
Quantum Information and Computation, Vol. 0, No. 0 (2003) 000–000
c© Rinton Press

QUANTUM AND CLASSICAL ALGORITHMS FOR

APPROXIMATE SUBMODULAR FUNCTION MINIMIZATION

YASSINE HAMOUDIa, PATRICK REBENTROSTb, ANSIS ROSMANISc, and MIKLOS SANTHAd

Received (received date)
Revised (revised date)

Submodular functions are set functions mapping every subset of some ground set of size

n into the real numbers and satisfying the diminishing returns property. Submodular
minimization is an important field in discrete optimization theory due to its relevance for

various branches of mathematics, computer science and economics. The currently fastest

strongly polynomial algorithm for exact minimization [1] runs in time Õ(n3 · EO + n4)
where EO denotes the cost to evaluate the function on any set. For functions with range

[−1, 1], the best ε-additive approximation algorithm [2] runs in time Õ(n5/3/ε2 · EO).

In this paper we present a classical and a quantum algorithm for approximate sub-
modular minimization. Our classical result improves on the algorithm of [2] and runs in

time Õ(n3/2/ε2 ·EO). Our quantum algorithm is, up to our knowledge, the first attempt

to use quantum computing for submodular optimization. The algorithm runs in time
Õ(n5/4/ε5/2 · log(1/ε) ·EO). The main ingredient of the quantum result is a new method

for sampling with high probability T independent elements from any discrete probability
distribution of support size n in time O(

√
Tn). Previous quantum algorithms for this

problem were of complexity O(T
√
n).

Keywords: Submodular functions, approximate minimization, quantum algorithms, sub-

gradient descent

Communicated by: to be filled by the Editorial

1 Introduction

1.1 Submodular Minimization

A submodular function F is a function mapping every subset of some finite set V of size n

into the real numbers and satisfying the diminishing returns property: for every A ⊆ B ⊆ V
and for every i 6∈ B, the inequality F (A ∪ {i}) − F (A) ≥ F (B ∪ {i}) − F (B) holds. In

words, given two sets where one of them contains the other, adding a new item to the smaller

set increases the function value at least as much as adding that element to the bigger set.

Many classical functions in mathematics, computer science and economics are submodular,

the most prominent examples include entropy functions, cut capacity functions, matroid rank

functions and utility functions. Applications of submodular functions, or slight variants of

them, occur in areas as far reaching as machine learning [3, 4, 5], operations research [6, 7],

electrical networks [8], computer vision [9], pattern analysis [10] and speech analysis [11].

aUniversité de Paris, IRIF, CNRS, F-75013 Paris, France.
bCentre for Quantum Technologies, National University of Singapore, Singapore 117543.
cCentre for Quantum Technologies, National University of Singapore, Singapore 117543.
dUniversité de Paris, IRIF, CNRS, F-75013 Paris, France; and Centre for Quantum Technologies and MajuLab
UMI 3654, National University of Singapore, Singapore 117543.

1

2 Quantum and classical algorithms for approximate submodular function minimization

Submodular functions show analogies both with concavity and convexity. The diminishing

returns property makes them akin to concave functions, but they have algorithmic properties

similar to convex functions. In particular, while it follows from the NP-hardness of maximum

cut that submodular maximization is NP-hard, submodular minimization can be solved in

polynomial time, in fact even in strongly polynomial time. The link between submodular

functions and convex analysis is made explicit through the Lovász extension [12]. There are

various approaches to solve submodular minimization. The foundational work of Grötschel,

Lovász and Schrijver [13] gave the first polynomial time algorithm using the ellipsoid method.

The first pseudo-polynomial algorithm using a combinatorial method appeared in the influ-

ential paper of Cunningham [14]. In a later work Grötschel, Lovász and Schrijver [15] were

the first to design a strongly polynomial time algorithm, and the first strongly polynomial

time combinatorial algorithms were given by Schrijver [16] and by Iwata, Fleischer and Fu-

jishige [17]. Many of these works assume an access to an evaluation oracle for the function

F , where the time of a query is denoted by EO.

The current fastest submodular minimization algorithm is by Lee, Sidford and Wong [1].

Their weakly polynomial algorithm runs in time Õ(n2 logM · EO + n3 logO(1)M) and their

strongly polynomial algorithm runs in time Õ(n3 · EO + n4), where M is an upper bound on

the integer valued function and the notation Õ() hides polylogarithmic factors in n. Both

algorithms apply a new cutting plane method given in the same paper and use the Lovász

extension. Our work is most closely related to the recent paper of Chakrabarty et al. [2]

who gave an Õ(nM3 · EO) algorithm in the setting of [1], and an ε-additive approximation

algorithm that runs in time Õ(n5/3/ε2 ·EO) for real valued submodular functions with range

[−1, 1]. These algorithms were the first to run in subquadratic time in n, by going beyond

the direct use of the subgradients of the Lovász extension. Indeed, it is proven in [2] that any

algorithm accessing only subgradients of the Lovász extension has to make Ω(n2) queries. Such

algorithms include [1] and the Fujishige-Wolfe algorithm [18, 19]. Subquadratic approximate

algorithms (such as in [2] or our work) can potentially lead to insights to the exact case.

They are also more practical when the scaling in n is more important than whether or not

the algorithm is exact.

1.2 Quantum Algorithms for Optimization

A quite successful recent trend in quantum computing is to design fast quantum algorithms

for various optimization and machine learning problems. At a high level, these algorithms

are constructed in various subtly different input/output models [20, 21, 22, 23]. In the model

that we are working with in this paper, the input is given by an oracle that can be accessed

in quantum superposition, and the output is classical. The algorithms in this model are often

hybrid, that is partly of classical and partly of quantum nature, and designed in a modular

way so that the quantum part of the algorithm can be treated as a separate building block.

In fact, a standard feature of these algorithms is that they make a quantum improvement

on some part of the (best) available classical algorithm, but they keep its overall structure

intact. In most cases the quantum versus classical speed-up is at most polynomial, usually at

most quadratic. While we expect the quantum algorithm to deliver some speed-up at least in

one of the input parameters, sometimes it might be worse than the best classical algorithm

in some other parameters.

Y. Hamoudi, P. Rebentrost, A. Rosmanis, and M. Santha 3

We mention here some of the fastest optimization algorithms in the quantum oracle model.

In this paragraph we use the notation O∗() to hide polylogarithmic factors in any of the

arguments. For solving an SDP with m constraints involving n× n matrices, van Apeldoorn

and Gilyén [23] gave an algorithm that runs in time O∗
(
(
√
m+

√
n
γ)s/γ4

)
where s is the row-

sparsity of the input matrices and γ = ε/Rr is the additive error ε of the algorithm scaled down

with the upper bounds R and r on the respective sizes of the primal and dual solutions. This

result builds on the classical Arora-Kale framework [24] that runs in time O∗(mns/γ4+ns/γ7),

which was first quantized by Brandão and Svore [25]. In [26] Li, Chakrabarti and Wu gave

an O∗(
√
n/ε4 +

√
d/ε8) time quantum algorithm for the classification of n data points in

dimension d with margin ε. Their design is the quantization of the work of Clarkson, Hazan

and Woodruff [27] that runs in time O∗((n+d)/ε2). The same paper contains similar quadratic

quantum improvements over the classical constructions of [27] for kernel based classification,

minimum enclosing ball and `2-margin SVM, as well as an O∗(
√
n/ε4) time algorithm for

zero-sum games with n× n payoff matrices. A similar result for zero-sum games, but with a

better dependence on the error parameter, was obtained by van Apeldoorn and Gilyén [28]

whose algorithm runs in time O∗(
√
n/ε3). Both quantum algorithms for zero-sum games are

based on the classical work of Grigoriadis and Khachiyan [29] whose complexity is O∗(n/ε2).

Finally, there is a series of quantum algorithms [30, 31, 32, 33] for fast gradient computation,

which are typically combined with classical first order methods such as gradient descent.

1.3 Previous Work

The previous work on approximate submodular minimization [34, 3, 2] is based on the sub-

gradient descent method applied to the Lovász extension. We review these results below, as

it will help to present our contributions in the next section. From now on, we restrict our

attention to submodular functions F with range [−1, 1] and we seek for a set S̄ such that

F (S̄) ≤ minS F (S) + ε.

Subgradient descent in [34]. Submodular minimization can be translated into a convex

optimization problem by considering the so-called Lovász extension f . This makes it possible

to apply standard gradient algorithms. Since f is not differentiable, one can rely on the sub-

gradient descent method that computes a sequence of iterates x(t) converging to a minimum

of f . At each step, the next iterate x(t+1) is obtained by moving into the negative direction of

a subgradient g(t) at x(t). In the case of submodular functions, there exists a natural choice

for g(t), sometimes called the Lovász subgradient, that requires O(n/ε2) steps to converge to

an ε-approximate of the minimum. Since the Lovász subgradient can be computed in time

O(n ·EO+n log n), the complexity of this approach is Õ(n2/ε2 ·EO) [34]. The question arises

if it is possible to find algorithms that scale better than n2, i.e. that are subquadratic in the

dimension.

Stochastic subgradient descent in [2]. In the above method, the subgradient g(t) can

equally be replaced with a stochastic subgradient, that is a low-variance estimate g̃(t) satisfying

E[g̃(t) | x(t)] = g(t). One possible choice for g̃(t) is the subgradient direct estimate ĝ(t) defined

as ĝ(t) = ‖g(t)‖1 sgn(g
(t)
i) · ~1i where i ∈ [n] is sampled with probability |g(t)

i |/‖g(t)‖1. The

`1-norm of the Lovász subgradient being small, this is a low-variance 1-sparse estimate of

4 Quantum and classical algorithms for approximate submodular function minimization

g(t). However, it is unknown how to sample ĝ(t) faster than O(n · EO + n log n). Thus, using

ĝ(t) at each step of the descent would not be more efficient than using the actual subgradient

g(t). Instead, the approach suggested in [2] is to use g̃(t) = ĝ(t) only once every T = n1/3

steps, and in between to use g̃(t) = g̃(t−1) + d̃(t) where d̃(t) is an estimate of the subgradient

difference d(t) = g(t)−g(t−1). The crucial result in [2] is to show how to construct d̃(t) in time

only proportional to the sparsity of x(t) − x(t−1). This process has to be reset every T steps

since the variance and the sparsity of g̃(t) increase over time (and therefore the sparsity of

x(t) − x(t−1) too). The amortized cost per step for constructing g̃(t) is Õ(n2/3 · EO), leading

to an Õ(n5/3/ε2 · EO) algorithm.

It seems to us that there is a slight error in the construction of [2] because the estimate

g̃(t) = g̃(t−1) + d̃(t) is not a valid stochastic subgradient, that is E[g̃(t) | x(t)] 6= g(t). Indeed,

even if g̃(t−1) is an unbiased estimate of g(t−1) conditioned on x(t−1), in general that is not

true conditioned on x(t) (see a counterexample in Appendix 6), thus E[g̃(t) | x(t)] = E[g̃(t−1) |
x(t)]+g(t)−g(t−1) 6= g(t). Nonetheless, this problem can be easily solved by sampling a second

estimate ˜̃g(t−1) of g(t−1) such that, when conditioned on x(t−1), it becomes independent of

g̃(t−1). Then g̃(t) is redefined as g̃(t) = ˜̃g(t−1) + d̃(t). In this case, x(t) does not convey any

information about ˜̃g(t−1) when conditioned on x(t−1), implying that E[˜̃g(t−1) | x(t)] = g(t−1).

However, in order to make ˜̃g(t−1) independent of g̃(t−1), all the previous estimates involved in

the computation of g̃(t−1) have to be resampled. Since the construction of g̃(t) was decomposed

into batches of T steps, it means that there are between 1 and T estimates to resample at each

step. Nevertheless, a straightforward analysis shows that asymptotically the time complexity

remains as stated in [2].

1.4 Our Contributions

Our method also consists of minimizing the Lovász extension of the submodular function under

consideration by using the stochastic subgradient descent algorithm. We differ from [34, 2]

by constructing a new subgradient oracle that is faster to evaluate. In the quantum model,

our further speed-up is based on two new results that might be of independent interest. One

is a simple proof of robustness for the (classical) stochastic subgradient descent method when

the subgradient oracle has some biased noise. The other one is a new quantum algorithm for

sampling multiple independent elements from discrete probability distributions. These results

are detailed below.

Classical algorithm. Similarly to [2], we construct our subgradient oracle g̃(t) by combining

two kinds of estimates (Section 4). Our construction is reset every T = n1/2 steps, which

turns out to be the optimal resetting time in our case. We explain how to compute the first T

terms g̃(0), . . . , g̃(T−1). First, we obtain T independent samples ĝ(0,0), · · · , ĝ(0,T−1) from the

subgradient direct estimate at x(0). Using a standard sampling method (Lemma 1), this can

be done in time Õ(n·EO+T) (Proposition 5). Then, the first subgradient estimate is chosen to

be g̃(0) = ĝ(0,0), and the other ones are obtained at step t by combining ĝ(0,t) with an estimate

d̃(t) of the Lovász subgradient difference d(t) = g(t) − g(0), that is g̃(t) = ĝ(0,t) + d̃(t). Notice

that the difference is not taken between two consecutive iterates x(t−1) and x(t) as in [2], but

between the first iterate x(0) and the current one x(t). This has the advantage of keeping the

variance under control since we add up two terms instead of t + 1. Moreover, the sparsity

Y. Hamoudi, P. Rebentrost, A. Rosmanis, and M. Santha 5

increases only linearly, instead of quadratically, in t. Our procedure for constructing d̃(t) is

directly adapted from [2], with time complexity Õ(t ·EO) (Proposition 6). Consequently, the

first T estimates are obtained in time Õ
(
(n · EO + T) +

∑T−1
t=1 t · EO

)
= Õ(n · EO). Since

the O(n/ε2) steps of the subgradient descent are split into O(
√
n/ε2) batches of length T , it

follows that the total time complexity is Õ(n3/2/ε2 · EO).

Statement of Theorem 4 There is a classical algorithm that, given a submodular func-

tion F : 2V → [−1, 1] and ε > 0, computes a set S̄ such that E[F (S̄)] ≤ minS⊆V F (S) + ε in

time Õ(n3/2/ε2 · EO).

Quantum algorithm. We first note that there is a simple Õ(n3/2/ε3 · EO) quantum al-

gorithm using only the subgradient direct estimate ĝ(t). The latter was defined as ĝ(t) =

‖g(t)‖1 sgn(g
(t)
i) ·~1i where i ∈ [n] is sampled from the probability distribution

(
|g(t)

1 |/‖g(t)‖1,
. . . , |g(t)

n |/‖g(t)‖1
)
. It is a standard result that one sample from any discrete probability dis-

tribution (p1, . . . , pn) (given as an evaluation oracle) can be obtained in time O(
√
n ·maxi pi ·

EO) = O(
√
n ·EO) by quantum state preparation of

∑
i∈[n]

√
pi|i〉 (Lemma 2). Moreover, the

`1-norm of any n-coordinates vector can be estimated with accuracy ε in time O(
√
n/ε · EO)

using the Amplitude Estimation algorithm (Lemma 3). A straightforward combination of

these two results leads to an ε-biased estimate ĝ
(t)
ε , satisfying ‖E[ĝ

(t)
ε | x(t)]− g(t)‖1 ≤ ε, that

can be computed in time Õ(
√
n/ε · EO). This does not meet the usual requirement of an

unbiased estimate for the stochastic subgradient descent method. However, we prove that the

latter is robust to such a noise (Proposition 3). This leads to an Õ(n3/2/ε3 · EO) algorithm

for approximate submodular minimization.

We now describe our quantum algorithm achieving time complexity Õ(n5/4/ε5/2 · log(1/ε) ·
EO), based on our enhanced classical algorithm. Similarly to the simple result described

above, we accelerate the construction of the subgradient estimate g̃(t) using quantum sampling.

A first attempt would be to apply the quantum state preparation method to sample each

estimate individually. However, the computation of the first T estimates of g(0), for instance,

would incur a cost of Õ(T
√
n/ε · EO), which is worse than classically when T = n1/2 (we

could change the value of T but that does not improve the overall complexity). We overcome

this issue by using a new quantum multi-sampling algorithm for sampling T independent

elements from any discrete probability distribution (p1, . . . , pn) in time O(
√
Tn ·EO), instead

of O(T
√
n · EO). This algorithm is described in the next paragraph. It leads to our second

main result.

Statement of Theorem 5 There is a quantum algorithm that, given a submodular func-

tion F : 2V → [−1, 1] and ε > 0, computes a set S̄ such that E[F (S̄)] ≤ minS⊆V F (S) + ε in

time Õ(n5/4/ε5/2 · log(1
ε) · EO).

Quantum multi-sampling algorithm. We now sketch the algorithm for sampling T el-

ements from p = (p1, . . . , pn) in time O(
√
Tn · EO) (here EO is the time complexity of a

quantum evaluation oracle Op satisfying Op(|i〉|0〉) = |i〉|pi〉 for all i). First, we find the

set S of all the coordinates i ∈ [n] where pi is larger than 1/T . Since there are at most

T values to find, S can be computed in time O(
√
Tn · EO) using Grover search. Then, we

load in time O(T · EO) the conditional distribution (pi/pS)i∈S , where pS =
∑
i∈S pi, into

a classical data structure [35] that supports fast sampling from (pi/pS)i∈S in time O(1).

6 Quantum and classical algorithms for approximate submodular function minimization

On the other hand, we can sample from the complement distribution (pi/(1− pS))i/∈S using

quantum state preparation of 1√
1−pS

∑
i/∈S
√
pi|i〉 in time O(

√
n ·maxi/∈S pi/(1− pS) ·EO) =

O(
√
n/(T (1− pS)) ·EO). Now, each of the T samples is obtained by first flipping a coin that

lands head with probability pS , and then sampling i ∈ S from the classical data structure

(head case) or i /∈ S by quantum state preparation (tail case). The total expected time is

O
(
TpS · 1 + T (1− pS) ·

√
n/(T (1− pS)) ·EO

)
= O(

√
Tn ·EO) (assuming T < n). Additional

technicalities, arising from the fact that (p1, . . . , pn) = (u1/‖u‖1, . . . , un/‖u‖1) may be given

as an unormalized vector (u1, . . . , un), are also discussed in this paper (Section 3).

Statement of Theorem 2 There is a quantum algorithm that, given an integer 1 <

T < n, a real 0 < δ < 1, and an evaluation oracle to a discrete probability distribution D =

(p1, . . . , pn), outputs T independent samples from D in expected time O
(√
Tn log(1/δ) · EO

)
with probability 1− δ.

1.5 Organization of the Paper

Our algorithms are presented in a modular way. In Section 4, we give the common framework

to the classical and quantum algorithms. Then, we specialize it to each setting in Sections

5.2 and 5.3 respectively. A data structure, which is common to both models, is described in

Section 5.1. The robustness of the stochastic subgradient descent (Proposition 3), and the

quantum algorithm for sampling from discrete probability distributions (Section 3) can be

read independently from the rest of the paper. The reader interested only in the classical

algorithm can skip Sections 3 and 5.3.

1.6 Recent Improvement

After having finished this paper, we have been informed through personal communication

that Axelrod, Liu and Sidford have discovered a classical nearly linear time algorithm for

approximate submodular function minimization [36]. Their result, like ours, improves on the

work of Chakrabarty et al. [2], and it outperforms both our algorithms.

1.7 Open Questions

It seems to us that, in order to achieve a quantum speed-up over the best classical algorithms

for approximate [36] or exact [1] submodular function minimization, one would most likely

have to speed-up the gradient descent or cutting plane methods respectively. This latter

problem is notoriously open in the quantum setting. Another more amenable question is

whether the Ω(n) lower bound for exact minimization [37] carries over to the quantum oracle

model, and whether Ω(n/ε2) is a lower bound in the approximate case. Finally, what can be

other applications of our quantum multi-sampling algorithms beyond submodular function

minimization?

2 Preliminaries

Notations. Let [n] = {1, . . . , n}. Given a vector u ∈ Rn and a positive integer p, we let

‖u‖p =
(∑

i∈[n] |ui|p
)1/p

be the `p-norm of u, and ‖u‖∞ = maxi∈[n] |ui| be the largest entry

(in absolute value). We say that u is k-sparse if it has at most k non-zero entries. We denote

by u+ ∈ Rn (resp. u− ∈ Rn) the vector obtained from u by replacing its negative (resp.

positive) entries with 0 (thus, u = u+ + u−). Given two vectors u, u′ ∈ Rn, we use u ≥ u′

Y. Hamoudi, P. Rebentrost, A. Rosmanis, and M. Santha 7

(resp. u ≤ u′) to denote that u− u′ ∈ Rn+ (resp. u− u′ ∈ Rn−). We also let sgn(u) to be 1 if

u ≥ 0, and −1 otherwise. Given a set S ⊆ [n], we denote by uS ∈ R|S| the subvector (ui)i∈S
of u made of the values at coordinates i ∈ S. If u is a non-zero vector, we define Du to be

the probability distribution
(
|u1|
‖u‖1 , . . . ,

|un|
‖u‖1

)
on [n]. Finally, we let ~1i ∈ Rn be the indicator

vector with a 1 at position i ∈ [n] and 0 elsewhere.

Lovász extension. A submodular function F is a set function F : 2V → R, over some

ground set V of size n, that satisfies the diminishing returns property: for every A ⊆ B ⊆ V
and for every i 6∈ B, the inequality F (A ∪ {i}) − F (A) ≥ F (B ∪ {i}) − F (B) holds. For

convenience, and without loss of generality, we assume that V = [n] and F (∅) = 0 (this

can be enforced by observing that S 7→ F (S) − F (∅) is still a submodular function). The

Lovász extension f : [0, 1]n → R is a convex relaxation of F to the hypercube [0, 1]n. Before

describing it, we present a canonical way to associate a permutation P with each x ∈ [0, 1]n.

Definition 1 Given a permutation P = (P1, . . . , Pn) of [n], we say that P is consistent with

x ∈ Rn if xP1
≥ xP2

≥ · · · ≥ xPn
, and Pi+1 > Pi when xPi

= xPi+1
for all i. We also denote

P [i] = {P1, . . . , Pi} ⊆ [n] the set of the first i elements of P , and P [0] = ∅.

As an example, the permutation P consistent with x = (0.3, 0.2, 0.3, 0.1) is P = (1, 3, 2, 4).

Definition 2 Given a submodular function F : 2V → R over V = [n], the Lovász extension

f : [0, 1]n → R of F is defined for all x ∈ [0, 1]n by f(x) =
∑
i∈[n](F (P [i])−F (P [i− 1])) · xPi

where P is the permutation consistent with x. The Lovász subgradient g(x) ∈ Rn at x ∈ [0, 1]n

is defined by g(x)Pi
= F (P [i])− F (P [i− 1]) for all i ∈ [n].

The following standard properties of the Lovász extension [12, 3, 38] will be used in this

paper.

Proposition 1 The Lovász extension f of a submodular function F is a convex function.

Moreover, given x ∈ [0, 1]n and the permutation P consistent with x, we have

1. (Subgradient) For all y ∈ [0, 1]n, 〈g(x), x− y〉 ≥ f(x)− f(y).

2. (Minimizers) mini∈[n] F (P [i]) ≤ f(x) and minS⊆V F (S) = miny∈[0,1]n f(y).

3. (Boundedness) If the range of F is [−1, 1] then ‖g(x)‖2 ≤ ‖g(x)‖1 ≤ 3.

Observe that the second property gives an explicit way to convert any x̄ ∈ [0, 1]n such

that f(x̄) ≤ minx∈[0,1]n f(x) + ε into a set S̄ ⊆ V such that F (S̄) ≤ minS⊆V F (S) + ε.

Consequently, we can focus on ε-additive minimization of the Lovász extension in the rest of

the paper.

Models of Computation. We describe the two models of computation used in this

paper. Although the Lovász extension is a continuous function, given x ∈ [0, 1]n it is suffi-

cient to evaluate F on the sets P [1], . . . , P [n] to compute f(x), where P is the permutation

consistent with x. The same holds for the Lovász subgradient. Consequently, given P , it is

natural to define an evaluation oracle that given i returns F (P [i]). The input i to this oracle

is encoded over O(log n) bits, whereas representing each of the sets P [i] as an indicator vector

over {0, 1}n would require n bits.

8 Quantum and classical algorithms for approximate submodular function minimization

• Classical Model. We use the same model as described in [2]. The submodular function

F can be accessed via an evaluation oracle that takes as input an integer i ∈ [n] and a

linked list storing a permutation P of [n], and returns the value of F (P [i]). We denote

by EO the cost of one evaluation query to the oracle.

• Quantum Model. We extend the above model to the quantum setting in a standard way.

Given a permutation P of [n] stored in a linked list, we assume that we have access to

a unitary operator OP that, given i ∈ [n], satisfies OP (|i〉|0〉) = |i〉|F (P [i])〉, where the

second register holds a binary representation of F (P [i]) with some finite precision. We

denote by EO the cost of one evaluation query to OP .

The Lovász extension f(x) at x can be evaluated in time O(n log n + n · EO) in the above

models.

3 Quantum Multi-Sampling for Discrete Probability Distributions

We study the problem of generating T independent samples from a discrete probability distri-

bution Du =
(|u1|
‖u‖1 , . . . ,

|un|
‖u‖1

)
on [n], where u = (u1, . . . , un) ∈ Rn is a non-zero vector given

as an evaluation oracle. This task is a fundamental part of Monte Carlo methods and discrete

events simulation [39, 40]. Here, it will be used to construct randomized estimators of the

Lovász subgradient in Sections 5.2 and 5.3. In this section, EO denotes the time complexity

of an evaluation oracle to u. In the classical setting, this oracle must return ui given i ∈ [n],

whereas in the quantum setting it is a unitary operator Ou satisfying Ou(|i〉|0〉) = |i〉|ui〉 for

all i.

The above problem has been thoroughly investigated in the classical setting [39, 40], where

it can be solved in time O(n · EO + T) using the alias method. We present this result below,

as it will be part of our quantum algorithm later.

Lemma 1 ([41, 35]) There is a classical algorithm that, given an evaluation oracle to a

non-zero vector u ∈ Rn, constructs in time O(n · EO) a data structure from which one can

output as many independent samples from Du as desired, each in time O(1).

In the quantum setting, it is a well-known result that one sample from Du can be obtained

by preparing the state
∑
i∈[n]

√
|ui|
‖u‖1 |i〉 with Amplitude Amplification and measuring the |i〉

register.

Lemma 2 ([42]) There is a quantum algorithm that, given an evaluation oracle to a non-

zero vector u ∈ Rn and a value M ≥ ‖u‖∞, outputs one sample from Du in expected time

O
(√

nM
‖u‖1 · EO

)
.

Note that the maximum M = ‖u‖∞ of any vector u ∈ Rn can be computed with high

probability using Dürr-Høyer’s algorithm [43] in time O(
√
n · EO), in which case we have√

nM/‖u‖1 ≤
√
n. Then, by simply repeating the above algorithm T times, one can obtain

T samples in time O(T
√
n · EO). Our main contribution (Algorithm 1) is to improve this

time complexity to O(
√
Tn · EO). If the normalization factor ‖u‖1 is unknown, we will only

be able to sample from a distribution Du(Γ, S) close to Du that is defined below. Here, Γ > 0

acts as a placeholder for an estimate of ‖u‖1 and S ⊆ [n] is meant to contain the indices i

where |ui| is larger than Γ/T .

Y. Hamoudi, P. Rebentrost, A. Rosmanis, and M. Santha 9

Definition 3 Consider a non-zero vector u ∈ Rn. Fix a real number Γ > 0 and a set S ⊆ [n]

such that Γ ≥ ‖uS‖1. We define Du(Γ, S) to be the distribution that outputs i ∈ [n] with

probability
|ui|
Γ if i ∈ S
|ui|
Γ +

(
1− ‖u‖1Γ

)
|ui|

‖u[n]\S‖1
=
(

1− ‖uS‖1
Γ

)
|ui|

‖u[n]\S‖1
if i ∈ [n] \ S.

Note that if Γ = ‖u‖1 then Du(‖u‖1, S) = Du, which is independent of S.

We now prove that Algorithm 1 runs in time O(
√
Tn · EO) when Γ is sufficiently close to

‖u‖1 and S = {i ∈ [n] : |ui| ≥ Γ/T}. We will explain later how to find such parameters in

time O(
√
Tn · EO).

Algorithm 1 Sampling T elements from Du(Γ, S).

Input: a non-zero vector u ∈ Rn, an integer 1 < T < n, a real Γ > 0 and a set S ⊆ [n] such
that Γ ≥ ‖uS‖1, the value M = ‖u[n]\S‖∞.
Output: a sequence (i1, . . . , iT) ∈ [n]T .

1: Construct the data structure associated with uS = (ui)i∈S in Lemma 1, and compute
‖uS‖1.

2: for t = 1, . . . , T do

3: Sample bt ∈ {0, 1} from the Bernoulli distribution of parameter p = ‖uS‖1
Γ .

4: If bt = 1, sample it ∼ DuS
using the data structure built at step 1.

5: If bt = 0, sample it ∼ Du[n]\S using Lemma 2 with input u[n]\S and M .

6: Output (i1, . . . , iT).

Theorem 1 The output (i1, . . . , iT) ∈ [n]T of Algorithm 1 consists of T independent

samples from the distribution Du(Γ, S). Moreover, if |Γ − ‖u‖1| ≤ ‖u‖1/
√
T and S = {i ∈

[n] : |ui| ≥ Γ/T} then the expected run-time of the algorithm is O(
√
Tn · EO).

Proof. At each execution of lines 2-5, the probability to sample i ∈ S is ‖uS‖1
Γ · |ui|

‖uS‖1 =
|ui|
Γ and the probability to sample i ∈ [n] \ S is

(
1− ‖uS‖1

Γ

) |ui|
‖u[n]\S‖1

. This is the distribution

Du(Γ, S).

We now analyze the time complexity. Line 1 takes time O(|S| ·EO). Each execution of line

4 takes time O(1), and each execution of line 5 takes time O
(√

n · ‖u[n]\S‖∞/‖u[n]\S‖1 ·EO
)

(according to Lemma 2). Thus, the expected run-time of the algorithm is

O

(
|S| · EO + T

‖uS‖1
Γ
· 1 + T

(
1− ‖uS‖1

Γ

)
·

√
n · ‖u[n]\S‖∞
‖u[n]\S‖1

· EO

)
.

Assume that |Γ−‖u‖1| ≤ ‖u‖1/
√
T and S = {i ∈ [n] : |ui| ≥ Γ/T}. Since T ≥ 2, it follows that

Γ ≥ ‖u‖1/4 and |S| ≤ 4T . Consequently, 1− ‖uS‖1
Γ ≤

(
1+ 1√

T

)‖u‖1
Γ − ‖uS‖1

Γ ≤ ‖u[n]\S‖1
Γ + 4√

T
.

Moreover, ‖u[n]\S‖∞ ≤ min(Γ/T, ‖u[n]\S‖1). Thus, the expected run-time is

O

(
T · EO + T

(‖u[n]\S‖1
Γ

+
1√
T

)
·

√
n ·min(Γ/T, ‖u[n]\S‖1)

‖u[n]\S‖1
· EO

)
= O

(√
Tn · EO

)
.

�

10 Quantum and classical algorithms for approximate submodular function minimization

The above result is optimal, as can be shown by a simple reduction from the T -search

problem. We now explain how to find the values Γ, S and ‖u[n]\S‖∞ needed by Algorithm 1.

First, if ‖u‖1 is known, we can assume without loss of generality that ‖u‖1 = 1. In this case,

we obtain T samples from Du = (p1, . . . , pn) as follows.

Theorem 2 There is a quantum algorithm that, given an integer 1 < T < n, a real

0 < δ < 1, and an evaluation oracle to a discrete probability distribution D = (p1, . . . , pn),

outputs T independent samples from D in expected time O
(√
Tn log(1/δ)·EO

)
with probability

1− δ.
Proof. The set S = {i ∈ [n] : |pi| ≥ 1/T} and the value M = ‖p[n]\S‖∞ can be

computed with probability 1− δ using Grover search and Dürr-Høyer’s algorithm [43] in time

O(
√
Tn log(1/δ) ·EO) and O(

√
n log(1/δ) ·EO) respectively. Then, conditioned on these two

values to be correct, Algorithm 1 outputs T independent samples from D in expected time

O(
√
Tn · EO) (where we use Γ = 1). �

If ‖u‖1 is unknown (as it will be the case in our applications), we will need the next result

about Amplitude Estimation [44] to approximate its value.

Lemma 3 There is a quantum algorithm that, given an evaluation oracle to a non-zero

vector u ∈ Rn, a value M ≥ ‖u‖∞ and two reals 0 < ε, δ < 1, outputs a real Γ such

that |Γ − ‖u‖1| ≤ ε‖u‖1 with probability 1 − δ. The expected run-time of this algorithm is

O
(

1
ε

√
nM
‖u‖1 log(1/δ) · EO

)
.

Proof. Define Vu,M to be a unitary operator such that

Vu,M (|0〉|0〉) =
1√
n

∑
i∈[n]

|i〉

(√
|ui|
M
|0〉+

√
1− |ui|

M
|1〉

)
=

√
‖u‖1
nM
|ψu〉|0〉+

√
1− ‖u‖1

nM
|φu〉|1〉

where |ψu〉 =
∑
i∈[n]

√
|ui|
‖u‖1 |i〉, and |φu〉 is some unit vector. Vu,M can be constructed with two

quantum queries to u and a controlled rotation (see also [45] for an alternative construction).

Now, using the Amplitude Estimation algorithm [44, Theorem 12] on Vu,M with accuracy ε, we

get an estimate γ such that |γ−‖u‖1/(nM)| ≤ ε‖u‖1/(nM) with probability 2/3 in expected

time O
(

1
ε

√
nM
‖u‖1 · EO

)
. The success probability can be increased to 1 − δ by a standard

Chernoff bound argument at an extra cost factor log(1/δ). Finally, we take Γ = nMγ. �
The construction of the setup parameters (Γ, S,M) is described in Algorithm 2. We

need to be careful that Γ ≥ ‖uS‖1, otherwise Du(Γ, S) is not a probability distribution. The

parameter ε controls the closeness of Du(Γ, S) to Du. We have ε′ = min(1/
√
T , ε) to guarantee

that |Γ− ‖u‖1| ≤ (1/
√
T)‖u‖1. The setup cost is dominated by O(

√
n/ε) if ε ≤ 1/

√
T .

Proposition 2 The output (Γ, S,M) of Algorithm 2 satisfies Γ ≥ ‖uS‖1, |Γ − ‖u‖1| ≤
min(1/

√
T , ε)‖u‖1, S = {i ∈ [n] : |ui| ≥ Γ/T} and M = ‖u[n]\S‖∞ with probability 1− δ. The

expected run-time of this algorithm is O
(
(
√
Tn+

√
n/ε) log(1/δ) · EO

)
.

Proof. We first assume that all steps of the algorithm succeed and do not abort. In this

case, we have |Γ̂−‖u‖1| ≤ ε′‖u‖1. Thus, Γ = max{‖uŜ‖1, Γ̂} ≥ max{‖uS‖1, (1− ε′)‖u‖1} and

Γ ≤ (1 + ε′)‖u‖1. Moreover, S = {i ∈ [n] : |ui| ≥ Γ/T} since {i ∈ [n] : |ui| ≥ Γ/T} ⊆ {i ∈
[n] : |ui| ≥ Γ̂/T} = Ŝ.

We now study the time needed by lines 1-5 to succeed with probability 1− δ. If we omit

the log(1/δ) · EO factors, then there exist four absolute constants c1, c2, c3 and c4 such that

lines 1 and 5 need time c1 ·
√
n, line 2 needs time c2 · 1

ε′

√
nL/‖u‖1 ≤ c2 · (

√
Tn +

√
n/ε)

Y. Hamoudi, P. Rebentrost, A. Rosmanis, and M. Santha 11

Algorithm 2 Construction of the setup parameters (Γ, S,M).

Input: a non-zero vector u ∈ Rn, an integer 1 < T < n, two reals 0 < ε, δ < 1.
Output: a real Γ, a set S ⊆ [n], a value M .

The subroutines below are run with failure parameter δ/4. The algorithm aborts and outputs
fail if any step takes time greater than c · (

√
Tn+

√
n/ε) log(1/δ) (where c is a constant to be

specified in the proof of Proposition 2).

1: Run Dürr-Høyer’s algorithm [43] to compute ‖u‖∞. Denote the result by L.
2: Compute an estimate Γ̂ of ‖u‖1 with relative error ε′ = min(1/

√
T , ε) using L and Lemma

3.
3: Run the Grover search algorithm [46] on u to find all the indices i such that |ui| ≥ Γ̂/T .

Denote the result by Ŝ ⊆ [n].
4: Compute ‖uŜ‖1 and set Γ = max{‖uŜ‖1, Γ̂}. Compute S = {i ∈ Ŝ : |ui| ≥ Γ/T}.
5: Run Dürr-Høyer’s algorithm [43] to compute ‖u[n]\S‖∞. Denote the result by M .
6: Output (Γ, S,M).

(according to Lemma 3, and since L = ‖u‖∞ ≤ ‖u‖1 if line 1 succeeds), line 3 needs time

c3 ·
√
Tn (since Ŝ ≤ 4T if Ŝ = {i ∈ [n] : |ui| ≥ Γ̂/T} and Γ̂ ≥ (1− ε′)‖u‖1 ≥ ‖u‖1/4) and line

4 needs time c4|Ŝ| ≤ 4c4T . Consequently, if we take c = max{c1, c2, c3, 4c4}, the algorithm

does not abort and succeeds with probability 1− δ. �

4 Framework for Approximate Submodular Minimization

In this section, we construct our new low-variance estimate of the Lovász subgradient, and we

apply the stochastic subgradient descent algorithm on it to minimize the Lovász extension.

The stochastic subgradient descent method is a general algorithm for approximating the

minimum value of a convex function f that is not necessarily differentiable (as it is the case

for the Lovász extension). It uses the concept of subgradients (or subderivatives) of f , which

is defined as follows.

Definition 4 Given a convex function f : C → R over C ⊂ Rn and a point x ∈ C, we say

that g ∈ Rn is a subgradient of f at x if 〈g, x − y〉 ≥ f(x) − f(y) for all y ∈ C. The set of

all subgradients at x is denoted by ∂f(x).

Normally, the stochastic subgradient descent method requires to compute a sequence (g̃(t))t
of unbiased subgradient estimates at certain points (x(t))t, which means that E[g̃(t) | x(t)] ∈
∂f(x(t)). In the next proposition, we generalize this method to ε-noisy estimates satisfying

only ‖E[g̃(t) | x(t)]−g(t)‖1 ≤ ε for some g(t) ∈ ∂f(x(t)). In the case ε = 0, our analysis recovers

the standard error bound [47].

Proposition 3 (Noisy Stochastic Subgradient Descent) Let f : C → R be a convex

function over a compact convex set C ⊂ Rn, and η > 0. Consider two sequences of random

variables (x(t))t and (g̃(t))t such that x(0) = argminx∈C‖x‖2, x(t+1) = argminx∈C‖x− (x(t) −
ηg̃(t))‖2, and ∥∥E[g̃(t)

∣∣ x(t)
]
− g(t)

∥∥
1
≤ ε for some g(t) ∈ ∂f(x(t)),

for all t ≥ 0. Fix x? ∈ argminx∈C f(x) and let L2, L∞, B ∈ R be such that ‖x − x?‖2 ≤ L2,

‖x − x?‖∞ ≤ L∞ and E
[
‖g̃(t)‖22

]
≤ B2, for all x ∈ C and t ≥ 0. Then, for any integer N ,

the average point x̄ = 1
N

∑N−1
t=0 x(t) satisfies E[f(x̄)] ≤ f(x?) +

L2
2

2ηN + η
2B

2 + εL∞.

12 Quantum and classical algorithms for approximate submodular function minimization

Proof. Let (g(t))t be such that g(t) ∈ ∂f(x(t)) and ‖E[g̃(t) | x(t)]− g(t)‖1 ≤ ε. Then,

‖x(t+1) − x?‖22 =
∥∥∥argmin

x∈C
‖x− (x(t) − ηg̃(t))‖2 − x?

∥∥∥2

2

≤ ‖x(t) − ηg̃(t) − x?‖22 by property of the projection onto C

= ‖x(t) − x?‖22 − 2η〈g̃(t), x(t) − x?〉+ η2‖g̃(t)‖22
= ‖x(t) − x?‖22 − 2η〈g(t), x(t) − x?〉 − 2η〈g̃(t) − g(t), x(t) − x?〉+ η2‖g̃(t)‖22
≤ ‖x(t) − x?‖22 − 2η(f(x(t))− f(x?))− 2η〈g̃(t) − g(t), x(t) − x?〉+ η2‖g̃(t)‖22

where the last line is by the definition of a subgradient. We now take the expectation of

the above formula. Using the law of total expectation, we have E
[
〈g̃(t) − g(t), x(t) − x?〉

]
=

E
[
〈E
[
g̃(t)

∣∣ x(t)
]
−g(t), x(t)−x?〉

]
and by Hölder’s inequality

∣∣〈E[g̃(t)
∣∣ x(t)

]
− g(t), x(t) − x?〉

∣∣ ≤
‖E
[
g̃(t)

∣∣ x(t)
]
− g(t)‖1 · ‖x(t) − x?‖∞ ≤ εL∞. Consequently,

E
[
‖x(t+1) − x?‖22

]
− E

[
‖x(t) − x?‖22

]
≤ −2ηE

[
f(x(t))− f(x?)

]
+ 2ηεL∞ + η2B2

from which we obtain a bound for E[f(x(t))]. Finally, we upper bound the expected value of

the function at the average point x̄ as

E[f(x̄)] ≤ 1

N

N−1∑
t=0

E
[
f(x(t))

]
by convexity

≤ f(x?) +
1

N

N−1∑
t=0

1

2η

(
E
[
‖x(t) − x?‖22

]
− E

[
‖x(t+1) − x?‖22

])
+
η

2
B2 + εL∞

= f(x?) +
1

2ηN

(
E
[
‖x(0) − x?‖22

]
− E

[
‖x(N) − x?‖22

])
+
η

2
B2 + εL∞

≤ f(x?) +
L2

2

2ηN
+
η

2
B2 + εL∞

where we have used the telescoping property of the sum in the third line. �
In the rest of the paper, f denotes the Lovász extension and g denotes the Lovász sub-

gradient. Our main result of this section (Algorithm 3) consists in constructing the sequence

of noisy subgradient estimates needed in the above proposition. To trade off the cost of com-

puting the subgradient exactly and decreasing the variance, we rely on two procedures that

provide different guarantees on the estimates they return. In this section, we do not explain

how to implement these two procedures. Instead, we describe in Assumptions 1 and 2 the

main properties they must satisfy.

Our first assumption is the existence of a procedure GSample that can produce a batch of

T estimates of the Lovász subgradient g(x) at any point x ∈ [0, 1]n. This is intended to be a

simple but expensive procedure, which can be used only sparingly. Indeed, it will need time

O((n + T) · EO) or O((
√
nT +

√
n/ε) · EO) to be implemented in the classical or quantum

settings respectively (Propositions 5 and 8).

Assumption 1 (Gradient Sampling) There is a procedure GSample(x, T, ε) that, given

x ∈ [0, 1]n, an integer T and a real ε > 0, outputs T vectors g̃1, . . . , g̃T such that, for all

j, (1) g̃j is 1-sparse, (2)
∥∥E[g̃j | g̃1, . . . , g̃j−1, x] − g(x)

∥∥
1
≤ ε and (3) ‖g̃j‖2 ≤ 4. Moreover,

the time complexity of this procedure is a function cGS(T, ε) of T and ε.

Our second assumption is the existence of a more subtle procedure GDSample that can

estimate the difference g(y)−g(x) between the Lovász subgradients at two points x and y. This

Y. Hamoudi, P. Rebentrost, A. Rosmanis, and M. Santha 13

procedure will rely on intrinsic properties of submodular functions and require maintaining a

particular data structure (Section 5.1). On the other hand, when the difference e = y − x is

k-sparse, it will need time only Õ(k ·EO) or Õ(
√
k/ε ·EO) to be implemented in the classical

or quantum settings respectively (Propositions 6 and 9).

Assumption 2 (Gradient Difference Sampling) There is a procedure GDSample(x, e, ε)

that, given x ∈ [0, 1]n, a k-sparse vector e such that x+e ∈ [0, 1]n and e ≥ 0 or e ≤ 0, and a real

ε > 0, outputs a vector d̃ such that, (1) d̃ is 1-sparse, (2) ‖E[d̃ | x, e]− (g(x+ e)− g(x))‖1 ≤ ε
and (3) ‖d̃‖2 ≤ 7. Moreover, the time complexity of this procedure is a function cGDS(k, ε) of

k and ε.

We combine the two procedures to construct the sequence (g̃(t))t of subgradient estimates

(Algorithm 3). The construction depends on a “loop parameter” T that balances the cost

between using GSample and GDSample. Every T steps, when t = 0 mod T , the procedure

GSample(x(t), T, ε) returns T estimates g̃(t,0), . . . , g̃(t,T−1) of the Lovász subgradient at the

current point x(t). Each value g̃(t,τ) is combined at time t + τ , where 0 ≤ τ ≤ T − 1,

with an estimate d̃(t+τ) of the subgradient difference g(x(t+τ)) − g(x(t)). The sum g̃(t+τ) =

g̃(t,τ) + d̃(t+τ) is our estimate of g(x(t+τ)). The sparsity of x(t+τ) − x(t) will increase linearly

in τ , which justifies reusing GSample every T steps to restore it to a small value. Notice that,

according to Assumption 2, the procedure GDSample can estimate the subgradient difference

d = g(y) − g(x) only if e = y − x is either non-negative or non-positive. Thus, in step 2.(c)

of the algorithm, we split e = e+ + e− into its positive and negative entries and we estimate

d+ = g(x+ e+)− g(x) and d− = g(x+ e+ + e−)− g(x+ e+) separately. In the next theorem,

we show that (g̃(t))t is indeed a sequence of noisy subgradient oracles for
(
f, (x(t))t

)
.

Theorem 3 The sequences (g̃(t))t and (x(t))t in Algorithm 3 satisfy ‖E
[
g̃(t)

∣∣ x(t)
]
−

g(x(t))‖1 ≤ ε0 + 2ε1, ‖g̃(t)‖2 ≤ 18 and x(t+1) = argminx∈[0,1]n ‖x− (x(t) − ηg̃(t))‖2.

Proof. Fix t and τ = (t mod T). According to lines 4 and 5 of the algorithm, we have{
g̃(t) = g̃(t,0) if τ = 0

g̃(t) = g̃(t−τ,τ) + d̃
(t)
+ + d̃

(t)
− otherwise.

We first study the expectation of the term g̃(t−τ,τ), which is generated by the GSample pro-

cedure. Using the law of total expectation, it satisfies

E[g̃(t−τ,τ) | x(t)] = E
[
E[g̃(t−τ,τ) | (g̃(t−τ,k))k<τ , x

(t−τ), x(t)]
∣∣∣ x(t)

]
= E

[
E[g̃(t−τ,τ) | (g̃(t−τ,k))k<τ , x

(t−τ)]
∣∣∣ x(t)

]
since x(t) does not convey any information about the output of GSample(x(t−τ), T) when

(g̃(t−τ,k))k<τ and x(t−τ) are known. Consequently,∥∥∥E[g̃(t−τ,τ) − g(x(t−τ)) | x(t)]
∥∥∥

1
≤ E

[∥∥∥E[g̃(t−τ,τ) | (g̃(t−τ,k))k<τ , x
(t−τ)]− g(x(t−τ))

∥∥∥
1

∣∣∣ x(t)
]

≤ ε0
using the triangle inequality and Assumption 1.

We now study the expectation of the term d̃
(t)
+ +d̃

(t)
− generated by the GDSample procedure

14 Quantum and classical algorithms for approximate submodular function minimization

Algorithm 3 Subgradient descent algorithm for the Lovász extension f .

Input: two integers 0 < T < N , two reals ε0, ε1 > 0.
Output: point x̄ ∈ [0, 1]n.

1: Set x(0) = 0n ∈ [0, 1]n.
2: for t = 0, . . . , N do
3: Set τ = (t mod T).
. Computation of the subgradient estimate g̃(t):

4: If τ = 0: sample g̃(t,0), . . . , g̃(t,T−1) using GSample(x(t), T, ε0). Set g̃(t) = g̃(t,0).

5: If τ 6= 0: sample d̃
(t)
+ using GDSample

(
x(t−τ), e

(t−1)
+ , ε1

)
and sample d̃

(t)
− using

GDSample
(
x(t−τ) + e

(t−1)
+ , e

(t−1)
− , ε1

)
. Set g̃(t) = g̃(t−τ,τ) + d̃

(t)
+ + d̃

(t)
− .

. Update of the position to x(t+1):
6: Compute x(t+1) = argminx∈[0,1]n ‖x−(x(t)−ηg̃(t))‖2, that is x(t+1) = x(t) +u(t) where

u
(t)
i =

−x(t)

i if ηg̃
(t)
i > x

(t)
i

1− x(t)
i if ηg̃

(t)
i < −(1− x(t)

i)

−ηg̃(t)
i otherwise

for each i ∈ [n], and η =
√

n
182N .

. Update of the difference to e(t) = x(t+1) − x(t−τ):
7: If τ = 0, set e(t) = u(t).
8: If τ 6= 0, set e(t) = e(t−1) + u(t).

9: Output x̄ = 1
N

∑N−1
t=0 x(t).

Y. Hamoudi, P. Rebentrost, A. Rosmanis, and M. Santha 15

when τ 6= 0. We have

E[d̃
(t)
+ + d̃

(t)
− | x(t)] = E

[
E[d̃

(t)
+ | x(t−τ), e

(t−1)
+ , x(t)] + E[d̃

(t)
− | x(t−τ) + e

(t−1)
+ , e

(t−1)
− , x(t)]

∣∣∣ x(t)
]

= E
[
E[d̃

(t)
+ | x(t−τ), e

(t−1)
+] + E[d̃

(t)
− | x(t−τ) + e

(t−1)
+ , e

(t−1)
−]

∣∣∣ x(t)
]

where the first line is by the law of total expectation, and the second line is by independence

between random variables. Moreover, according to Assumption 2, ‖E[d̃
(t)
+ | x(t−τ), e

(t−1)
+] −

(g(x(t−τ)+e
(t−1)
+)−g(x(t−τ)))‖1 ≤ ε1 and ‖E[d̃

(t)
− | x(t−τ)+e

(t−1)
+ , e

(t−1)
−]−(g(x(t))−g(x(t−τ)+

e
(t−1)
+))‖1 ≤ ε1 (where we used that x(t) = x(t−τ) + e

(t−1)
+ + e

(t−1)
−). Thus, by the triangle

inequality,

‖E[d̃
(t)
+ + d̃

(t)
− − (g(x(t))− g(x(t−τ))) | x(t)]‖1 ≤ 2ε1.

This concludes the proof of the first part of the theorem since ‖E[g̃(t) | x(t)] − g(x(t))‖1 =

‖E[g̃(t,0) − g(x(t)) | x(t)]‖1 ≤ ε0 when τ = 0, and ‖E[g̃(t) | x(t)] − g(x(t))‖1 ≤ ‖E[g̃(t−τ,τ) −
g(x(t−τ)) | x(t)]‖1 + ‖E[d̃

(t)
+ + d̃

(t)
− − (g(x(t)) − g(x(t−τ))) | x(t)]‖1 ≤ ε0 + 2ε1 when τ 6= 0.

The second part of the theorem is a direct application of the triangle inequality using that

‖g̃(t−τ,τ)‖2 ≤ 4 and ‖d̃(t)
+ ‖2, ‖d̃

(t)
− ‖2 ≤ 7 (Assumptions 1 and 2). The last part of the theorem

is line 6 of the algorithm. �

The above result shows that Algorithm 3 is a (noisy) subgradient descent for the Lovász

extension. Consequently, the result of Proposition 3 can be applied to the output x̄ of the

algorithm. Since we aim for a subquadratic running time in n, we must update the vectors

x(t), g̃(t), u(t) and e(t) in time less than their dimension. Here, we do not discuss the data

structure used for this purpose (see Section 5.1). Nevertheless, we recall that the outputs of

GSample and GDSample are 1-sparse, thus most of the coordinates do not change between two

consecutive steps.

Fact 1 At step t of the algorithm: g̃(t) and u(t) are 3-sparse, e
(t)
+ and e

(t)
− are 3(τ +1)-sparse,

if τ 6= 0 then e
(t−1)
+ and e

(t)
+ (resp. e

(t−1)
− and e

(t)
−) can differ only at positions where u(t) is

non-zero.

Corollary 1 The output x̄ of Algorithm 3 satisfies E[f(x̄)] ≤ minx f(x)+18
√
n/N+ε0 +2ε1.

The total run-time of steps 2.(b) and 2.(c) is O
(
N
T

(
cGS(T, ε0) +

∑T
τ=1 cGDS(3τ, ε1)

))
.

Proof. According to Theorem 3, (g̃(t))t is a sequence of ε-noisy subgradient oracles for

the Lovász extension f , where ε = ε0 + 2ε1 and (x(t))t obeys the subgradient descent update

rule x(t+1) = argminx∈[0,1]n‖x− (x(t) − ηg̃(t))‖2. Moreover, ‖x− x?‖2 ≤
√
n, ‖x− x?‖∞ ≤ 1

for all x ∈ [0, 1]n, and ‖g̃(t)‖2 ≤ 18. Consequently, we obtain from Proposition 3 that

E[f(x̄)] ≤ f(x?) + 18
√
n/N + ε0 + 2ε1, where we used the step size parameter η =

√
n

182N .

The time complexity of steps 2.(b) and 2.(c) is a direct consequence of Assumptions 1 and 2

and Fact 1. �

5 Subquadratic Approximate Submodular Minimization

We construct two classical (Section 5.2) and two quantum (Section 5.3) procedures satisfying

the Assumptions 1 and 2 described in the previous section. These procedures will require a

particular data structure, strongly inspired from the work of [2], that is maintained throughout

the subgradient descent algorithm at negligible cost (Section 5.1). Our final algorithms solve

16 Quantum and classical algorithms for approximate submodular function minimization

the approximate submodular minimization problem in time Õ(n3/2/ε2 · EO) classically, and

Õ(n5/4/ε5/2 · log(1/ε) · EO) quantumly.

5.1 Data structures and k-Covers

We describe two data structures needed to implement GSample and GDSample respectively,

and we establish their main properties. The first data structure D(x) contains standard

information about the input point x of GSample(x, T, ε). It is defined as follows.

Definition 5 Given x ∈ Rn and the permutation P consistent with x, we define D(x) =

(Lx, Ax, Tx) to be the data structure made of the following elements: a doubly linked list

Lx storing P , an array Ax storing at position i ∈ [n] the value xi with a pointer to the

corresponding entry in P , and a self-balancing binary search tree Tx (e.g. red-black tree [48])

with a node for each i ∈ [n] keyed by the value xi and containing the size of its subtree.

The second data structure D(x, y, I) is based on a property of submodular functions

established in [2] that requires the following definition of a k-cover.

Definition 6 Consider x, y ∈ [0, 1]n and let P and Q be the permutations consistent with x

and y respectively. We say that a partition I = {I1, . . . , Ik} of [n] is a k-cover of (x, y) if,

for each s ∈ [k], the preimage of Is under both P and Q is a set of consecutive numbers, and

xi = yi for all i ∈ Is if |Is| > 1.

1 2 3 4 5 6 7 8 9 10
x 0.85 0.58 0.42 0.53 0.60 0.78 0.12 0.27 0.92 0.31
y 0.85 0.58 0.65 0.53 0.60 0.78 0.90 0.27 0.92 0.31

P 9 1 6 5 2 4 3 10 8 7

Q 9 7 1 6 3 5 2 4 10 8

0.60

I4

0.31

I2

0.12

I3

0.42

I1

0.85

I5

0.92

I6

I1 = {3}, I2 = {10, 8}, I3 = {7}, I4 = {5, 2, 4}, I5 = {1, 6}, I6 = {9}.

Fig. 1. An illustration of a 6-cover I = {I1, . . . , I6} for some x, y ∈ [0, 1]10 and their corresponding
permutations P,Q. The circled numbers correspond to the positions where x and y differ (these

values must belong to singletons in the cover). The binary tree corresponds to TI
x in D(x, y, I).

An example of a 6-cover is given in Figure 5.1. Observe that there always exists a cover

of size at most 3k + 1 if the difference e = x − y is k-sparse. Our implementations of

GDSample(x, e, ε) will require to store a cover of (x, x + e) approaching that size. Before

explaining the reasons why a cover is useful, we describe the data structure D(x, y, I).

Definition 7 Given x, y ∈ Rn and a k-cover I = {I1, . . . , Ik} of (x, y), we define D(x, y, I) =(
D(x),D(y), AIx , A

I
y , T

I
x , T

I
y

)
to be the data structure made of the following elements: D(x) and

D(y) (described in Definition 5), two dynamic arrays AIx and AIy of size k storing at position

s ∈ [k] the pairs (argmaxi∈Is xi, argmini∈Is xi) and (argmaxi∈Is yi, argmini∈Is yi) respectively,

two self-balancing binary search trees T Ix and T Iy with a node for each s ∈ [k] keyed by the

value of maxi∈Is xi and maxi∈Is yi respectively.

The next lemma is the crucial property established in [2] about k-covers. It shows that

the coordinates g(y)i − g(x)i of the subgradient difference have constant sign over any set

Y. Hamoudi, P. Rebentrost, A. Rosmanis, and M. Santha 17

Is of the cover when y ≥ x or y ≤ x. In particular, the `1-norm ‖g(y)Is − g(x)Is‖1 can be

deduced from the value of
∑
i∈Is g(y)i − g(x)i (we recall that g(y)Is − g(x)Is is the subvector

of g(y)− g(x) made of the values at positions i ∈ Is).
Lemma 4 ([2]) Consider x, y ∈ [0, 1]n such that y ≥ x or y ≤ x, and let {I1, . . . , Ik} be a

k-cover of (x, y). Then, for each s ∈ [k], the coordinates g(y)i − g(x)i have the same sign for

all i ∈ Is. In particular, |
∑
i∈Is g(y)i − g(x)i| = ‖g(y)Is − g(x)Is‖1.

Proof. Let P and Q denote the permutations consistent with x and y respectively.

Consider s ∈ [k] such that |Is| > 1 (the result is trivial when |Is| = 1). By definition of

a k-cover, there exist three integers as, a
′
s, `s such that Is = {Pas , Pas+1, . . . , Pas+`s} =

{Qa′s , Qa′s+1, . . . , Qa′s+`s}. Assume that y ≥ x (the case y ≤ x is symmetric). Since xi = yi
for all i ∈ Is, we must have P [as− 1] ⊆ Q[a′s− 1]. Thus, by the diminishing returns property

of submodular functions, F (P [as + `])− F (P [as + `− 1]) ≥ F (Q[a′s + `])− F (Q[a′s + `− 1])

for all 0 ≤ ` ≤ `s. We conclude that g(y)i − g(x)i ≤ 0 for all i ∈ Is. �
Note that the condition y ≥ x or y ≤ x is crucial in the above result, which is why we

impose e ≥ 0 or e ≤ 0 in Assumption 2. We now describe three useful operations that can be

handled in logarithmic time using D(x, y, I) and the above lemma. The first two operations

originate from the work of [2] (the proofs are given for completeness), whereas the third one

is new to this work (in [2], the authors recompute the cover entirely at each update).

Proposition 4 Consider x, y ∈ Rn such that x ≥ y or x ≤ y, and let I = {I1, . . . , Ik} be

a k-cover of (x, y). Then, using D(x, y, I), the following operations can be handled in time

O(log(n) + EO), O(log(n) · EO) and O(log n) respectively:

• (Subnorm) Given s ∈ [k], output ‖g(y)Is − g(x)Is‖1.

• (Subsampling) Given s ∈ [k], sample i ∼ Dg(y)Is−g(x)Is
.

• (Update) Given a 1-sparse vector e ∈ Rn, update the data structure to D(x + e, y, I ′)
where I ′ is a cover of (x+ e, y) of size at most k + 3.

Proof. Let P be the permutation consistent with x. Observe that the rank P−1
i of any

xi can be computed in log(n) time using Tx (since each node in the tree contains the size of

its subtree).

(Subnorm) By definition of a k-cover, there exist as ≤ bs such that Is = {Pas , Pas+1, . . . ,

Pbs}. Thus,
∑
i∈Is g(x)i =

∑bs
i=as

F (P [i]) − F (P [i − 1]) = F (P [bs]) − F (P [as − 1]). Since

as and bs can be obtained in time O(log n) using D(x, y, I), this sum can be computed in

time O(log(n) + EO), and similarly for
∑
i∈Is g(y)i. According to Lemma 4, the difference

|
∑
i∈Is g(y)i − g(x)i| is equal to the `1-norm of g(y)Is − g(x)Is .

(Subsampling) We find the highest node ih ∈ Is in the tree Tx, and we compute its rank

cs = P−1
ih

in time O(log n). It partitions Is into three sets A = {Pas , Pas+1, . . . , Pcs−1},
B = {Pcs} and C = {Pcs+1, . . . , Pbs}. We compute the `1-norm of g(y) − g(x) restricted to

each of these sets in time O(EO), and we sample A, B or C with probability ‖g(y)A−g(x)A‖1
‖g(y)Is−g(x)Is‖1

,
‖g(y)B−g(x)B‖1
‖g(y)Is−g(x)Is‖1

and ‖g(y)C−g(x)C‖1
‖g(y)Is−g(x)Is‖1

respectively. If the set we obtain is a singleton, we ter-

minate and output the value it contains, otherwise we continue recursively to sample in the

corresponding subtree of Tx.

(Update) We explain how to update the k-cover (the other parts of the data structure

being standard to update). Let i be the position where ei 6= 0, and denote r = P−1
i the

18 Quantum and classical algorithms for approximate submodular function minimization

rank of i in P before the update. First, split the set Is = {Pas , . . . , Pr−1, i, Pr+1, . . . , Pbs}
containing i into three parts {Pas , Pas+1, Pr−1}, {i} and {Pr+1, . . . , Pbs}. Then, identify the

rank c such that xPc
> xi + ei > xPc+1

and split the set containing Pc into two parts. These

operations can be done in O(log n) time. The size of the cover is increased by at most 3. �
Finally, observe that we have to maintain two instances of D(x, y, I) in Algorithm 3,

one corresponding to the pair (x(t−τ), x(t−τ) + e
(t−1)
+) (needed for d̃

(t)
+), and the other one

corresponding to (x(t−τ) + e
(t−1)
+ , x(t)) (needed for d̃

(t)
−). The total update cost is negligible

because of Fact 1.

Corollary 2 One can maintain throughout Algorithm 3 two data structures D(x(t−τ), x(t−τ)+

e
(t−1)
+ , I) and D(x(t−τ) + e

(t−1)
+ , x(t), I ′), where I and I ′ are covers of size at most 9τ and

27τ respectively. The update time, at each step of the algorithm, is O(log n).

Proof. This is a direct consequence of Fact 1 and Proposition 4. The update from

e
(t−1)
+ to e

(t)
+ (resp. e

(t−1)
− to e

(t)
−) is 3-sparse, thus each step increases the size of the cover

associated with (x(t−τ), x(t−τ)+e
(t−1)
+) by 9, and the size of the cover associated with (x(t−τ)+

e
(t−1)
+ , x(t)) = (x(t−τ) + e

(t−1)
+ , x(t−τ) + e

(t−1)
+ + e

(t−1)
−) by 27. When τ = 0, the sizes are reset

to at most 9 and 27 respectively. �

5.2 Classical Approximate Submodular Minimization

We conclude the part on classical approximate submodular minimization by describing the

two procedures C-GS and C-GDS for GSample and GDSample respectively that lead to an

Õ(n3/2/ε2 · EO) algorithm. Both are based on the following unbiased estimator Xu of any

vector u ∈ Rn.

Fact 2 Given a non-zero vector u ∈ Rn, consider the vector-valued random variable Xu that

equals ‖u‖1 sgn(ui) ·~1i with probability |ui|
‖u‖1 . Then, E[Xu] = u and ‖Xu‖2 = ‖u‖1.

In the case of gradient sampling (Assumption 1), we construct T samples from Xg(x)

by using the sampling algorithm of Lemma 1. In the case of gradient difference sampling

(Assumption 2), we construct one sample from Xg(x+e)−g(x) by using the subnorm and sub-

sampling operations of Proposition 4. These two procedures are described in Algorithms 4

and 5 respectively.

Algorithm 4 Classical Gradient Sampling (C-GS).

Input: x ∈ [0, 1]n stored in D(x), an integer T .
Output: a sequence of estimates g̃1, . . . , g̃T of g(x).

1: Compute ‖g(x)‖1 and sample i1, . . . , iT ∼ Dg(x) using Lemma 1.

2: For each j ∈ [T], compute g(x)ij and output g̃j = ‖g(x)‖1 sgn(g(x)ij) ·~1ij .

Proposition 5 The classical procedure C-GS(x, T) of Algorithm 4 satisfies the conditions

given on GSample(x, T, 0) in Assumption 1, with time complexity cGS(T, 0) = O((n+T) ·EO).

Proof. By Fact 2, we have E[g̃j | g̃1, . . . , g̃j−1, x] = E[g̃j | x] = g(x) and ‖g̃j‖2 =

‖g(x)‖1 ≤ 3. Line 1 takes time O(n · EO + T), and line 2 takes time O(T · EO). �

Proposition 6 The classical procedure C-GDS(x, e) of Algorithm 5 satisfies the conditions

given on GDSample(x, e, 0) in Assumption 2, with time complexity cGDS(k, 0) = Õ(k · EO).

Y. Hamoudi, P. Rebentrost, A. Rosmanis, and M. Santha 19

Algorithm 5 Classical Gradient Difference Sampling (C-GDS).

Input: x, x + e ∈ [0, 1]n and a cover I = {I1, . . . , Ik′} of (x, x + e) stored in D(x, x + e, I),
where e is k-sparse and k′ ≤ 9k.
Output: an estimate d̃ of g(x+ e)− g(x).

Let u = (‖g(x+ e)Is − g(x)Is‖1)s∈[k′] ∈ Rk′ .

1: Compute ‖u‖1 and sample s ∼ Du using Lemma 1 and the subnorm operation of Propo-
sition 4.

2: Sample i ∼ Dg(x+e)Is−g(x)Is
using the subsampling operation of Proposition 4.

3: Compute g(x+ e)i − g(x)i and output d̃ = ‖u‖1 sgn(g(x+ e)i − g(x)i) ·~1i.

Proof. The value i is distributed according to
‖g(x+e)Is−g(x)Is‖1

‖u‖1 · |g(x+e)i−g(x)i|
‖g(x+e)Is−g(x)Is‖1

=
|g(x+e)i−g(x)i|
‖g(x+e)−g(x)‖1 (since ‖u‖1 = ‖g(x + e) − g(x)‖1). This corresponds to Dg(x+e)−g(x). Conse-

quently, using Fact 2, E[d̃ | x, e] = g(x+ e)− g(x) and ‖d̃‖2 = ‖g(x+ e)− g(x)‖1 ≤ 6. Line 1

takes time O(k(log(n) + EO)), line 2 takes time O(log(n) ·EO) and line 3 takes time O(EO).

�
Finally, we analyze the cost of using the two above procedures in the subgradient descent

algorithm studied in Section 4.

Theorem 4 There is a classical algorithm that, given a submodular function F : 2V →
[−1, 1] and ε > 0, computes a set S̄ such that E[F (S̄)] ≤ minS⊆V F (S)+ ε in time Õ(n3/2/ε2 ·
EO).

Proof. We instantiate Algorithm 3 with the procedures C-GS and C-GDS of Algo-

rithms 4 and 5 respectively, and we choose the input parameters T =
√
n, N = 182n/ε2

and ε0 = ε1 = 0. The data structures needed for C-GS and C-GDS can be updated in time

O(log n) per step (Corollary 2). According to Corollary 1, we obtain an output x̄ such that

E[f(x̄)] ≤ minx f(x)+ε in time Õ
(√

n
ε2

(
n+

∑√n
τ=1 τ

)
· EO

)
= Õ(n3/2/ε2 ·EO). Finally, using

Proposition 1, we can convert x̄ into a set S̄ ⊆ V such that E[F (S̄)] ≤ minS⊆V F (S) + ε in

time O(n log n+ n · EO). �

5.3 Quantum Approximate Submodular Minimization

We conclude the part on quantum approximate submodular minimization by describing the

two procedures Q-GS and Q-GDS for GSample and GDSample respectively that lead to an

Õ(n5/4/ε5/2 · log(1/ε) ·EO) algorithm. Both are based on the following noisy estimator Yu of

any vector u ∈ Rn.

Fact 3 Given a non-zero vector u ∈ Rn, a real Γ > 0 and a set S ⊆ [n] such that Γ ≥ ‖uS‖1,

consider the vector-valued random variable Yu that equals Γ sgn(ui) · ~1i where i ∼ Du(Γ, S).

Then, ‖E[Yu]− u‖1 = |Γ− ‖u‖1| and ‖Yu‖2 = Γ.

In the case of gradient sampling (Assumption 1), we construct T samples from Yg(x) by

using the sampling algorithm of Theorem 1. In the case of gradient difference sampling (As-

sumption 2), we construct one sample from Yg(x+e)−g(x) by using Lemma 2 and the following

evaluation oracle derived from Proposition 4.

Proposition 7 There is a quantum algorithm, represented as a unitary operator O, that

given x, y ∈ [0, 1]n and a k-cover I = {I1, . . . , Ik} of (x, y) stored in D(x, y, I), satisfies

20 Quantum and classical algorithms for approximate submodular function minimization

O(|s〉|0〉) =
∣∣s〉∣∣‖g(y)Is − g(x)Is‖1

〉
, for all s ∈ [k]. The time complexity of this algorithm is

O(log(n) + EO).

The procedures GSample and GDSample are described in Algorithms 6 and 7 respectively.

There is a non-zero probability that the computation of the setup parameters is incorrect.

In this case, we cannot guarantee that Assumptions 1 and 2 are satisfied. Fortunately, the

dependence of the time complexity on the inverse failure probability is logarithmic. Thus, it

will not impact the analysis significantly.

Algorithm 6 Quantum Gradient Sampling (Q-GS).

Input: x ∈ [0, 1]n stored in D(x), an integer T , two reals 0 < ε, δ < 1.
Output: a sequence of estimates g̃1, . . . , g̃T of g(x).

1: Compute the setup parameters (Γ, S,M) using Proposition 2 with input g(x), T , ε/3, δ.
2: Sample i1, . . . , iT ∼ Dg(x)(Γ, S) using Theorem 1 with input g(x), T , (Γ, S,M).

3: For each j ∈ [T], compute g(x)ij and output g̃j = Γ sgn(g(x)ij) ·~1ij .

Proposition 8 The quantum procedure Q-GS(x, T, ε, δ) of Algorithm 6 satisfies the condi-

tions given on GSample(x, T, ε) in Assumption 1 with probability 1 − δ, and time complexity

cGDS(T, ε) = O((
√
nT +

√
n/ε) log(1/δ) · EO).

Proof. Let us denote V the event that the setup parameters (Γ, S,M) computed at line

1 of the algorithm are valid (i.e. they satisfy the properties given in Proposition 2). We have

Pr[V] ≥ 1−δ. According to Theorem 1, if V holds, then i1, . . . , iT are T independent samples

from Dg(x)(Γ, S). Consequently, using Fact 3, we have ‖E[g̃j | x, (Γ, S,M),V] − g(x)‖1 =

|Γ − ‖g(x)‖1| ≤ (ε/3)‖g(x)‖1 ≤ ε and ‖g̃j‖2 ≤ (1 + ε/3)‖g(x)‖1 ≤ 4. Moreover, since

g̃1, . . . , g̃T are independent conditioned on (Γ, S,M), by the law of total expectation ‖E[g̃j |
x, g̃1, . . . , g̃j−1,V] − g(x)‖1 =

∥∥E[E[g̃j | x, (Γ, S,M),V]
∣∣ g̃1, . . . , g̃j−1,V

]
− g(x)

∥∥
1
≤ ε.

Finally, line 1 takes time O((
√
nT +

√
n/ε) log(1/δ) ·EO), line 2 takes time O(

√
nT ·EO), and

line 3 takes time O(T · EO). �

Algorithm 7 Quantum Gradient Difference Sampling (Q-GDS).

Input: x, x + e ∈ [0, 1]n and a cover I = {I1, . . . , Ik′} of (x, x + e) stored in D(x, x + e, I),
where e is k-sparse and k′ ≤ 9k, two reals 0 < ε, δ < 1.
Output: an estimate d̃ of g(x+ e)− g(x).

Let u = (‖g(x+ e)Is − g(x)Is‖1)s∈[k′] ∈ Rk′ .

1: Compute ‖u‖∞ with success probability 1 − δ/2, using Dürr-Høyer’s algorithm [43] and
Proposition 7. Denote the result by M .

2: Compute an estimate Γ of ‖u‖1 with relative error ε/6 and success probability 1 − δ/2,
using Lemma 3 and Proposition 7.

3: Sample s ∼ Du using Lemma 2 on input u and M .
4: Sample i ∼ Dg(x+e)Is−g(x)Is

using the subsampling operation of Proposition 4.

5: Compute g(x+ e)i − g(x)i and output d̃ = Γ sgn(g(x+ e)i − g(x)i) ·~1i.

Proposition 9 The quantum procedure Q-GDS(x, e, ε, δ) of Algorithm 7 satisfies the condi-

tions given on GDSample(x, e, ε) in Assumption 2 with probability 1− δ, and time complexity

cGS(k, ε) = Õ(
√
k/ε · log(1/δ) · EO).

Y. Hamoudi, P. Rebentrost, A. Rosmanis, and M. Santha 21

Proof. Let us denote V the event that Γ and M are valid, i.e. |Γ − ‖g(x + e) −
g(x)‖1| ≤ (ε/6)‖g(x + e) − g(x)‖1 and M = ‖u‖∞. We have Pr[V] ≥ 1 − δ. According to

Lemma 2, if V holds, then s is sampled from Du. In this case, the value i computed at

line 4 is distributed according to
‖g(x+e)Is−g(x)Is‖1

‖u‖1 · |g(x+e)i−g(x)i|
‖g(x+e)Is−g(x)Is‖1

= |g(x+e)i−g(x)i|
‖g(x+e)−g(x)‖1 (since

‖u‖1 = ‖g(x + e) − g(x)‖1). This corresponds to Dg(x+e)−g(x). Consequently, using Fact 3,

‖E[d̃ | x, e,Γ,V]−(g(x+e)−g(x))‖1 =
∥∥ Γ
‖g(x+e)−g(x)‖1 (g(x+e)−g(x))−(g(x+e)−g(x))

∥∥
1

=

|Γ−‖g(x+e)−g(x)‖1| ≤ ε/6‖g(x+e)−g(x)‖1 ≤ ε. Thus, ‖E[d̃ | x, e,V]−(g(x+e)−g(x))‖1 ≤
ε. Moreover, ‖d̃‖2 = Γ ≤ (1 + ε/6)‖g(x + e) − g(x)‖1 ≤ 7. Finally, line 1 takes time

Õ(
√
k · log(1/δ) ·EO), line 2 takes time Õ(

√
k/ε · log(1/δ) ·EO), line 3 takes time O(

√
k ·EO),

and lines 4 and 5 take time Õ(EO). �

Finally, we analyze the cost of using the two above procedures in the subgradient descent

algorithm studied in Section 4. Unlike in the previous section, the time complexities cGS
and cGDS of Q-GS and Q-GDS depend on the accuracy ε. Consequently, it is more efficient

to combine Q-GS with the classical procedure C-GDS when n−1/2 ≤ ε ≤ n−1/6, and to use

Theorem 4 when ε ≤ n−1/2.

Theorem 5 There is a quantum algorithm that, given a submodular function F : 2V →
[−1, 1] and ε > 0, computes a set S̄ such that E[F (S̄)] ≤ minS⊆V F (S)+ε in time Õ(n5/4/ε5/2 ·
log(1

ε) · EO).

Proof. We distinguish two cases, depending on the value of ε. First, if ε ≥ n−1/6,

we instantiate Algorithm 3 with the quantum procedures Q-GS and Q-GDS of Algorithms

6 and 7 respectively. We choose the input parameters T = ε
√
n, N = 722n/ε2, ε0 = ε/4,

ε1 = ε/8 and δ = ε/(8N). According to Corollary 1 and Corollary 2, the run-time is

Õ
(
N
T

(√
nT +

√
n
ε +

∑T
τ=1

√
τ
ε

)
· log(1/δ) · EO

)
= Õ(n5/4/ε5/2 · log(1/ε) · EO). Let us de-

note V the event that all calls to Q-GS and Q-GDS in Algorithm 3 are correct (i.e. they

satisfy Assumptions 1 and 2). By the union bound, Pr[V] ≥ 1 − 2Nδ ≥ 1 − ε/4. More-

over, according to Corollary 1, the output x̄ satisfies E[f(x̄) | V] ≤ f(x?) + 3ε/4, where

x? ∈ argminx f(x). Consequently, E[f(x̄)] = Pr[V] · E[f(x̄) | V] + (1 − Pr[V]) · E[f(x̄) |
V] ≤ 1 · (f(x?) + 3ε/4) + ε/4 · 1 ≤ f(x?) + ε. Finally, using Proposition 1, we can convert x̄

into a set S̄ ⊆ V such that E[F (S̄)] ≤ minS⊆V F (S) + ε in time O(n log n+ n · EO).

If ε ≤ n−1/6, we instantiate Algorithm 3 with the quantum procedure Q-GS of Algo-

rithm 6 and the classical procedure C-GDS of Algorithm 5. We choose the input param-

eters T = n1/4/ε1/2, N = 542n/ε2, ε0 = ε/3, ε1 = 0 and δ = ε/(3N). The run-time is

Õ
(
N
T

((√
nT +

√
n
ε

)
log 1

δ +
∑T
τ=1 τ

)
· EO

)
= Õ(n5/4/ε5/2 · log(1/ε) · EO). The proof of

correctness is similar to the above paragraph. �

Acknowledgements

The work of P.R., A.R. and M.S. was supported by the Singapore National Research

Foundation, the Prime Minister’s Office, Singapore and the Ministry of Education, Singapore

under the Research Centres of Excellence programme under research grant R 710-000-012-

135. The work of Y.H. and M.S. was supported by the QuantERA ERA-NET Cofund project

QuantAlgo and the ANR project ANR-18-CE47-0010 QUDATA. This work was partly done

while Y.H. was visiting CQT.

22 Quantum and classical algorithms for approximate submodular function minimization

References

[1] Lee, Y.T., Sidford, A., Wong, S.C.: A faster cutting plane method and its implications

for combinatorial and convex optimization. In: Proceedings of the 56th Symposium on

Foundations of Computer Science (FOCS). pp. 1049–1065 (2015)

[2] Chakrabarty, D., Lee, Y.T., Sidford, A., Wong, S.C.: Subquadratic submodular function

minimization. In: Proceedings of the 49th Symposium on Theory of Computing (STOC).

pp. 1220–1231 (2017)

[3] Bach, F.: Learning with Submodular Functions: A Convex Optimization Perspective.

Now Publishers (2013)

[4] Krause, A., Cevher, V.: Submodular dictionary selection for sparse representation. In:

Proceedings of the 27th International Conference on Machine Learning (ICML). pp. 567–

574 (2010)

[5] Nagano, K., Kawahara, Y., Aihara., K.: Size-constrained submodular minimization

through minimum norm base. In: Proceedings of the 28th International Conference on

Machine Learning (ICML). pp. 977–984 (2011)

[6] Iyer, R., Bilmes, J.A.: Submodular optimization with submodular cover and submodular

knapsack constraints. In: Proceedings of the 26th Conference on Neural Information

Processing Systems (NIPS). pp. 2436–2444 (2013)

[7] Queyranne, M., Schulz, A.: Scheduling unit jobs with compatible release dates on par-

allel machines with nonstationary speeds. In: Integer Programming and Combinatorial

Optimization (IPCO). pp. 307–320 (1995)

[8] Narayanan, H.: Submodular Functions and Electrical Networks. North-Holland (2009)

[9] Hochbaum, D.: An efficient algorithm for image segmentation, markov random fields and

related problems. Journal of the ACM 48(4), 686–701 (2001)

[10] Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph

cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(11), 1222–

1239 (2001)

[11] Lin, H., Bilmes, J.A.: An application of the submodular principal partition to train-

ing data subset selection. In: Neural Information Processing Society (NIPS) Workshop

(2010), nIPS Workshop on Discrete Optimization in Machine Learning: Submodularity,

Sparsity & Polyhedra (DISCML)

[12] Lovász, L.: Submodular functions and convexity. Mathematical programming: The state

of the art pp. 235–257 (1982)

[13] Grötschel, M., Lovász, L., Schrijver, A.: The ellipsoid method and its consequences in

combinatorial optimization. Combinatorica 1(2), 169–197 (1981)

[14] Cunningham, W.: On submodular function minimization. Combinatorica 5(3), 185–192

(1985)

Y. Hamoudi, P. Rebentrost, A. Rosmanis, and M. Santha 23

[15] Grötschel, M., Lovász, L., Schrijver, A.: Geometric algorithms and combinatorial opti-

mization. Springer (1988)

[16] Schrijver, A.: A combinatorial algorithm minimizing submodular functions in strongly

polynomial time. Journal of Combinatorial Theory, Series 80(2), 346–355 (2000)

[17] Iwata, S., Fleischer, L., Fujishige, S.: A combinatorial strongly polynomial algorithm for

minimizing submodular functions. Journal of the ACM 48(4), 761–777 (2001)

[18] Fujishige, S.: Lexicographically optimal base of a polymatroid with respect to a weight

vector. Mathematics of Operations Research 5(2), 186–196 (1980)

[19] Wolfe, P.: Finding the nearest point in a polytope. Mathematical Programming 11(1),

128–149 (1976)

[20] Aaronson, S.: Read the fine print. Nature Physics 11, 291–293 (2015)

[21] Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., Lloyd, S.: Quantum

machine learning. Nature 549, 195–202 (2017)

[22] Ciliberto, C., Herbster, M., Ialongo, A.D., Pontil, M., Rocchetto, A., Severini, S., Woss-

nig, L.: Quantum machine learning: a classical perspective. Proceedings of the Royal

Society A: Mathematical, Physical and Engineering Sciences 474(2209), 20170551 (2018)

[23] Apeldoorn, J.v., Gilyén, A.: Improvements in quantum SDP-solving with applications.

In: Proceedings of the 46th International Colloquium on Automata, Languages, and

Programming (ICALP). pp. 99:1–99:15 (2019)

[24] Arora, S., Kale, S.: A combinatorial, primal-dual approach to semidefinite programs.

Journal of the ACM 63(2), 12:1–12:35 (2016)

[25] Brandão, F.G.S.L., Svore, K.M.: Quantum speed-ups for solving semidefinite programs.

In: Proceedings of the 58th Symposium on Foundations of Computer Science (FOCS).

pp. 415–426 (2017)

[26] Li, T., Chakrabarti, S., Wu, X.: Sublinear quantum algorithms for training linear and

kernel-based classifiers. In: Proceedings of the 36th International Conference on Machine

Learning (ICML). pp. 3815–3824 (2019)

[27] Clarkson, K., Hazan, E., Woodruff, D.: Sublinear optimization for machine learning.

Journal of the ACM 59(5), 23 (2012)

[28] Apeldoorn, J.v., Gilyén, A.: Quantum algorithms for zero-sum games. Tech. Rep. arXiv:

1904.03180 (2019)

[29] Grigoriadis, M., Khachiyan, L.: A sublinear-time randomized approximation algorithm

for matrix games. Operations Research Letters 18(2), 53–58 (1995)

[30] Jordan, S.P.: Fast quantum algorithm for numerical gradient estimation. Physical Review

Letters 95, 050501 (2005)

24 Quantum and classical algorithms for approximate submodular function minimization

[31] Gilyén, A., Arunachalam, S., Wiebe, N.: Optimizing quantum optimization algorithms

via faster quantum gradient computation. In: Proceedings of the 30th Symposium on

Discrete Algorithms (SODA). pp. 1425–1444 (2019)

[32] Apeldoorn, J.v., Gilyén, A., Gribling, S., de Wolf, R.: Convex optimization using quan-

tum oracles. Tech. Rep. arXiv: 1809.00643 (2018)

[33] Chakrabarti, S., Childs, A.M., Li, T., Wu, X.: Quantum algorithms and lower bounds

for convex optimization. Tech. Rep. arXiv: 1809.01731 (2018)

[34] Hazan, E., Kale, S.: Online submodular minimization. Journal of Machine Learning

Research 13(1), 2903–2922 (2012)

[35] Vose, M.D.: A linear algorithm for generating random numbers with a given distribution.

IEEE Transactions on Software Engineering 17(9), 972–975 (1991)

[36] Axelrod, B., Liu, Y.P., Sidford, A.: Near-optimal approximate discrete and continuous

submodular function minimization. Tech. Rep. arXiv: 1909.00171 (2019)

[37] Harvey, N.J.A.: Matchings, Matroids and Submodular Functions. Ph.D. thesis, Cam-

bridge, MA, USA (2008)

[38] Jegelka, S., Bilmes, J.A.: Online submodular minimization for combinatorial structures.

In: Proceedings of the 28th International Conference on Machine Learning (ICML). pp.

345–352 (2011)

[39] Devroye, L.: Non-Uniform Random Variate Generation. Springer-Verlag (1986)

[40] Bratley, P., Fox, B.L., Schrage, L.E.: A Guide to Simulation. Springer-Verlag, second

edn. (1987)

[41] Walker, A.J.: New fast method for generating discrete random numbers with arbitrary

frequency distributions. Electronics Letters 10(8), 127–128 (1974)

[42] Grover, L.K.: Synthesis of quantum superpositions by quantum computation. Physical

Review Letters 85, 1334–1337 (2000)

[43] Dürr, C., Høyer, P.: A quantum algorithm for finding the minimum. Tech. Rep. arXiv:

9607014 (1996)

[44] Brassard, G., Høyer, P., Mosca, M., Tapp, A.: Quantum amplitude amplification and

estimation. Quantum Computation and Quantum Information: A Millennium Volume 1,

53–74 (2002)

[45] Sanders, Y.R., Low, G.H., Scherer, A., Berry, D.W.: Black-box quantum state prepara-

tion without arithmetic. Physical Review Letters 122, 020502 (2019)

[46] Brassard, G., Høyer, P., Mosca, M., Tapp, A.: Tight bounds on quantum searching.

Fortschritte der Physik 46, 493–505 (1998)

Y. Hamoudi, P. Rebentrost, A. Rosmanis, and M. Santha 25

[47] Duchi, J.C.: Introductory lectures on stochastic optimization. In: The Mathematics of

Data, IAS/Park City Mathematics Series, vol. 25, pp. 99–185. American Mathematical

Society (2018)

[48] Guibas, L.J., Sedgewick, R.: A dichromatic framework for balanced trees. In: Proceed-

ings of the 19th Symposium on Foundations of Computer Science (FOCS). pp. 8–21

(1978)

Appendix A

6 Counterexample to the Gradient Sampling in [2]

Let n = 2, let F : 2[2] → [−1, 1] be a submodular function and let f : [0, 1]2 → R be its Lovász

extension. By definition (see Section 2), the Lovász subgradient of f at x = (x1, x2) ∈ [0, 1]2

is

g(x1, x2) =

{(
F ({1})− F (∅), F ({1, 2})− F ({1})

)
if x1 ≥ x2(

F ({1, 2})− F ({2}), F ({2})− F (∅)
)

if x1 < x2.

Now let us consider a particular submodular function F . Let F (∅) = 0, F ({1}) = − 1
2 ,

F ({2}) = 0, F ({1, 2}) = −1, and therefore

g(x1, x2) =

{
(− 1

2 , −
1
2) if x1 ≥ x2

(−1, 0) if x1 < x2.

The stochastic subgradient descent starts at x(0) = (0, 0), for which we have g(x(0)) =

(− 1
2 ,−

1
2) and ‖g(x(0))‖1 = 1. Hence, with probability 1/2 each, we either have g̃(0) = (−1, 0)

or g̃(0) = (0,−1). Since x(1) := argminx∈[0,1]n‖x−(x(0)−ηg̃(0))‖2 (for some step size parameter

0 < η < 1), it follows that x(1) = (η, 0) or x(1) = (0, η), respectively. Suppose the latter is the

case: g̃(0) = (0,−1) and x(1) = (0, η). Then, the random variable d̃(1) is an estimate of the

subgradient difference d(1) = g(x(1)) − g(x(0)) = (− 1
2 ,

1
2), namely, E[d̃(1) | x(1)] = d(1). Now,

observe that the random variable g̃(1) = g̃(0) + d̃(1) satisfies

E[g̃(1) | x(1)] = E[g̃(0) | x(1)] + E[d̃(1) | x(1)] = g̃(0) + d(1) = (−1/2, −1/2) 6= (−1, 0) = g(x(1)).

Hence, the procedure in [2] that returns g̃(t) is not a valid subgradient oracle. We note

that x(1) = (η, 0) would have led to the same error. This problem can be fixed by defining

g̃(1) = ˜̃g(0) + d̃(1) where ˜̃g(0) is a second estimate of g(x(0)) independent of g̃(0), for instance˜̃g(0) = (−1, 0) or ˜̃g(0) = (0,−1) with probability 1/2 each. In this case, we have E[g̃(1) |
x(1)] = g(0) + d(1) = g(x(1)).

	Introduction
	Submodular Minimization
	Quantum Algorithms for Optimization
	Previous Work
	Our Contributions
	Organization of the Paper
	Recent Improvement
	Open Questions

	Preliminaries
	Quantum Multi-Sampling for Discrete Probability Distributions
	Framework for Approximate Submodular Minimization
	Subquadratic Approximate Submodular Minimization
	Data structures and k-Covers
	Classical Approximate Submodular Minimization
	Quantum Approximate Submodular Minimization

	References
	Counterexample to the Gradient Sampling in CLSW17

