0 \rangle + \sqrt{p} | 1 \rangle \\ S_Y | 0 \rangle = \sqrt{1 - q} \rangle | 0 \rangle + \sqrt{q} | 1 \rangle \end{cases}$

with
$$\mathbf{E}(Y) \ge (1+2\epsilon) \cdot \mathbf{E}(X)$$
 and $\frac{\mathbf{E}(X^2)}{\mathbf{E}(X)^2}, \frac{\mathbf{E}(Y^2)}{\mathbf{E}(Y)^2} \in [\Delta^2, 2\Delta^2]$

such that distinguishing between X and Y requires:

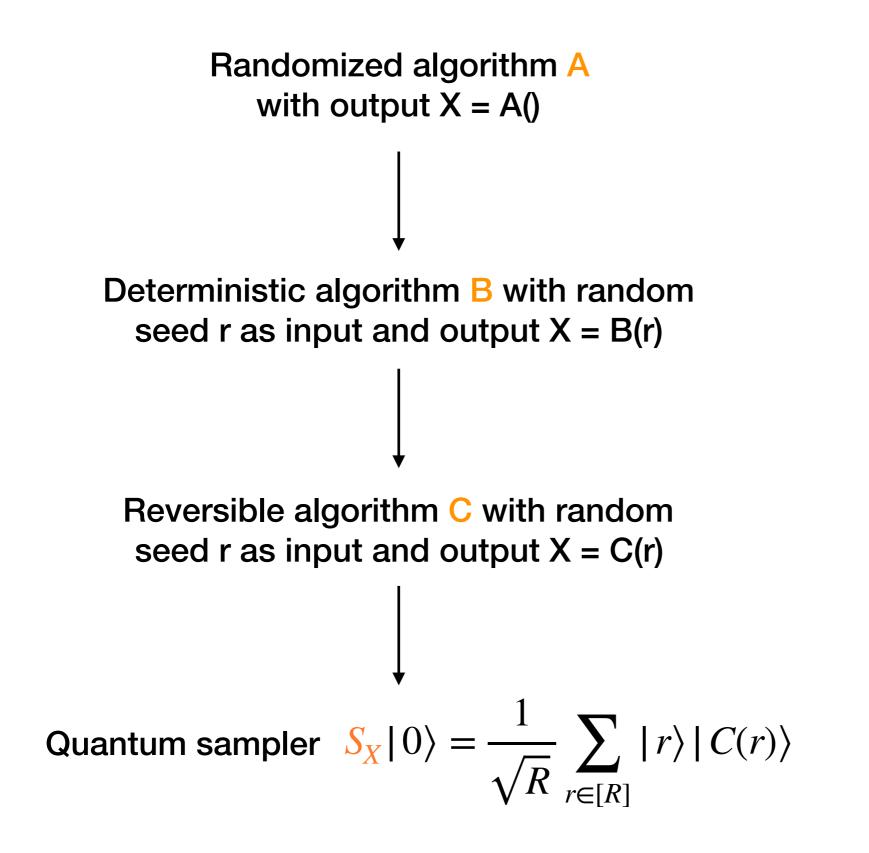
$$\Omega\left(\frac{\Delta - 1}{\epsilon}\right) \qquad or \qquad \Omega\left(\frac{\Delta^2 - 1}{\epsilon^2}\right)$$
Quantum samples
from S_X / S_Y Copies of the states
 $S_X | 0 \rangle / S_Y | 0 \rangle$

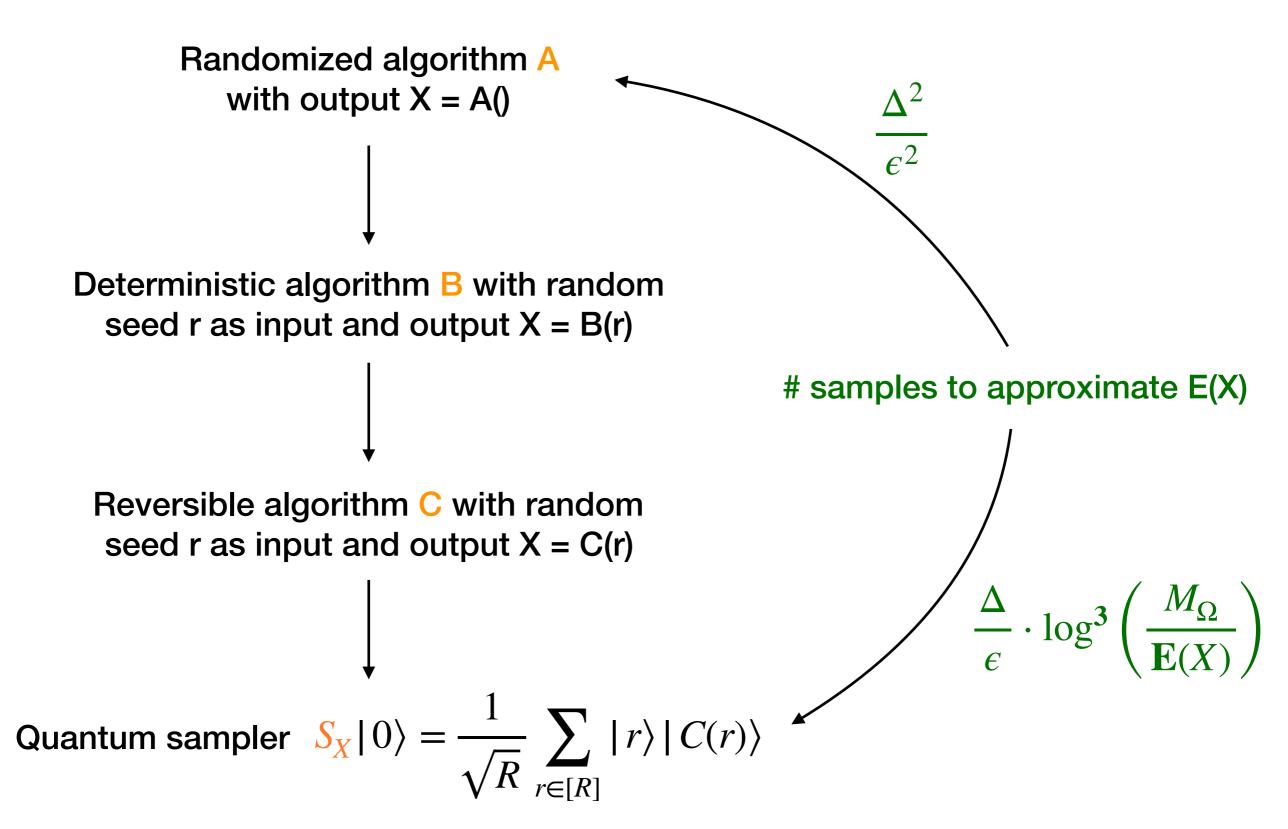
Applications

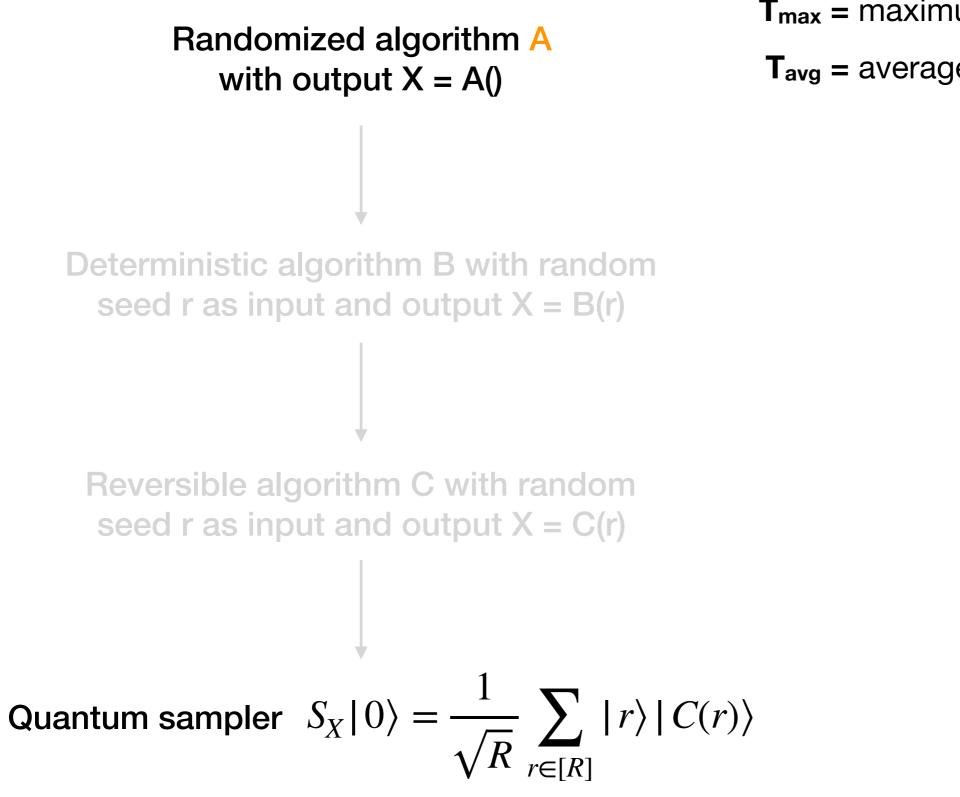
Randomized algorithm A with output X = A()

```
Randomized algorithm A
with output X = A()
Deterministic algorithm B with random
seed r as input and output X = B(r)
```

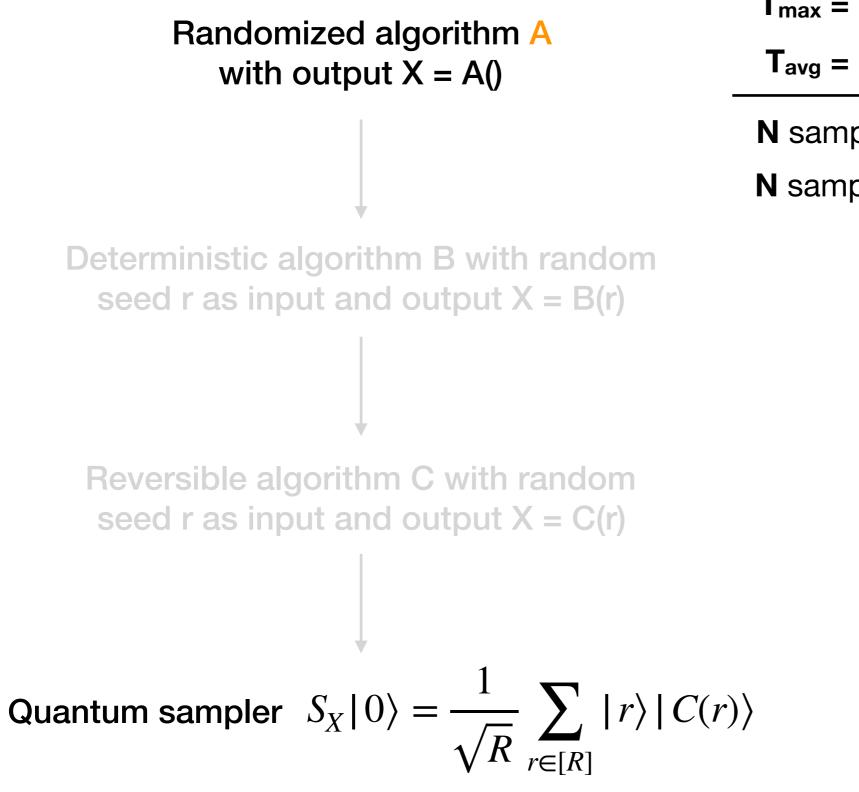
```
Randomized algorithm A
         with output X = A()
Deterministic algorithm B with random
 seed r as input and output X = B(r)
 Reversible algorithm C with random
 seed r as input and output X = C(r)
```







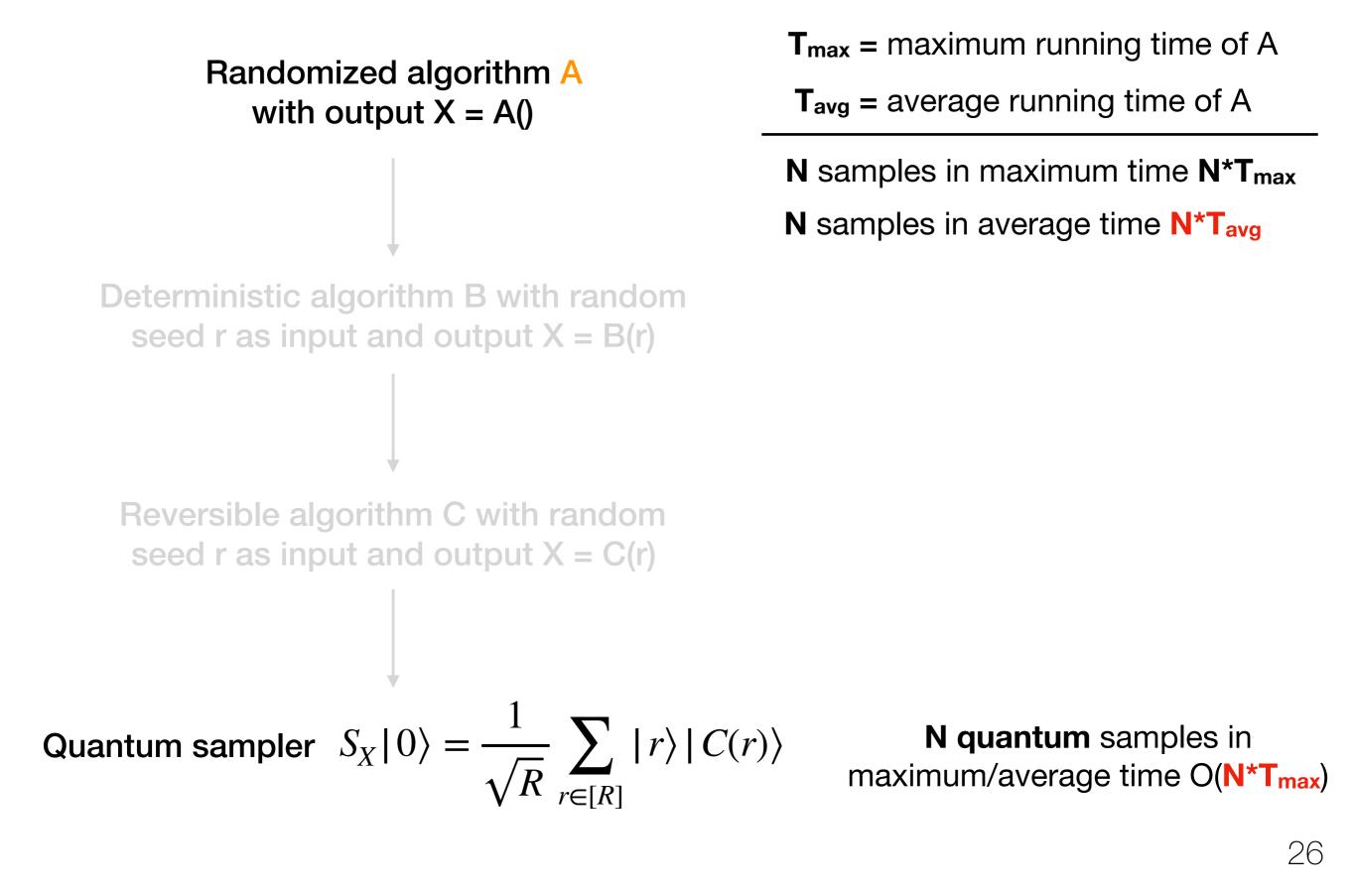
 T_{max} = maximum running time of A T_{avg} = average running time of A



 T_{max} = maximum running time of A

 T_{avg} = average running time of A

N samples in maximum time N*T_{max} N samples in average time N*T_{avg}



New tool: Variable-Time Amplitude Estimation

(≠ Variable-Time Amplitude Amplification)

New tool: Variable-Time Amplitude Estimation

(≠ Variable-Time Amplitude Amplification)

Randomized algorithm A with output X in time T_{max}, T_{avg}

Estimate of E(X) in (average) time:

$$\frac{\Delta^2}{\epsilon^2} \cdot T_{avg}$$

New tool: Variable-Time Amplitude Estimation

(≠ Variable-Time Amplitude Amplification)

Randomized algorithm A
with output X in time T_{max}, T_{avg} Quantum sampler S_X \downarrow \downarrow Estimate of E(X) in (average) time:Estimate of E(X) in time: $\frac{\Delta^2}{e^2} \cdot T_{avg}$ $\frac{\Delta}{e^2} \cdot T_{avg,2} \cdot \text{polylog}\left(\frac{M_\Omega}{E(X)}, T_{max}\right)$ where $T_{avg,2} = L_2$ -average running time of A

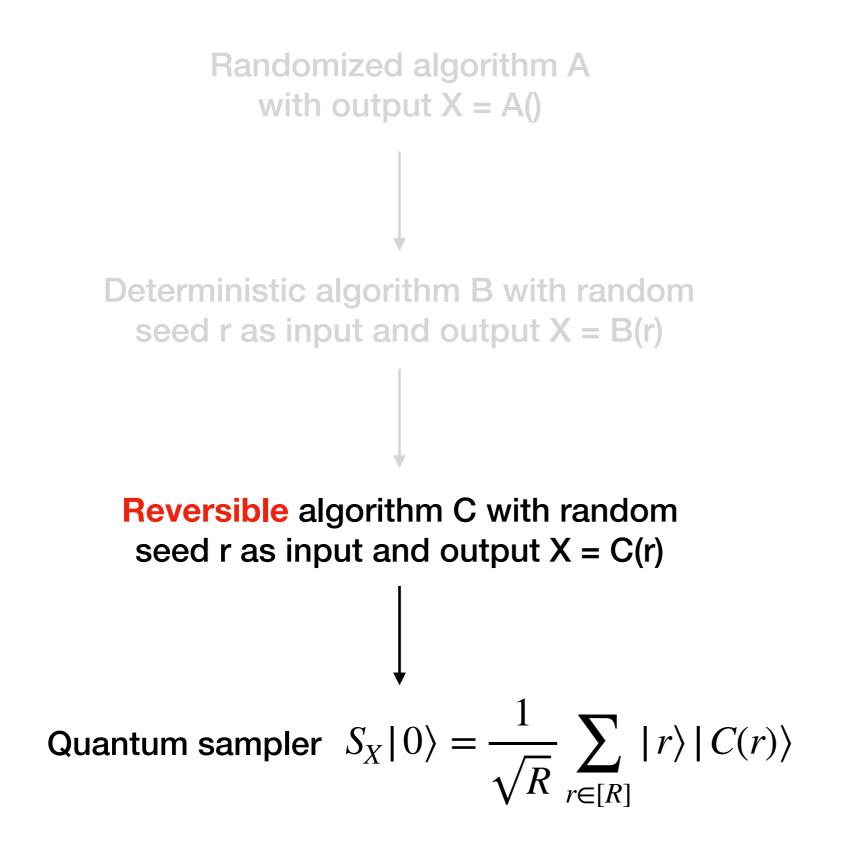
Input: graph G=(V,E) with **n** vertices, **m** edges, **t** triangles

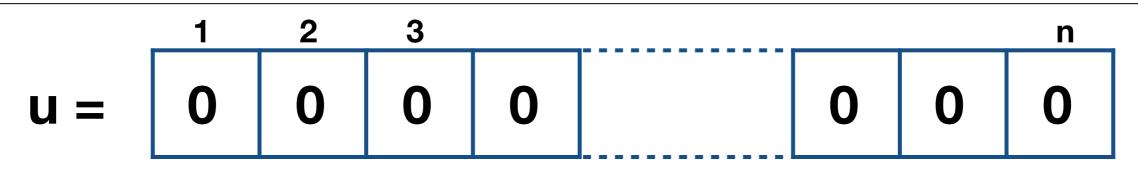
Query access: unitaries
$$O_{deg} |v\rangle |0\rangle = |v\rangle |deg(v)\rangle$$
 (degree query)
 $O_{pair} |v\rangle |w\rangle |0\rangle = |v\rangle |w\rangle |(v, w) \in E$? (pair query)
 $O_{ngh} |v\rangle |i\rangle |0\rangle = |v\rangle |i\rangle |v_i\rangle$ (neighbor query)
ith neighbor of v

Input: graph G=(V,E) with **n** vertices, **m** edges, **t** triangles

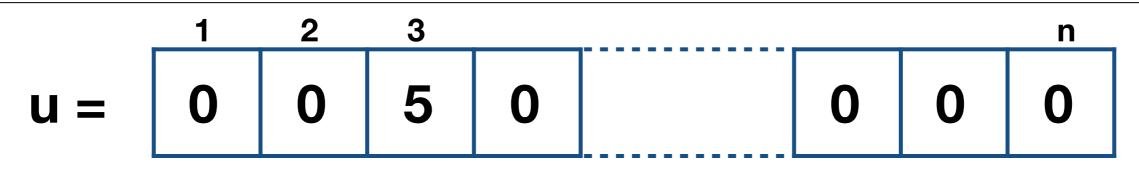
Query access: unitaries
$$O_{deg} |v\rangle |0\rangle = |v\rangle |deg(v)\rangle$$
 (degree query)
 $O_{pair} |v\rangle |w\rangle |0\rangle = |v\rangle |w\rangle |(v, w) \in E$? (pair query)
 $O_{ngh} |v\rangle |i\rangle |0\rangle = |v\rangle |i\rangle |v_i\rangle$ (neighbor query)
ith neighbor of v

Result: $\widetilde{\Theta}\left(\frac{\sqrt{n}}{t^{1/6}} + \frac{m^{3/4}}{\sqrt{t}}\right)$ degree/pair/neighbor quantum queries to approximate t (vs. $\widetilde{\Theta}\left(\frac{n}{t^{1/3}} + \frac{m^{3/2}}{t}\right)$ classical degree/pair/neighbor queries) [Eden, Levi, Ron'15] [Eden, Levi, Ron, Seshadhri'17]

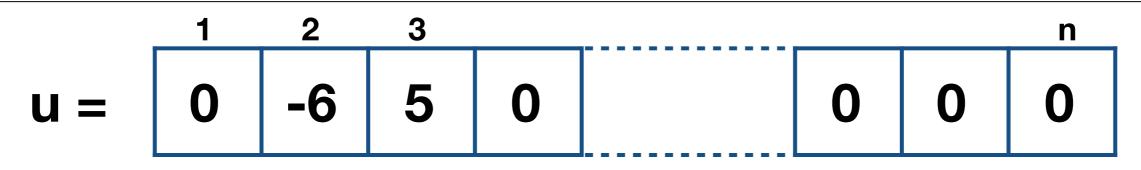




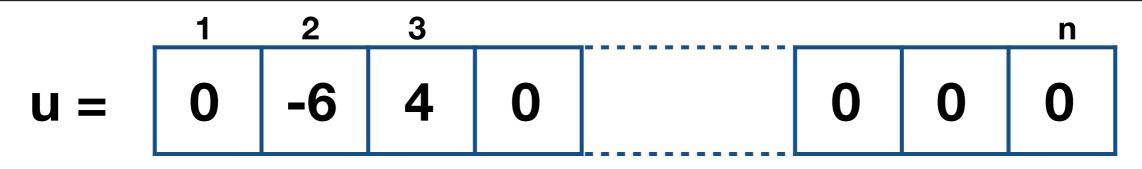
Stream of **updates** to u:



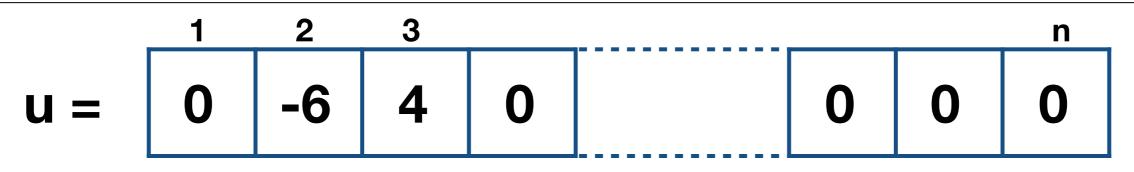
Stream of updates to u: (3,+5)



Stream of **updates** to u: (3,+5); (2,-6)



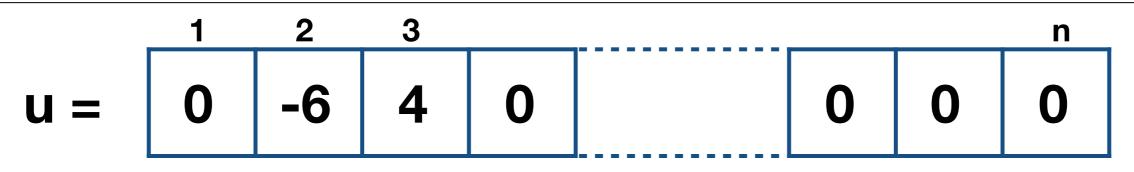
Stream of **updates** to u: (3,+5); (2,-6); (3,-1)



Stream of updates to u: (3,+5); (2,-6); (3,-1)

Goal: approximate some function f(u) of the **final** vector u

(example: f(u) = # of distinct elements in u)

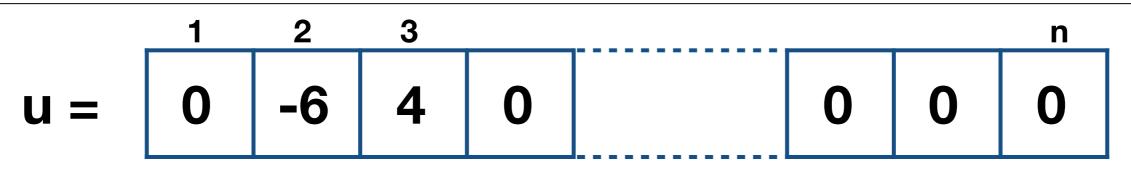


Stream of **updates** to u: (3,+5); (2,-6); (3,-1)

Goal: approximate some function f(u) of the **final** vector u

(example: f(u) = # of distinct elements in u)

Algorithm with smallest possible **memory M** « **n** using **P passes** over the same stream to approximate f(u)?



Stream of **updates** to u: (3,+5); (2,-6); (3,-1)

Goal: approximate some function f(u) of the **final** vector u

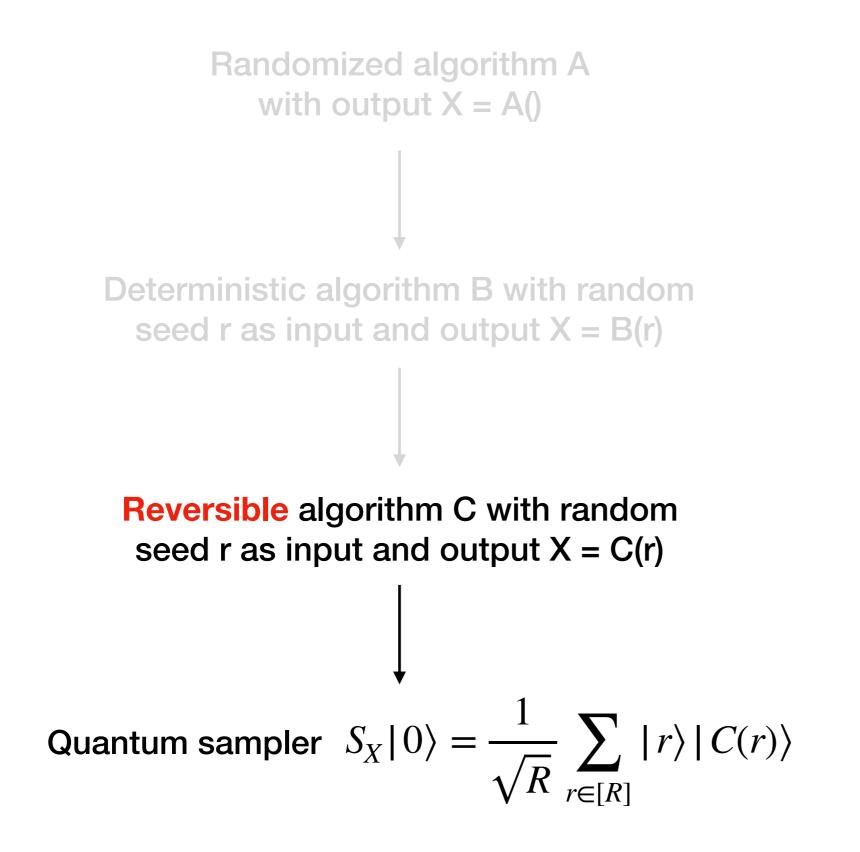
(example: f(u) = # of distinct elements in u)

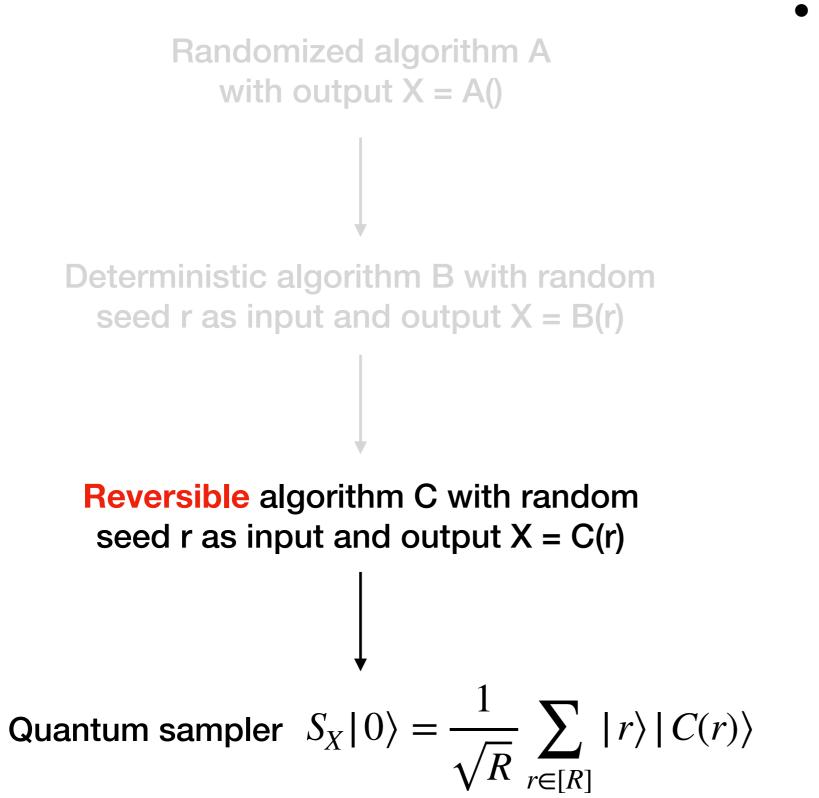
Algorithm with smallest possible **memory M** « **n** using **P passes** over the same stream to approximate f(u)?

Standard method (Alon, Matias, Szegedy'99):

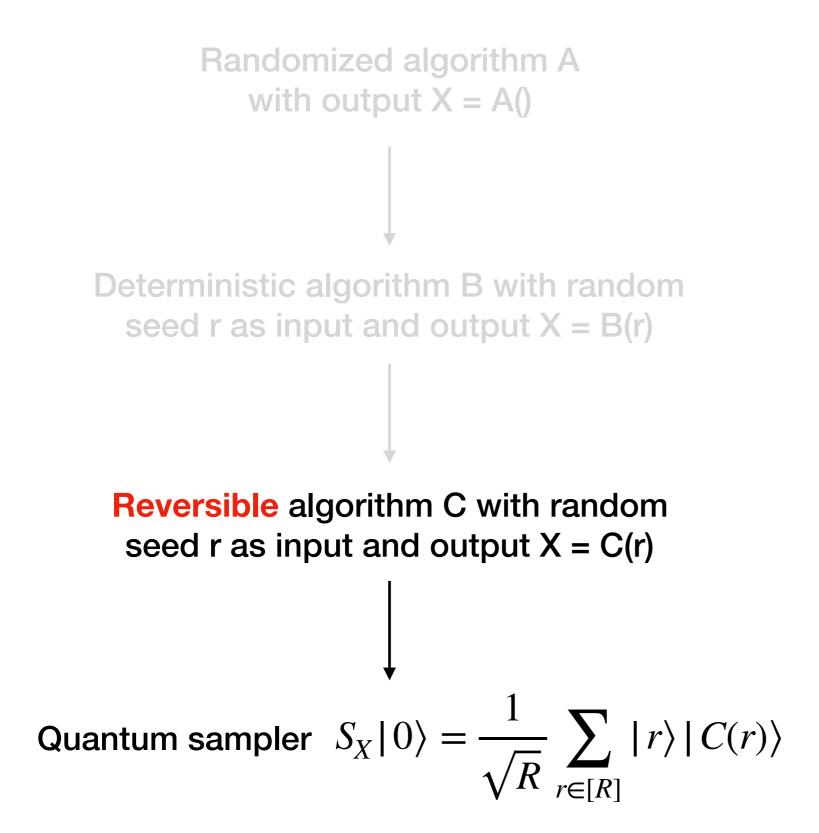
Design an algorithm A with memory M that produces in 1 pass a sample X = A(1 pass) such that E(X) = f(u) and $E(X^2)/E(X)^2 \le P$

the average of P samples over P passes is a good approximation of f(u)

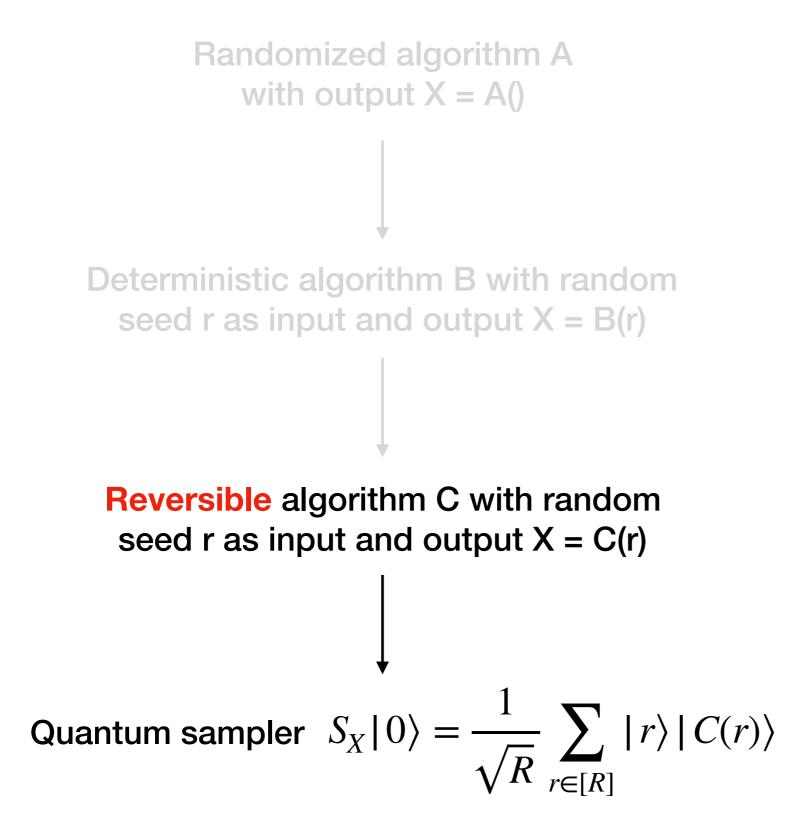




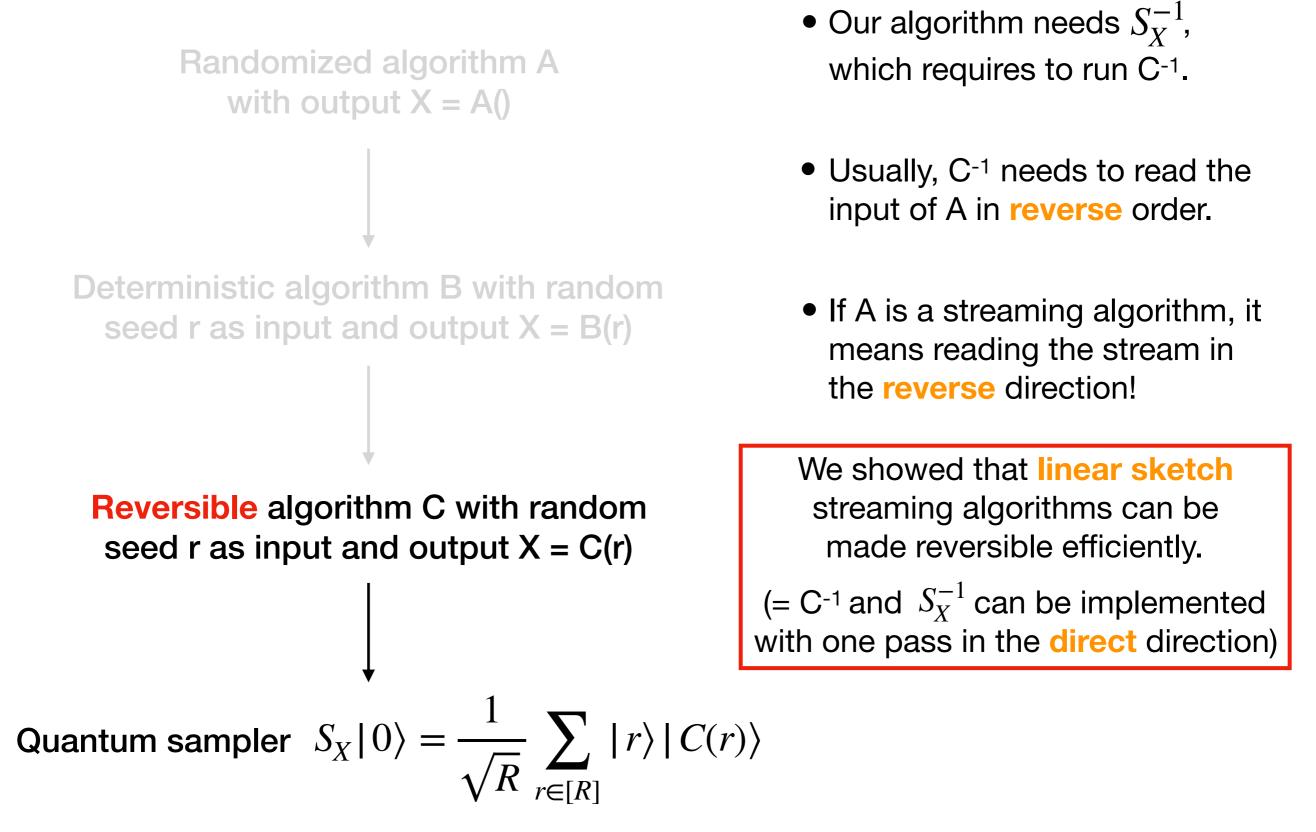
• Our algorithm needs S_X^{-1} , which requires to run C⁻¹.

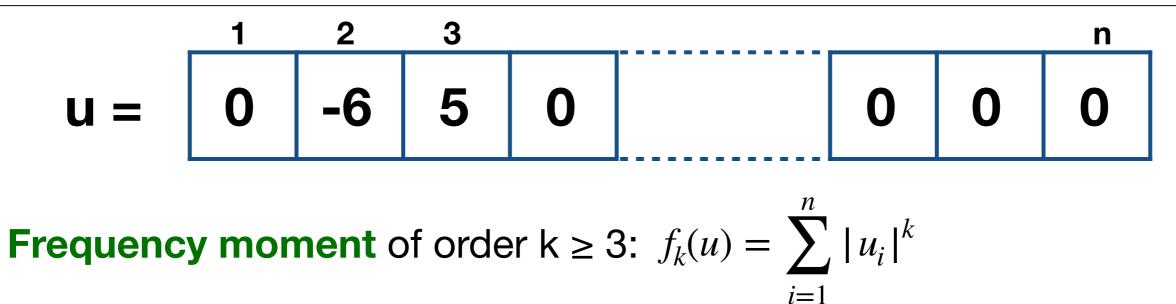


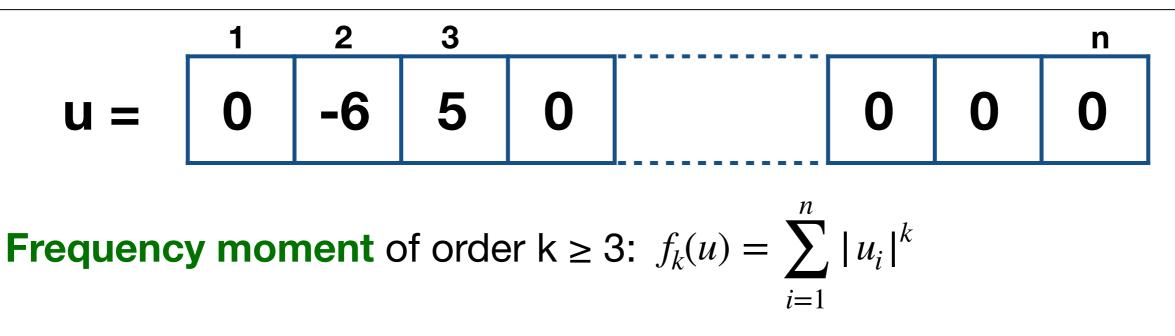
- Our algorithm needs S_X^{-1} , which requires to run C⁻¹.
- Usually, C⁻¹ needs to read the input of A in reverse order.



- Our algorithm needs S_X^{-1} , which requires to run C⁻¹.
- Usually, C⁻¹ needs to read the input of A in reverse order.
- If A is a streaming algorithm, it means reading the stream in the reverse direction!







Best P-pass algorithm with memory M approximating f_k?

$$u = \begin{bmatrix} 1 & 2 & 3 & & & n \\ 0 & -6 & 5 & 0 & & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Frequency moment of order $k \ge 3$: $f_k(u) = \sum_{i=1}^n |u_i|^k$

Best P-pass algorithm with memory M approximating f_k?

$$\begin{array}{l} \textbf{Classically:} \ \textbf{PM} = \Theta(n^{1-2/k}) \\ \textbf{1 pass + memory } \textbf{M} = \frac{n^{1-2/k}}{P} \\ \textbf{II} \\ \textbf{1 sample from a random variable X with} \\ \textbf{E}(\textbf{X}) \approx \textbf{f}_k(\textbf{u}) \ \text{and} \ \textbf{E}(\textbf{X}^2)/\textbf{E}(\textbf{X})^2 \leq P \end{array}$$

[Monemizadeh, Woodruff'10] [Andoni, Krauthgamer, Onak'11]

 $u = \begin{bmatrix} 1 & 2 & 3 \\ 0 & -6 & 5 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$

Frequency moment of order $k \ge 3$: $f_k(u) = \sum_{i=1}^n |u_i|^k$

Best P-pass algorithm with memory M approximating f_k ?

Classically: $PM = \Theta(n^{1-2/k})$ 1 pass + memory $M = \frac{n^{1-2/k}}{P}$ [] 1 sample from a random variable X with $E(X) \approx f_k(u)$ and $E(X^2)/E(X)^2 \leq P$

> [Monemizadeh, Woodruff'10] [Andoni, Krauthgamer, Onak'11]

Quantumly: $P^2M = O(n^{1-2/k})$ 1 pass + memory $M = \frac{n^{1-2/k}}{P^2}$ || 1 quantum sample S_x from a r.v. X with $E(X) \approx f_k(u)$ and $E(X^2)/E(X)^2 \le P^2$

Conclusion

The mean of a random variable X can be estimated with multiplicative error ε using $\widetilde{O}\left(\frac{\Delta}{\epsilon} \cdot \log^3\left(\frac{M_\Omega}{E(X)}\right)\right)$ quantum samples, given $\Delta^2 \ge \frac{E(X^2)}{E(X)^2}$.

Open questions:

- Can we improve the complexity to $O(\Delta/\epsilon)$?
- Sample space Ω with negative values?
- Lower bound for the Frequency Moments estimation problem?

(would follow from an $\Omega(t + nm^{-2}/t)$ lower bound for the 2-player **t**-round cc of L_∞ problem)

• Other applications ?

Extra slides

Result: There is an **optimal** algorithm that approximates the mean of any quantum sampler S_X over $\Omega \subset [0,B]$ with

$$\widetilde{\Theta}\left(\frac{\sqrt{B}}{\sqrt{\epsilon \mathbf{E}(X)}} + \frac{\mathbf{E}(X^2)}{\epsilon \mathbf{E}(X)}\right)$$

quantum samples, when there is no a priori information on X.

→ Quantization of [Dagum, Karp, Luby, Ross'00]

Lemma: If
$$b \ge \frac{\mathbf{E}(X^2)}{\epsilon \mathbf{E}(X)}$$
 then $(1 - \epsilon)\mathbf{E}(X) \le \mathbf{E}(X_{< b}) \le \mathbf{E}(X)$.

Lemma: If
$$b \ge 10^4 \cdot \mathbf{E}(X)\Delta^2$$
 then $\frac{\mathbf{E}(X_{< b})}{b} \le \frac{1}{10^4 \cdot \Delta^2}$

Lemma: If
$$b \ge \frac{\mathbf{E}(X^2)}{\epsilon \mathbf{E}(X)}$$
 then $(1 - \epsilon)\mathbf{E}(X) \le \mathbf{E}(X_{< b}) \le \mathbf{E}(X)$.

Proof: •
$$\mathbf{E}(X_{\geq b}) \leq \frac{\mathbf{E}(X^2)}{b} \leq \epsilon \mathbf{E}(X)$$

•
$$\mathbf{E}(X_{\leq b}) = \mathbf{E}(X) - \mathbf{E}(X_{\geq b}) \ge (1 - \epsilon)\mathbf{E}(X)$$

Lemma: If
$$b \ge 10^4 \cdot \mathbf{E}(X)\Delta^2$$
 then $\frac{\mathbf{E}(X_{< b})}{b} \le \frac{1}{10^4 \cdot \Delta^2}$
Proof: $\frac{\mathbf{E}(X_{< b})}{b} \le \frac{\mathbf{E}(X)}{10^4 \mathbf{E}(X)\Delta^2} \le \frac{1}{10^4 \cdot \Delta^2}$