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Abstract
Quantum query complexity is a fundamental model for analyzing the computational power

of quantum algorithms. It has played a key role in characterizing quantum speedups, from
early breakthroughs such as Grover’s and Simon’s algorithms to more recent developments
in quantum cryptography and complexity theory. This manuscript provides a structured
introduction to quantum query lower bounds, focusing on four major techniques: the
hybrid method, the polynomial method, the recording method, and the adversary method.
Each method is developed from first principles and illustrated through canonical problems.
Additionally, the manuscript discusses how the adversary method can be used to derive upper
bounds, highlighting its dual role in quantum query complexity. The goal of this document is
to offer a self-contained exposition accessible to readers with a basic background in quantum
computing, while also serving as an entry point for researchers interested in the study of
quantum lower bounds.

1 Introduction

Query complexity (also known as decision tree complexity) is the study of algorithms that can
access their input solely through an abstract operation, called a query. Unlike other models
of computation (such as circuit complexity or Turing machines), query complexity has been
particularly effective in pinpointing the hardness of various computational problems. Notably, it
has played a crucial role in understanding the power and limitations of quantum computing,
from the early-days quantum algorithms [DJ92; BV97; Sim97; Gro97] to modern applications
in cryptography (e.g., quantum random oracle model). In this respect, it is one of the few
computational models in which exponential quantum speedups have been rigorously established
(e.g., Simon’s problem [Sim97], Welded Tree [CCD+03], Forrelation [BS21; SSW23], Yamakawa-
Zhandry’s problem [YZ24]).

The great success of query complexity lies, in part, in the development of lower-bound methods
that relate the minimum number of queries required to solve a problem to its combinatorial
properties. Together with algorithmic upper bounds, these methods can distinguish between
problems of varying complexity – such as constant, logarithmic, cubic root, square root, etc. –
thereby establishing an unconditional hierarchy of fine-grained complexity classes. However, only
a handful of such methods extend to the quantum setting. Indeed, many intuitive properties of
classical queries do not carry over to quantum queries, which can access the input in superposition.
A foundational step in understanding the limits of quantum queries was taken in the seminal work
of Bennett, Bernstein, Brassard and Vazirani [BBBV97] through the so-called “hybrid method”.
Since then, additional methods have emerged, revealing deep connections between quantum
query complexity and Boolean function analysis, matrix analysis, semidefinite programming, etc.

The goal of this manuscript is to present four of the most prominent and successful methods
for establishing quantum query lower bounds, along with some of their basic applications. The
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properties sought in lower-bound methods are of various types. Of course, they are expected
to reduce the complexity gap with the best-known algorithms, ultimately reaching optimality.
However, this can manifest in different ways. Research in query complexity has been driven
by challenges such as: problems with extremal output conditions (zero error, exponentially
small success probability), query models with physical constraints (noisy queries, bounded
space, short coherence time), query models with advice (QMA query complexity, cryptographic
settings with auxiliary input), strong direct product theorems (complexity of solving multiple
instances of the same problem), composition theorems (relating the complexity of a problem
to the complexities of its components), lifting theorems (transferring query complexity lower
bounds to communication complexity), complexity of “inherently” quantum problems (state
conversion), etc. This manuscript primarily focuses on basic applications and does not delve into
these advanced aspects, though some are supported by the methods presented in the following
sections.

Organization of the manuscript. The study of quantum query complexity requires minimal
prior knowledge of quantum computing. It is nevertheless assumed that the reader is familiar
with the basics of quantum computing (such as Dirac notation and the circuit model), as found
in any standard textbook (e.g., [NC11]). In Section 1.1, we provide a self-contained description
of the computational models used in this document. Section 1.2 outlines the main problems
that we will use later to illustrate the lower-bound methods.

Each of the four subsequent sections is dedicated to a different lower-bound method: hybrid
(Section 2), polynomial (Section 3), recording (Section 4) and adversary (Section 5). The hybrid,
recording and adversary methods belong to the same family of techniques, and it is recommended
to read them in order.

The final section (Section 6) explores a striking property of the adversary method: its
ability to also provide query upper bounds (i.e., quantum algorithms) via the dual of a specific
semidefinite program.

Going further. Complementary introductions to quantum query complexity can be found
in the survey by Buhrman and de Wolf [BW02], and in the lecture notes of de Wolf [Wol19],
Childs [Chi17] and Ben-David [Ben20]. A more advanced treatment of certain lower-bound
techniques is provided in the Ph.D. dissertations of Špalek [Špa06], Belovs [Bel14] and Rosma-
nis [Ros14]. The document will also provide pointers to the scientific literature for readers who
wish to explore further.

Acknowledgments. The content of this manuscript was taught at the IAS/PCMI 2023
summer school over the course of five lectures and four problem sessions (nine hours in total).
The author wants to thank the organizers of the summer school for the invitation and the great
atmosphere throughout the event. The author is also very grateful to Angelos Pelecanos for his
work as a teaching assistant.

1.1 How to Model a Quantum Query Algorithm

There are many variants of query complexity, depending on the computational power given
to the algorithms, the assumptions made about the input and the conditions required for the
output. In this manuscript, we focus on the simple – yet very informative – setup of computing
Boolean functions with bounded-error algorithms, as defined next.

(Binary input alphabet) The input to a query problem is an n-bit string x = x1 . . . xn ∈
{0, 1}n, where each coordinate xi is called the query value on query index i.
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Figure 1: A deterministic algorithm with query complexity 3 computing the Majority function
over three bits (Majority(x1x2x3) = 1 if and only if at least two input bits are equal to one).

(Decision problems) A query problem associates with each input x a unique solution f(x)
specified by a Boolean function f : {0, 1}n → {0, 1}.

(Worst-case output condition) An algorithm is said to compute f if it correctly outputs f(x)
with probability at least 2/3 for all inputs x.

The complexity of an algorithm will be measured by the number of queries made to the
input x. For a classical algorithm, a query consists of revealing the value of a coordinate xi for
an index i chosen by the algorithm. For a quantum algorithm, the definition of a query is more
subtle and will be given later. The query complexity of a function f is the smallest number of
queries needed among all algorithms computing f .

We briefly define the two models of classical query complexity – deterministic and randomized –
that are most studied in the literature. A deterministic query algorithm can be conveniently
represented as a binary decision tree, where each node corresponds to a query and each leaf to an
output (see Figure 1) – hence the alternative name of decision tree complexity. Since the output
is deterministic, the condition for such an algorithm to compute f is to always output f(x). A
randomized query algorithm also has the ability to make random choices, which is equivalent to
having a distribution over decision trees. In that case, the output condition allows the algorithm
to output the wrong value with probability at most 1/3.

Definition 1 (Deterministic and randomized query complexities). A deterministic query algo-
rithm with query complexity T is a rooted, ordered binary tree of depth T , where each internal
node is labeled with an index i ∈ {1, . . . , n}, and each leaf is labeled with a Boolean value. The
output of the algorithm on an input x ∈ {0, 1}n is the value of the leaf obtained by starting at
the root and, recursively, moving to the left child when xi = 0 or to the right child when xi = 1,
where i is the label of the current node.

A randomized query algorithm with query complexity T is a distribution over deterministic
query algorithms with query complexity T . The output of the algorithm on an input x is the
random value obtained by sampling a deterministic query algorithm according to the distribution
and evaluating it on x.

The deterministic (resp. randomized) query complexity D(f) (resp. R(f)) of a Boolean
function f : {0, 1}n → {0, 1} is the smallest integer T such that there exists a deterministic (resp.
randomized) query algorithm computing f with query complexity T .

It is important to remember that non-query operations are not counted toward the complexity
of an algorithm. Hence, a function can have low query complexity but require a large effective
computation time. However, for most problems of interest, it is observed that the query
complexity is a good proxy for their actual difficulty. The query complexity is nevertheless
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limited to be at most n in the above models, since it always suffices to retrieve the entire input
with n queries and apply f on it (this computation can be represented by the perfect binary
tree of depth n).

Fact 2. For all functions f : {0, 1}n → {0, 1}, we have R(f) ≤ D(f) ≤ n.

The first question to address in defining a model of quantum query complexity is: how is the
algorithm given access to the input? If we kept the same query operator as before (by letting the
algorithm observe a single coordinate at a time), then the query complexity would be identical
to that in the randomized model. Indeed, the non-query operations could simply be simulated
by a classical algorithm (even if they are quantum), since their cost is not part of the query
complexity anyway. Hence, the query operator must be “truly quantum” to make the model
interesting. This is achieved by the following quantum oracles, which have the ability to query
multiple coordinates in superposition.

Definition 3 (Quantum query operators). Consider the Hilbert space of dimension 2n spanned
by the vectors |i, b⟩ where i ∈ {1, . . . , n} and b ∈ {0, 1}. Given an input x ∈ {0, 1}n, we define
the two following quantum unitary operators Ox and O±

x :

Binary oracle Phase oracle

Ox|i, b⟩ = |i, b⊕ xi⟩ O±
x |i, b⟩ = (−1)bxi |i, b⟩

where ⊕ is the XOR operation. The register holding i is called the index register, and the register
holding b is the value register. We say that an algorithm makes a quantum query to x whenever
it applies Ox or O±

x .

The first oracle Ox is the most natural extension of the classical query operator. It writes
down the value of the query in an extra register in a reversible manner, and it can act on
superpositions: Ox

(∑
i,b αi,b|i, b⟩

)
=
∑

i,b αi,b|i, b ⊕ xi⟩ for any amplitudes αi,b. The second
oracle O±

x encodes the query result into the phase rather than into a quantum register, which is
sometimes more convenient for use in applications. This modification makes no change to the
query complexity since the two oracles can simulate each other efficiently, by conjugation with a
Hadamard gate.

Fact 4 (Equivalence between binary and phase oracles). We have the following equality,

O±
x = (Id⊗H)Ox(Id⊗H)

where H is the Hadamard gate. In particular, any quantum algorithm that makes T quantum
queries to x using Ox can be perfectly simulated by an algorithm that makes the same number T
of queries but using O±

x (and vice-versa).

We now incorporate the quantum query operator into the definition of quantum algorithms.
Since query complexity concerns only the number of query operations, we can drastically simplify
the model: all operations performed between two queries (including intermediate measurements
– by the deferred measurement principle) can be grouped together into a single unitary.

In general, an algorithm may need some extra workspace beyond the ⌈log n⌉+ 1 qubits used
for the query register |i, b⟩. However, the size (or existence) of this extra memory plays no role in
the lower-bound methods that will be presented in this document (in fact, it is a major research
challenge to find query lower-bound methods that are also sensitive to space constraints). Hence,
for the ease of notation, we will only be considering memoryless algorithms that need no extra
registers beyond |i, b⟩ (an example of such an algorithm is Grover’s search).

We summarize the quantum query model in the next definition. The reader can also refer to
the picture in Figure 2, which illustrates a quantum query algorithm in the quantum circuit
formalism.
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Figure 2: Canonical form of a (memoryless) quantum query algorithm.

Definition 5 (Canonical form of a memoryless quantum query algorithm). A memoryless
quantum query algorithm with query complexity T is a sequence U0, . . . , UT of unitary operators
acting on the Hilbert space spanned by the vectors |i, b⟩ where i ∈ {1, . . . , n} and b ∈ {0, 1}.

The intermediate state |ψtx⟩ of the algorithm after t ∈ {0, . . . , T} queries on the input x is
defined as,

|ψtx⟩ = UtOxUt−1Ox . . . U1OxU0|0, 0⟩.

The final state of the algorithm is |ψTx ⟩ and its output is the random bit obtained by measuring
the value register of that state in the standard basis. Hence, the output is 0 with probability
∥(Id⊗ |0⟩⟨0|)|ψTx ⟩∥2 and 1 with probability ∥(Id⊗ |1⟩⟨1|)|ψTx ⟩∥2 = 1− ∥(Id⊗ |0⟩⟨0|)|ψTx ⟩∥2. The
success probability psucc of the algorithm in computing a function f is the smallest probability
with which the algorithm outputs the correct value on any input: psucc = minx∈{0,1}n∥(Id ⊗
|f(x)⟩⟨f(x)|)|ψTx ⟩∥2. The algorithm is said to compute f if psucc ≥ 2/3.

In the above definition, we made the arbitrary choice that the algorithm always starts in the
state |0, 0⟩ and writes its output into the value register. Finally, the quantum query complexity
of a Boolean function is defined as the smallest query complexity among the algorithms that
compute that function.

Definition 6 (Quantum query complexity). The quantum query complexity Q(f) of a Boolean
function f : {0, 1}n → {0, 1} is the smallest integer T such that there exists a quantum algorithm
computing f with query complexity T .

It is always possible to simulate a classical query on an index i by querying Ox|i, 0⟩ = |i, xi⟩
and measuring the value register. Hence, the quantum query complexity is always less than
or equal to the randomized complexity (though it may require considering non-memoryless
quantum algorithms).

Fact 7. For all functions f : {0, 1}n → {0, 1}, we have Q(f) ≤ R(f).

We end this section by listing a few basic properties of the operator norm, which are used
extensively in the analysis of quantum query lower bounds.

Lemma 8 (Properties of the operator norm). Let ∥.∥ denote both the Euclidean vector norm
∥|ψ⟩∥ =

√∑
x|ψx|2, and the induced matrix norm ∥A∥ = maxψ:∥|ψ⟩∥=1∥A|ψ⟩∥ (spectral norm)

over the same Hilbert space. Then, the following properties hold,

(Triangle inequality) ∥|ψ1⟩+ |ψ2⟩∥ ≤ ∥|ψ1⟩∥+ ∥|ψ2⟩∥ for any vectors |ψ1⟩, |ψ2⟩,

(Cauchy–Schwarz inequality) |⟨ψ1 |ψ2⟩| ≤ ∥|ψ1⟩∥ · ∥|ψ2⟩∥ for any vectors |ψ1⟩, |ψ2⟩,

(Unitary invariance) ∥U |ψ⟩∥ = ∥|ψ⟩∥ for any unitary U and vector |ψ⟩,

(Submultiplicativity) ∥A|ψ⟩∥ ≤ ∥A∥ · ∥|ψ⟩∥ for any matrix A and vector |ψ⟩.
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1.2 Functions of interest

We list a few examples of functions that will serve as applications for the lower-bound methods
later in the manuscript. A problem is well suited for query complexity when its difficulty resides
in collecting sufficient information about its input (and not, for instance, into some pre- or
post-processing operations). Of course, not all problems fall into this category. However, it is
often the case that part of their solution involves solving a subproblem encountered in query
complexity. A good example is Shor’s factoring algorithm, whose core component is a quantum
query algorithm for the Period-finding problem. In that case, quantum query complexity may
still be helpful in understanding whether a subroutine is optimal or not.

OR and Search. The OR function returns one if and only if the input x ∈ {0, 1}n contains
at least one bit equal to one. This is arguably one of the most studied problem in quantum
query complexity. The celebrated Grover’s algorithm [Gro97] can compute it quadratically faster
than any classical algorithm. The proof of its optimality will serve as a guiding application
throughout this document. An extension of that problem – the Search problem – asks to locate
an index i such that xi = 1 when it exists. It turns out to be no more difficult than the decision
problem.

Collision. The Collision problem asks to decide if the input contains two coordinates with
the same value xi = xj (or to locate the indices of such coordinates). In order to make sense of
this, the input alphabet must be increased beyond the Boolean domain, which we describe in
Section 4. The Collision problem has been instrumental in the development of new quantum
lower-bound methods, and it is studied heavily for its applications in cryptography as well.

Parity and Majority. The Parity function returns one if and only if the input x ∈ {0, 1}n
has an odd number of bits equal to one. It is an example of a problem for which no significant
quantum speedup is possible (the query complexity decreases by a factor of two only). Another
example of such a function is Majority, which returns the Boolean value that appears the
most often in the input.

Connectivity. The Connectivity function views the input x ∈ {0, 1}(
n
2) as the adjacency

matrix of an undirected graph over n vertices, and it returns one if and only if that graph is
connected. We will show how lower-bound methods have also led to the development of new
quantum algorithms for this problem.

AND-OR tree. The AND-OR tree function is a composed function acting on n = m2 bits,
which applies the OR function to the m consecutive blocks of m input bits, followed by the AND
function on the results: AND(OR(x1, . . . , xm),OR(xm+1, . . . , x2m), . . . ,OR(xn−m+1, . . . , xn)).
The composition structure of this problem makes it possible to analyze its complexity in a very
automated way, by simply multiplying the complexities of the OR and AND functions. This
will result from the composition properties of the adversary method detailed in Sections 5 and 6.

Total vs. partial functions. The functions studied in this document share a common
property: their input x can take any value in the Boolean hypercube {0, 1}n. This necessitates
restricting ourselves to problems that can be represented by functions f whose domain is the
entire set {0, 1}n. Such functions are called total, in contrast to partial functions, which are only
defined on a proper subset of {0, 1}n to which x is promised to belong. The lower-bound methods
presented in this manuscript can be adapted to handle partial functions as well (except the
recording method). There is, however, a major difference between partial and total functions in
terms of the achievable gaps between Q(f), R(f) and D(f). While the gaps can be exponential
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for partial functions (e.g., Deutsch–Jozsa’s problem [DJ92], Simon’s problem [Sim97], Welded
Tree [CCD+03]), they are at most polynomial for total functions. This comes from very generic
lower bounds exploiting the absence of structure in the input to total functions. We state these
results below for the sake of concreteness. Weaker versions of these statements will be discussed
later in the manuscript as well.

Proposition 9 (Relations between query complexities of total functions). For any total func-
tion f : {0, 1}n → {0, 1}, the gaps between its deterministic, randomized and quantum query
complexities are at most,

D(f) = O(R(f)3) [Nis91], R(f) = O(Q(f)4) [ABK+21].

Moreover, there exist some functions f, g, h : {0, 1}n → {0, 1} that achieve the next gaps,

D(f) = Ω̃(R(f)2) [ABB+17], D(g) = Ω̃(Q(g)4) [ABB+17], R(h) = Ω̃(Q(h)3) [BS21; SSW23].

These results indicate that, for total functions, the best possible speedup is at most cubic in
the randomized vs. deterministic setting and at most quartic in the quantum vs. deterministic
or randomized settings. While Grover’s search is an example of a quadratic speedup for the
quantum vs. randomized setting, there are recent examples of total functions [BS21; SSW23]
exhibiting a cubic speedup. It is still an open question to find a super-cubic speedup for the
quantum vs. randomized setting, or to show that R(f) = O(Q(f)3).

2 The Hybrid Method

The hybrid method is the first lower-bound technique we present in this document. It originates
from the work of Bennett, Bernstein, Brassard and Vazirani [BBBV97] on the limits of quantum
computers for solving NP problems. This foundational result precluded the existence of a
super-quadratic speedup for the OR function. Later, Grover complemented this lower bound
with the celebrated quantum search algorithm [Gro97], showing that the optimal speedup for
OR is indeed quadratic.

The hybrid method gave rise to a broader family of lower-bound methods known as “adver-
sarial”. We will develop two other such methods later in the manuscript (Sections 4 and 5).

2.1 Technique

The hybrid method consists of tracking the distance (or, equivalently, the angle) between the
intermediate states of an arbitrary quantum query algorithm on two inputs x, y leading to two
different outcomes f(x) ̸= f(y). While this distance is initially zero (since the algorithm always
starts in the same state, irrespectively of the input), it should progressively increase during the
computation to get closer to one if the algorithm is successful (in order for the final states to
be distinguishable). The challenge resides in upper bounding how far each quantum query can
take the two states apart. Intuitively, the most important indices to query are those where the
inputs differ xi ≠ yi. The hybrid method shows precisely that the increase is governed by the
total amplitude of such indices in the quantum query.

Theorem 10 (Hybrid method). Consider a quantum algorithm that computes a function
f : {0, 1}n → {0, 1} in doing T queries to its input. Let |ψtx⟩ denote the intermediate states
of that algorithm after t ∈ {0, . . . , T} queries on the input x ∈ {0, 1}n. Then, for any two
inputs x, y ∈ {0, 1}n, we have:

• (Initial condition) ∥|ψ0
x⟩ − |ψ0

y⟩∥ = 0,
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• (Progress evolution) ∥|ψt+1
x ⟩ − |ψt+1

y ⟩∥ ≤ ∥|ψtx⟩ − |ψty⟩∥ + 2 min
z∈{x,y}

∥∥(∑i:xi ̸=yi |i⟩⟨i| ⊗

Id)|ψtz⟩
∥∥,

• (Final condition) If f(x) ̸= f(y) then ∥|ψTx ⟩ − |ψTy ⟩∥ ≥ 1/3.

Proof of the initial and final conditions. The initial condition is immediate as the states are
independent of the inputs: |ψ0

x⟩ = |ψ0
y⟩ = U0|0, 0⟩. For the final condition, by applying the

Cauchy–Schwarz inequality, we have:

∥|ψTx ⟩ − |ψTy ⟩∥2 = 2
(
1− Re(⟨ψTx |ψTy ⟩)

)
= 2
(
1−

∑
b∈{0,1}

Re(⟨ψTx | (Id⊗ |b⟩⟨b|) |ψTy ⟩)
)

≥ 2
(
1−

∑
b∈{0,1}

∥(Id⊗ |b⟩⟨b|)|ψTx ⟩∥ · ∥(Id⊗ |b⟩⟨b|)|ψTy ⟩∥
)
.

Suppose, without loss of generality, that f(x) = 0 and f(x) = 1. Then, the correctness
of the algorithm implies ∥(Id ⊗ |0⟩⟨0|)|ψTx ⟩∥2 ≥ 2/3 and ∥(Id ⊗ |1⟩⟨1|)|ψTy ⟩∥2 ≥ 2/3. Hence,
∥|ψTx ⟩ − |ψTy ⟩∥2 ≥ 2(1− 2

√
2/3) ≥ 1/9.

Proof of the progress evolution. The values of x and y are interchangeable in the proof, hence
it is sufficient to consider the case where the minimum is achieved by z = x in the progress
evolution. By definition, the states of the algorithm at two consecutive time steps satisfy
|ψt+1
x ⟩ = Ut+1Ox|ψtx⟩ and |ψt+1

y ⟩ = Ut+1Oy|ψty⟩. We obtain that,

∥|ψt+1
x ⟩ − |ψt+1

y ⟩∥ = ∥Ut+1(Ox −Oy)|ψtx⟩+ Ut+1Oy(|ψtx⟩ − |ψty⟩)∥
≤ ∥Ut+1(Ox −Oy)|ψtx⟩∥+ ∥Ut+1Oy(|ψtx⟩ − |ψty⟩)∥ (triangle inequality)

= ∥(Ox −Oy)|ψtx⟩∥+ ∥|ψtx⟩ − |ψty⟩∥. (unitary invariance of the norm)

The oracles Ox and Oy coincide when the query register holds an index i such that xi = yi. Hence,
(Ox −Oy)|ψtx⟩ = (Ox −Oy)(

∑
i:xi ̸=yi |i⟩⟨i| ⊗ Id)|ψtx⟩. Using that ∥Ox −Oy∥ ≤ ∥Ox∥+ ∥Oy∥ ≤ 2

and the submultiplicativity of the norm, we conclude that ∥(Ox−Oy)|ψtx⟩∥ ≤ 2
∥∥(∑i:xi ̸=yi |i⟩⟨i|⊗

Id)|ψtx⟩
∥∥.

The quantity
∥∥(|i⟩⟨i| ⊗ Id)|ψtx⟩

∥∥2 is sometimes called the query weight of i in the state |ψtx⟩,
as it corresponds to the probability of measuring that index in the query register of |ψtx⟩. A
direct corollary to the hybrid method says that an algorithm must put a sufficiently large query
weight on indices where xi ̸= yi if it wants to successfully distinguish between the two inputs.

Corollary 11. Consider a quantum algorithm that computes a function f : {0, 1}n → {0, 1} in
doing T queries to its input. Let x, y ∈ {0, 1}n be any two inputs such that f(x) ̸= f(y). Then,

the query weights must obey the inequality
∑T−1

t=0

√∑
i:xi ̸=yi

∥∥(|i⟩⟨i| ⊗ Id)|ψtx⟩
∥∥2 ≥ 1/6.

The quantity 1
T

∑T−1
t=0

∑
i:xi ̸=yi

∥∥(|i⟩⟨i| ⊗ Id)|ψtx⟩
∥∥2 is often more convenient to manipulate

as it has an operational meaning: it represents the probability of finding a witness index i
that distinguishes between x and y when the query register is measured at a random step of
the algorithm. By combining the above corollary with the Cauchy–Schwarz inequality, this
probability must be at least 1/(6T 2) for the algorithm to succeed. In comparison, one can easily
show that for randomized algorithms this probability is at least Ω(1/T ).
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Why is it called “hybrid”? The hybrid method has another formulation that comes handy, for
instance, in security proofs for cryptographic protocols. It states that, in an arbitrary algorithm,
replacing a single unitary step U with another U ′ induces an error of at most ∥(U − U ′)|ψ⟩∥,
where |ψ⟩ is the state of the algorithm right before the perturbation occurs. One can recover
Corollary 11 by considering a sequence of hybrid algorithms UTOyUT−1 . . .OyUtOx . . . U1OxU0

where the oracle behaves as Ox until the t-th query, after which it switches to Oy. The
error between two consecutive hybrids is at most ∥(Ox −Oy)UtOx . . . U1OxU0|0, 0⟩∥ = ∥(Ox −
Oy)|ψtx⟩∥ ≤ 2

∥∥(∑i:xi ̸=yi |i⟩⟨i| ⊗ Id)|ψtx⟩
∥∥. The interested reader can find more details in a survey

by Vazirani [Vaz98].

2.2 Applications

We describe two canonical applications to the hybrid method, for problems whose output is
sensitive to a small perturbation of their input.

Application 1: The OR function. Our first application is to recover the original quantum
lower bound Q(OR) = Ω(

√
n) for the OR function. In order to use Theorem 10, we must find

a way to bound the term
∥∥(∑i:xi ̸=yi |i⟩⟨i| ⊗ Id)|ψtx⟩

∥∥ appearing in the progress evolution. This
amounts to find pairs of inputs (x, y) with f(x) ̸= f(y) such that the query weight increases
slowly on the bits that differ between the two inputs.

The crucial idea is to focus the analysis on the all-0 input x(0) = (0, . . . , 0) and the 1-sparse
inputs y(1) = (1, 0, . . . , 0), y(2) = (0, 1, 0, . . . , 0), . . . , y(n) = (0, . . . , 0, 1). The merit of that choice
is to simplify the progress evolution into:

∥|ψt+1
x(0)
⟩ − |ψt+1

y(i)
⟩∥ ≤ ∥|ψt

x(0)
⟩ − |ψt

y(i)
⟩∥+ 2

∥∥(|i⟩⟨i| ⊗ Id)|ψt
x(0)
⟩
∥∥

since x(0) and y(i) differ only on the bit at position i. We claim that, on average over i, the
query weight

∥∥(|i⟩⟨i| ⊗ Id)|ψt
x(0)
⟩
∥∥2 is 1/n. Indeed,

∑n
i=1

∥∥(|i⟩⟨i| ⊗ Id)|ψt
x(0)
⟩
∥∥2 = 1 since the

states (|i⟩⟨i| ⊗ Id)|ψt
x(0)
⟩ are orthogonal. Hence, it requires T = Ω(

√
n) queries to progress from

∥|ψ0
x(0)
⟩ − |ψ0

y(i)
⟩∥ = 0 (initial condition) to ∥|ψT

x(0)
⟩ − |ψT

y(i)
⟩∥ ≥ 1/3 (final condition). We make

this argument more formal below.

Proposition 12. The quantum query complexity of the OR function is at least Q(OR) ≥
√
n/6.

Proof. Consider any quantum algorithm that computes the OR function in doing some number T
of queries. Define the progress measure after t ∈ {0, . . . , T} queries as:

∆t =
n∑
i=1

∥|ψt
x(0)
⟩ − |ψt

y(i)
⟩∥

where |ψt
x(0)
⟩ (resp. |ψt

y(i)
⟩) is the state of the algorithm after t queries on input x(0) (resp. y(i)).

By Theorem 10, the progress must be ∆0 = 0 initially and at least ∆T ≥ n/3 at the
end because f(x(0)) ̸= f(y(i)) for all i. At each query, the progress increases by at most
∆t+1 ≤ ∆t + 2

∑n
i=1

∥∥(|i⟩⟨i| ⊗ Id)|ψt
x(0)
⟩
∥∥ ≤ ∆t + 2

√
n, since

∑n
i=1

∥∥(|i⟩⟨i| ⊗ Id)|ψt
x(0)
⟩
∥∥ ≤√

n
∑n

i=1

∥∥(|i⟩⟨i| ⊗ Id)|ψt
x(0)
⟩
∥∥2 =

√
n by the Cauchy–Schwarz inequality. Hence, n/3 ≤ ∆T ≤

2T
√
n and we necessarily have T ≥

√
n/6.

The hybrid method is optimal in the case of the OR function, as Grover’s algorithm [Gro97]
provides a matching O(

√
n) upper bound. A careful inspection of that algorithm reveals that

its query weights on the inputs y(i) are ∥(|i⟩⟨i| ⊗ Id)|ψt
y(i)
⟩∥2 ≈ t2/n. Hence, it falls close to the

lower bound stated in Corollary 11 since
∑T−1

t=0

√
t2/n = O(1) when T = O(

√
n).
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Application 2: Block sensitivity. Our second application relates the query complexity and
the block sensitivity of a Boolean function. The block sensitivity is a combinatorial measure of
complexity introduced by Nisan [Nis91] that generalizes the notion of sensitivity. Informally, this
is the largest number of disjoint bit flips of the input that can change the output of the function.

Definition 13 (Block sensitivity). The block sensitivity bs(f) of a function f : {0, 1}n → {0, 1}
is the largest integer s such that there exist an input x ∈ {0, 1}n and s disjoint subsets
B1, . . . , Bs ⊆ {1, . . . , n} satisfying f(xBj ) ̸= f(x) for all 1 ≤ j ≤ s, where xBj ∈ {0, 1}n is
defined by xBj

i = 1− xi when i ∈ Bj and xBj

i = xi otherwise.

One can check that the block sensitivity is maximal (i.e., equal to n) for the OR, AND and
Parity functions for instance. This is proved by observing that the output value is flipped on
each block Bj = {j} when the input is, respectively, x = 0n, x = 1n and x ∈ {0, 1}n.

An interesting example of a function with lower block sensitivity, due to Rubinstein [Rub95],
is constructed as follows. Suppose that n = m2 is a square number and m is even. First, define
the function g : {0, 1}m → {0, 1} on m bits such that g(x) = 1 when all coordinates of x are zero
except at two consecutive indices (i.e., x2j = x2j+1 = 1 for some j). Next, consider the composed
function f = OR • g that applies g to the m consecutive substrings of size m in x ∈ {0, 1}n and
that returns the OR of the results, i.e., f(x) = OR(g(x1, . . . , xm), . . . , g(xn−m+1, . . . , xn)). The
block sensitivity of f is easily shown to be bs(f) = n/2. The input achieving that optimum is
the all-0 string with the blocks Bj = {2j, 2j + 1} for all j ∈ {0, . . . , n/2− 1}. If the blocks were
restricted to be of size one (which results in the sensitivity of f), then the optimum would only
be
√
n.

The block sensitivity was identified by Nisan as characterizing the complexity of computing a
function in a certain model of parallel computation. He also described the following connection
with classical query complexity.

Proposition 14 (Lemma 4.2 in [Nis91]). The randomized query complexity of any function
f : {0, 1}n → {0, 1} is at least R(f) ≥ bs(f)/3.

Proof. The proof is by contradiction. Let x be an input on which f attains its block sensitivity,
and consider s = bs(f) disjoint blocks B1, . . . , Bs with f(xBj ) ̸= f(x) for all j. Suppose that
the algorithm makes less than s/3 queries. Then, on input x, there is a block Bj of indices that
is queried with probability less than 1/3. When the algorithm does not query that block, it
must be wrong with probability at least 1/2 either on input x or xBj (since it cannot distinguish
between the two). Hence, the algorithm fails with probability at least (1− 1/3) · 1/2 = 1/3 on
some input.

The hybrid method helps us show a quantum lower bound in terms of the block sensitivity as
well. Another proof of this result will be given later using the polynomial method (Proposition 31).

Proposition 15. The quantum query complexity of any function f : {0, 1}n → {0, 1} is at
least Q(f) ≥

√
bs(f)/6.

Proof. We proceed similarly to the proof of Proposition 12. First, we identify a hard set of inputs:
fix x ∈ {0, 1}n and s = bs(f) disjoint subsets B1, . . . , Bs ⊆ {1, . . . , n} such that f(xBj ) ̸= f(x).
Next, we define the progress measure after t queries as: ∆t =

∑s
j=1∥|ψtx⟩ − |ψtx(Bj)

⟩∥. By
Theorem 10, the initial and final conditions imply that ∆0 = 0 and ∆T ≥ s/3. Moreover, the
progress increases by at most

∆t+1 ≤ ∆t + 2
s∑
j=1

∥∥(∑
i∈Bj

|i⟩⟨i| ⊗ Id)|ψtx⟩
∥∥

since x and x(Bj) differ only on the bits in Bj . We conclude the proof using the Cauchy–Schwarz

inequality again:
∑s

j=1

∥∥(∑i∈Bj
|i⟩⟨i|⊗Id)|ψtx⟩

∥∥ ≤√s∑s
j=1

∥∥(∑i∈Bj
|i⟩⟨i| ⊗ Id)|ψtx⟩

∥∥2 ≤ √s.
10



The two above propositions give the best dependence on bs(f) that one can hope for in general.
This is witnessed by the OR function that saturates the bounds: R(OR) = Θ(n) = Θ(bs(OR))
and Q(OR) = Θ(

√
n) = Θ(

√
bs(OR)). In general, however, the block sensitivity may not be

equal to the query complexity. There is at most a cubic gap with the deterministic complexity

D(f) = O(bs(f)3)

(see [BBC+01, Lemma 5.3] for an algorithm). Together with Proposition 15, it leads to the
polynomial relationship Q(f) ≤ D(f) = O(Q(f)6) between the deterministic and quantum query
complexity of any function f . It is a major open problem to show whether D(f) = O(bs(f)2).

3 The Polynomial Method

The polynomial method was introduced in a work by Beals, Buhrman, Cleve, Mosca and de
Wolf [BBC+01]. It establishes a deep connection between quantum query complexity and the
approximation of real functions by low-degree polynomials. One of its great successes was the
first optimal lower bound for the Collision problem by Aaronson and Shi [AS04].

This method tends to differ from the other techniques presented in this document, as it
does not involve analyzing the increase of a progress measure under each query. Instead, it
directly relates the existence of a T -query algorithm computing f to the existence of a 2T -degree
multilinear polynomial approximating f . The primary difficulty lies in lower bounding the
degree of such multilinear polynomials, which is purely a matter of Boolean function analysis.
In Section 3.2, we will introduce some central tools that can be used to address this challenge.

The theory of polynomial approximation is also instrumental in the design of quantum
algorithms, such as in the Quantum Singular Value Transformation framework [GSLW19] or in
obtaining a converse to the polynomial method [ABP19].

3.1 Technique

We are interested in polynomials with n variables that are evaluated on Boolean inputs
x1, . . . , xn ∈ {0, 1}. We need only consider multilinear polynomials since x2i = xi when xi
is Boolean. A multilinear polynomial has the following expression.

Definition 16. A real, multilinear polynomial over the variables x1, . . . , xn is a polynomial of
the form

p(x1, . . . , xn) =
∑

S⊆{1,...,n}

aS
∏
i∈S

xi

with real coefficients aS ∈ R. The degree of p is the size of the largest subset S ⊆ {1, . . . , n}
with a non-zero coefficient: deg(p) = maxaS ̸=0|S|.

A fundamental result of Boolean function analysis is the ability to represent any function
acting on the Boolean hypercube as a multilinear polynomial. Moreover, this representation is
unique.

Lemma 17. For any function f : {0, 1}n → R, there exists a unique multilinear polynomial pf
over the variables x1, . . . , xn such that f(x) = pf (x) for all x ∈ {0, 1}n.

Proof. We construct a multilinear polynomial pf that coincides with f . The proof of uniqueness is
left to the reader. We start with indicator functions. For any y ∈ {0, 1}n, let 1y : {0, 1}n → {0, 1}
denote the indicator function that evaluates to 1 if and only if the input is x = y. The multilinear
polynomial py(x) =

∏
i:yi=1 xi

∏
i:yi=0(1− xi) coincides with 1y on all Boolean inputs. If f is an

arbitrary function, it suffices to take the linear combination pf (x) =
∑

y∈{0,1}n f(y)py(x).
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There are several measures of complexity associated with the polynomial representation of a
Boolean function. It is often relevant to also consider the polynomials that are at a small distance
from f . Here, we will be considering the exact degree deg(f) = deg(pf ), and the approximate
degree d̃eg(f) obtained by minimizing over all polynomials that pointwise approximate f .

Definition 18 (Exact and approximate degrees). Consider a Boolean function f : {0, 1}n →
{0, 1}. The (exact) degree deg(f) of f is the degree of its multilinear polynomial representation:
deg(f) = deg(pf ). The approximate degree d̃eg(f) of f is the smallest integer d such that there
exists a polynomial p of degree d that approximates f in the sense

|p(x)− f(x)| ≤ 1/3

for all x ∈ {0, 1}n.

Notice that the exact degree is always at most n, and the approximate degree is less than or
equal to it. On the other hand, it was recently established [ABK+21, Theorems 1 and 18] that
the gap between the two quantities is at most quadratic,

d̃eg(f) ≤ deg(f) ≤ min{n, 9d̃eg(f)2}. (1)

The OR function provides an example that saturates this bound (a direct proof of the lower
bound d̃eg(OR) = Ω(

√
n) will be given in Proposition 29).

Proposition 19 (Example 3.11 in [NS94]). The exact and approximate degrees of the OR
function satisfy, respectively, deg(OR) = n and d̃eg(OR) = O(

√
n).

Proof. The exact degree of OR is easily obtained from the fact that its polynomial representation
is OR(x1, . . . , xn) = 1− (1− x1)(1− x2) . . . (1− xn).

For the approximate degree, we observe that it suffices to construct a univariate polyno-
mial q(z) of degree O(

√
n) such that q(0) ∈ [0, 1/3] and q(z) ∈ [2/3, 1] for all z ∈ {1, . . . , n}.

Indeed, the multivariate polynomial p(x) = q(x1 + · · · + xn) is an approximation of the OR
function of degree deg(p) ≤ deg(q). The desired polynomial q can be obtained out of the k’th
Chebyshev polynomial Tk(z) of degree k = O(

√
n), by choosing q(z) = aTk(bz) + c for some

constants a, b, c ∈ R. The construction is detailed in [NS94] or [BT22, Lemma 7].

One can expect that the functions with high degrees are harder to compute. A result in that
direction is easy to establish for the deterministic and randomized query complexities.

Proposition 20. The deterministic and randomized query complexities of any function f :
{0, 1}n → {0, 1} satisfy, respectively, D(f) ≥ deg(f) and R(f) ≥ d̃eg(f).

Proof. We first consider the case of deterministic query algorithms. By Definition 1, there exists
a decision tree of depth T = D(f) computing f . We construct from this tree a polynomial of
degree at most T over the variables x1, . . . , xn that coincides with the output of the tree. The
proof proceeds by induction on the depth. If the tree consists of a single leaf (T = 0), the
algorithm makes no query and the polynomial is the constant output associated with the leaf.
For depth T ≥ 1, let i be the index queried at the root of the tree and pL (resp. pR) be the
polynomial of degree at most T − 1 constructed recursively for the left (resp. right) subtree of
the root. Then, the polynomial p = (1−xi)pL+xipR is of degree at most T and p(x) = f(x) for
all x ∈ {0, 1}n. We conclude that deg(f) ≤ deg(p) ≤ T = D(f) (the equality deg(f) = deg(p)
holds if p is also multilinear, which happens for instance when the algorithm never queries the
same index twice).

A randomized query algorithm, with query complexity T = R(f), is a probabilistic distribution
over decision trees D of depth at most T . Using the same construction as above, we associate
with each tree D a polynomial pD of degree at most T that coincides with the output of that tree.

12



Next, we define the polynomial p as the linear combination of the polynomials αDpD, where
αD ∈ [0, 1] is the probability of D in the distribution. The crucial observation is that p(x) equals
the probability for the randomized algorithm to output 1 on input x ∈ {0, 1}n. By assumption,
this probability is at least p(x) ≥ 2/3 when f(x) = 1, and at most p(x) ≤ 1/3 when f(x) = 0.
Hence, p is an approximation polynomial to f . Since the approximate degree is the least degree
of an approximation polynomial to f , we conclude that d̃eg(f) ≤ deg(p) ≤ T = R(f).

The example of the OR function shows that the lower bound on R(f), in terms of the
approximate degree, is not necessarily optimal (since d̃eg(OR) = O(

√
n) but R(OR) = Ω(n)).

This comes as no surprise since the crux of the polynomial method is to show that d̃eg(f)/2
is in fact a lower bound on the quantum query complexity. The proof exploits the following
fundamental property, saying that the amplitudes of a quantum state after one query are
univariate polynomials in the input bits x1, . . . , xn.

Lemma 21. For any input x ∈ {0, 1}n, the effect of the quantum oracle operator on a basis
state is

Ox|i, b⟩ = (1− xi)|i, b⟩+ xi|i, b⊕ 1⟩
for all i ∈ {1, . . . , n} and b ∈ {0, 1}.

Proof. This follows directly from the definition of the definition of the quantum oracle: Ox|i, b⟩ =
|i, b⊕ xi⟩.

By applying the lemma repeatedly, one obtains that the amplitudes after T queries are
multilinear polynomials of degree T . Since the probability of outputting 1 is expressed as a
squared amplitude, it yields that any algorithm can be transformed into an approximation
polynomial to f whose degree is twice the number of quantum queries.

Theorem 22 (Polynomial method). Consider a quantum algorithm that computes a function
f : {0, 1}n → {0, 1} in doing T queries to its input. Let p(x) ∈ [0, 1] denote the probability
that the algorithm outputs 1 on the input x ∈ {0, 1}n. Then,

• (Approximation) |p(x)− f(x)| ≤ 1/3 for all x ∈ {0, 1}n,

• (Polynomial degree) deg(p) ≤ 2T .

In particular, the approximate degree of f is at most d̃eg(f) ≤ 2T .

Proof. The first point is immediate, as the probability of outputting 1 must be p(x) ≥ 2/3 when
f(x) = 1 and p(x) ≤ 1/3 when f(x) = 0.

For the second point, let |ψtx⟩ denote the intermediate states of the algorithm after t ∈
{0, . . . , T} queries on the input x ∈ {0, 1}n. By definition, the probability of outputting 1 is

p(x) = ∥(Id⊗ |1⟩⟨1|)|ψTx ⟩∥2 =
∑

1≤i≤n
|⟨i, 1 |ψTx ⟩|2.

It is sufficient to show that, for all i ∈ {1, . . . , n} and b ∈ {0, 1}, the complex-valued function
x 7→ ⟨i, b |ψtx⟩ is a polynomial in x of degree at most t. We prove it by induction on t. The
base case is trivial since |ψ0

x⟩ = U0|0, 0⟩ and ⟨i, b |ψ0
x⟩ is independent of x. Suppose that the

statement holds for t. Then, for t + 1, the inner product is ⟨i, b |ψt+1
x ⟩ = ⟨i, b |Ut+1Ox |ψtx⟩.

Let U †
t+1|i, b⟩ =

∑
1≤j≤n,c∈{0,1} α

†
j,c|j, c⟩ denote the decomposition of the state U †

t+1|i, b⟩ in the
standard basis, where the complex numbers αj,c are independent of x. By Lemma 21, the inner
product is

⟨i, b |ψt+1
x ⟩ =

∑
1≤j≤n,c∈{0,1}

αj,c
(
(1− xj)⟨j, c |ψtx⟩+ xj⟨j, c⊕ 1 |ψtx⟩

)
.
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By the induction hypothesis, each term ⟨j, c |ψtx⟩ and ⟨j, c⊕ 1 |ψtx⟩ are multivariate polynomials
in x of degree at most t. Hence, ⟨i, b |ψt+1

x ⟩ is of degree at most t+ 1.

This result has several interesting consequences in approximation theory and quantum
query lower bounds. For instance, the existence of Grover’s algorithm gives an alternative
proof to Proposition 19 on the approximate degree of the OR function. These types of
“algorithmically-inspired” polynomials are discussed in more details in [BT22, Section 4]. Another
crucial implication, in query complexity, is that no algorithm can compute a function f using
less than d̃eg(f)/2 queries – or it would lead to an approximation polynomial of degree less
than d̃eg(f).

Corollary 23. The quantum query complexity of any function f : {0, 1}n → {0, 1} is at
least Q(f) ≥ d̃eg(f)/2.

Together with Equation (1), it also implies that Q(f) ≥
√

deg(f)/6. The latter inequality
yields, for instance, that Q(OR), Q(Parity) ≥

√
n/6 (which is not optimal in case of the Parity

function). We will develop more direct ways of analyzing the approximate degree in the next
section.

3.2 Applications

We present three applications to the polynomial method that exploit in different ways the
multilinear polynomial constructed in Theorem 22.

Application 1: Distinguishing distributions. We start with a simple application to the
polynomial method, although in a problem setting that differs slightly from what we have
considered so far. Instead of computing a Boolean function f , we consider the problem of
distinguishing between two probability distributions µ0 and µ1.

Definition 24 (Distinguishing problem). Let µ0 and µ1 be two distributions over the set {0, 1}n.
In the (µ0, µ1)-distinguishing problem, the algorithm is given oracle access to an input x ∈ {0, 1}n
sampled either from µ0 or µ1, and it must output a bit b ∈ {0, 1} that maximizes the distinguishing
advantage:

|Pr[b = 1 | x ∼ µ0]− Pr[b = 1 | x ∼ µ1]|.

We say that two distributions are indistinguishable by a class of algorithms if no algorithm in
that class can make the advantage nonzero. Distributions that are indistinguishable from the
uniform distribution µunif are called pseudorandom.

The construction of pseudorandom distributions is a topic of central interest in cryptography
and in complexity theory. We show that the following k-wise independence condition is sufficient
for a distribution to be pseudorandom against quantum algorithms that make few queries.

Definition 25 (k-wise independence). We say that a distribution µ over {0, 1}n is k-wise
independent if for all subset S ⊆ {1, . . . , n} of size at most k, its marginal distribution on the
coordinates indexed by S is uniform: Prx∼µ[xi = ai,∀i ∈ S] = 2−|S| for all choices of ai ∈ {0, 1}.

It is easy to see that k-wise independent distributions are pseudorandom for classical
algorithms that make at most k queries, since the knowledge of any k input bits gives no
information on whether the distribution is uniform or not. Using the polynomial method, we
demonstrate a similar statement for quantum algorithms, although with a slightly stronger
assumption on the number of queries.

Proposition 26. Let µ be a 2k-wise independent distribution over {0, 1}n. Then, µ is pseudo-
random for the class of quantum quantum algorithms that make at most k queries.
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Proof. Fix any quantum algorithm that outputs a bit b after making k queries to its input x.
By Theorem 22, the probability p(x) that it outputs b = 1 on input x is given by a function
p : {0, 1}n → [0, 1] of degree at most deg(p) ≤ 2k. Let {aS}S⊆{1,...,n},|S|≤2k denote the coefficients
of the multilinear polynomial that coincides with it, p(x) =

∑
S⊆{1,...,n},|S|≤2k aS

∏
i∈S xi. The

distinguishing advantage of the algorithm is,

|Pr[b = 1 | x ∼ µ]− Pr[b = 1 | x ∼ µunif ]| = |Ex∼µ[p(x)]− Ex∼µunif [p(x)]|

=

∣∣∣∣∣∣
∑

S:|S|≤2k

aS

(
Ex∼µ[

∏
i∈S

xi]− Ex∼µunif [
∏
i∈S

xi]

)∣∣∣∣∣∣.
Since µ is 2k-wise independent, its marginal distribution over any set S of at most 2k indices is
uniform. It implies that the product of any 2k coordinates has the same expected value under
the distributions µ and µunif . Hence, Ex∼µ[

∏
i∈S xi] = Ex∼µunif [

∏
i∈S xi] and the distinguishing

advantage of the algorithm is zero.

This type of application to the polynomial method can be generalized to other problems that
are relevant in cryptography, such as polynomial interpolation [KK11].

Application 2: Symmetrization. The polynomial method leads to the study of approx-
imation polynomials whose number n of variables grows with the input size to the problem.
Symmetrization refers to a family of techniques that exploit the symmetries of the problem to
construct another approximation polynomial with far fewer variables – ideally one or two – and
without increasing the degree. The resulting polynomial will typically inherit some fluctuation
properties from the original polynomial (number of roots, large derivative, etc.), that can be
exploited to lower bound its degree.

We describe the most standard symmetrization technique, due to Minsky and Papert [MP69],
which consists of averaging the polynomial over all inputs with the same Hamming weight. This
approach works well for problems that are invariant under permuting the input bits.

Proposition 27 (Minsky-Papert symmetrization). Let p(x1, . . . , xn) be a multilinear polynomial
over the variables x1, . . . , xn. Then, there exists a univariate polynomial psym(k) of degree at
most deg(psym) ≤ deg(p) such that, for all integers k ∈ {0, . . . , n},

psym(k) = Ex∈{0,1}n:|x|=k[p(x)].

Proof. It is sufficient to prove the existence of psym when p consists of a single monomial
∏
i∈S xi

(the general case follows by linearity of expectation). Let d = |S| and consider the univariate
polynomial psym(k) =

k(k−1)···(k−d+1)
n(n−1)···(n−d+1) of degree d. It is a simple calculation to check that,

psym(k) =


0 = Ex∈{0,1}n:|x|=k[

∏
i∈S xi] when k ∈ {0, . . . , d− 1},

(n−d
k−d)
(nk)

= Ex∈{0,1}n:|x|=k[
∏
i∈S xi] when k ∈ {d, . . . , n}.

Notice that the dependence on n has moved from the number of variables in p to the size of
the domain used to characterize psym. This often makes the degree analysis easier. We describe
three applications to the Minsky-Papert symmetrization.

The first application is to show that the approximate degree of the Parity function is n, which
is the largest possible value and must be equal to the exact degree (indeed, Parity(x1, . . . , xn) =
(1− (1− 2x1) · · · (1− 2xn))/2). By Corollary 23, it implies that the quantum query complexity
is at least Q(Parity) ≥ n/2. This is quadratically better than the lower bound Q(Parity) ≥
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Figure 3: Possible representations of symmetrized polynomials psym obeying the constraints for
the OR and Parity functions.

√
n/6 obtained with the hybrid method (Proposition 15). It is also optimal since Deutsch’s

algorithm [Deu85] can compute the parity of two bits in one quantum query (the algorithm
makes no error, hence the parity of n bits can be obtained by repeating the algorithm on n/2
different pairs of bits, when n is even).

Proposition 28. The approximate degree of the Parity function is d̃eg(Parity) = n. Hence,
the quantum query complexity is at least Q(Parity) ≥ n/2.

Proof. Consider any multilinear polynomial p(x1, . . . , xn) that approximates the Parity function.
The proof consists of showing that, necessarily, deg(p) ≥ deg(psym) ≥ n. The first inequality is
immediate by Proposition 27. The second inequality uses the property that,

|psym(k)| ≤ 1/3 for k ∈ {0, 2, 4, . . .} and |psym(k)− 1| ≤ 1/3 for k ∈ {1, 3, 5, . . .}

since Parity evaluates to 0 on inputs with an even Hamming weight, and to 1 on inputs with an
odd Hamming weight. The variations of the polynomial psym on the interval [0, n] are represented
in Figure 3. It implies that the polynomial 1 − 2psym changes sign at least n times over the
interval [0, n]. Hence, its number of roots must be at least n and deg(psym) ≥ n.

The next application provides another proof that the quantum query complexity of OR
is Ω(

√
n). The symmetrized polynomial psym is slightly harder to analyse here, as it requires

using an inequality from approximation theory.

Proposition 29. The approximate degree of the OR function is at least d̃eg(OR) ≥
√
n/6.

Hence, the quantum query complexity is at least Q(OR) ≥
√
n/24.

Proof. Consider any multilinear polynomial p that approximates the OR function. The polyno-
mial psym(k) derived from Proposition 27 has the property that,

|psym(0)| ≤ 1/3 and |psym(k)− 1| ≤ 1/3 for k ∈ {1, . . . , n}

since OR evaluates to 0 on inputs of Hamming weight |x| = 0, and to 1 on inputs of Hamming
weight |x| ∈ {1, . . . , n}. The variations of the polynomial psym on the interval [0, n] are represented
in Figure 3. By the Mean Value Theorem, there must exist a real x ∈ [0, 1] such that the
derivative at x of the function psym is at least p′sym(x) ≥ 1/3. We evoke the following lower
bound on the degree of polynomials with large derivatives.
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Lemma 30 (Ehlich-Zeller and Rivlin-Cheney Theorem). Let a, b, c ∈ R (with a < b and c > 0),
n ∈ N and p : R→ R be a polynomial such that p(k) ∈ [a, b] for all integers k ∈ {0, 1, . . . , n} and
|p′(x)| ≥ c for some real x ∈ [0, n]. Then, deg(p) ≥

√
cn/(c+ b− a).

A direct application of this lemma to the polynomial psym with a = −1/3, b = 4/3 and
c = 1/3 leads to the conclusion that deg(psym) ≥

√
n/6.

The next application extends the previous result to a general lower bound on the approximate
degree in terms of the block sensitivity (Definition 13).

Proposition 31. The approximate degree of any function f : {0, 1}n → {0, 1} is at least d̃eg(f) ≥√
bs(f)/6. Hence, the quantum query complexity is at least Q(f) ≥

√
bs(f)/24.

Proof. Let x ∈ {0, 1}n be an input on which f attains its block sensitivity. Suppose, without
loss of generality, that f(x) = 0 and fix s = bs(f) disjoint blocks B1, . . . , Bs with f(xBj ) = 1
for all j. We define the function π : {0, 1}s → {0, 1}n that associates with each y ∈ {0, 1}s the
bitstring obtained by flipping all blocks in x indexed by y, i.e., π(y)i = 1 − xi if i ∈ Bj and
yj = 1, and π(y)i = xi if i ∈ Bj and yj = 0.

Given any polynomial p that approximates f , we can construct another multilinear polynomial
q(y1, . . . , ys), over s variables, such that

q(y1, . . . , ys) = p(π(y))

for all y ∈ {0, 1}s and deg(q) ≤ deg(p) (it suffices to replace the i-th variable in p with
xi(1− yj) + (1− xi)yj if i ∈ Bj). In particular, q(y) evaluates to p(x) on the all-0 string, and
to p(xBj ) on the string y with a single 1 at position j. Hence, its symmetrized polynomial must
satisfy,

|qsym(0)| ≤ 1/3, |qsym(1)− 1| ≤ 1/3 and qsym(k) ∈ [−1/3, 4/3] for k ∈ {2, . . . , n}.

The Ehlich-Zeller and Rivlin-Cheney Theorem yields that deg(qsym) ≥
√
s/6 =

√
bs(f)/6.

The reader interested in problems that are more challenging to symmetrize can continue her
reading with the lower bounds for the Collision [AS04], and AND-OR tree [Kre21] problems.

Application 3: Dual polynomials. We end with a more recent and powerful technique for
lower bounding the approximate degree. For convenience, in this section, we express the domain
and range of Boolean functions as,

f : {−1, 1}n → {−1, 1}.

It amounts to replacing the bit b ∈ {0, 1} with 1 − 2b, which is an operation preserving the
(approximate) degree.

The central idea of the dual polynomial method is to view the approximate degree as being
given by the following pair of primal-dual linear programs.

Primal linear program Dual linear program
minϵ,p ϵ

s.t. |p(x)− f(x)| ≤ ϵ ∀x ∈ {−1, 1}n

deg(p) < d

maxϕ
∑

x∈{−1,1}n ϕ(x) · f(x)

s.t.
∑

x |ϕ(x)| = 1∑
x ϕ(x) · p(x) = 0 ∀p,deg(p) < d

The variables of the primal program are the approximation parameter ϵ and the
(
n
<d

)
coefficients needed to represent the polynomial p : {−1, 1}n → {−1, 1} of degree less than d.
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The variables of the dual program are the 2n values ϕ(x) needed to specify the function ϕ :
{−1, 1}n → R.

It is straightforward to relate the primal program with the approximate degree of f : for a
fixed value of d, the approximate degree is at most d̃eg(f) < d if and only if the optimal value
is at most ϵ ≤ 1/3. The dual program is more interesting to interpret: by weak duality, the
approximate degree is at least d̃eg(f) ≥ d if one can identify a so-called dual polynomial ϕ :
{−1, 1}n → R satisfying the next conditions.

Proposition 32 (Method of Dual Polynomials). Let f : {−1, 1}n → {−1, 1} be a Boolean
function and d ∈ {0, . . . , n} be an integer. Suppose that there exists a real-valued function
ϕ : {−1, 1}n → R such that,

• (Correlation)
∑

x∈{−1,1}n ϕ(x) · f(x) > 1/3,

• (Normalization)
∑

x∈{−1,1}n |ϕ(x)| = 1,

• (Pure high degree)
∑

x∈{−1,1}n ϕ(x) · p(x) = 0 for all polynomials p : {−1, 1}n → {−1, 1}
of degree deg(p) < d.

Then the approximate degree of f must be at least d̃eg(f) ≥ d.

In words, 2nϕ must not deviate significantly from f (correlation and normalization), while
having no monomial of degree less than d (pure high degree). It suffices to exhibit one such
function ϕ to certify that the approximate degree of f is at least d. A simple case of application
is for Parity.

Proposition 33. The approximate degree of the Parity function is d̃eg(Parity) = n.

Proof. The polynomial representation to the Parity function over {−1, 1} is given by the
degree-n monomial Parity(x1, . . . , xn) = x1 · · ·xn. It is easy to check that ϕ(x) = 1

2nx1 · · ·xn
is a valid dual polynomial:

∑
x ϕ(x) · f(x) = 1,

∑
x|ϕ(x)| = 1 and deg(ϕ) = n.

We will unfortunately not give other examples of dual polynomials, as they become quickly
complicated to construct (even for the OR function). The reader is invited to consult the survey
by Bun and Thaler [BT22] for more details and intuition on that method.

4 The Recording Method

The recording method (also called the compressed oracle technique) was introduced in a recent
work by Zhandry [Zha19]. It was originally intended for security proofs in the quantum random
oracle model (QROM), where the input x ∈ {0, . . . ,m− 1}n is often non-Boolean (m > 2) and
is meant to represent a random hash functions H(i) = xi. Since then, it has also proven useful
in query lower bounds, although there are some limitations to the type of problems it applies to.

The recording method is best suited for problems that are hard on average when the input
is drawn from some sufficiently unstructured distribution. It also requires the problem to be
based on a local property, in the sense that the output is determined by a small subset of input
coordinates satisfying a certain predicate. Some of these limitations have been partially lifted
since then, but we will not touch upon these improvements here. Our presentation follows the
approach in [HM21].

A typical case of application, which will be developed in the applications section, is the
problem of finding a coordinate equals to xi = 1 in a random input x (with alphabet size
m ≈ n). This is a variant of the OR problem called (preimage) Search, also solved with O(

√
n)

queries by Grover’s algorithm. Here, the input is drawn from the uniform distribution, so each
coordinate is independently a solution with probability 1/m.
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4.1 Technique

The recording method starts by placing a certain hard distribution µ on the input x. The
most well-understood case is when the coordinates xi are independent and identically distributed
under µ. In order to handle some problems of interest, it is best to extend the input alphabet
beyond the Boolean domain. Hence, we will detail the method when the input is drawn from
the distribution,

µunif : uniform distribution on {0, . . . ,m− 1}n = Σn

for some integer m ≥ 2. The quantum query framework stated in Section 1.1 needs first to be
extended in three directions:

(Large input alphabet) The algorithm is given access to an input x ∈ {0, . . . ,m−1}n through
the oracle Ox|i, b⟩ = |i, b + xi mod m⟩ where i ∈ {1, . . . , n} and b, xi ∈ {0, . . . ,m − 1}.
Equivalently, it is given access to the phase oracle O±

x |i, b⟩ = ωbxi |i, b⟩ where ω = e2iπ/m is
the m-th root of unity.

(Relational problems) The problem can have multiple valid solutions: each input x is associ-
ated with a set Fx ⊆ {1, . . . , n} of solutions, the algorithm succeeds if it outputs any one
of them.

(Average-case output condition) The algorithm must be correct with probability at least 2/3,
where the randomness is both over the actions of the algorithm (e.g., the outcome of a
measurement) and the distribution µ of the input.

It will be more convenient to use the phase oracle O±
x |i, b⟩ = ωbxi |i, b⟩ in the recording

method. The equivalence with the oracle Ox follows by the same arguments as in Fact 4.
The second item offers more flexibility in the type of problems that can be considered.

The solution needs not be Boolean, nor unique. The set of valid solutions is represented by a
relation F = {(x, i) : x ∈ {0, . . . ,m− 1}n, i ∈ Fx}, as opposed to a function f(x) (which would
restrict the relation to singletons Fx = {f(x)}). For simplifying the model, we assume that
the solutions can be encoded as numbers from the set {1, . . . , n}, but other sets can work as
well (the Collision problem, defined in the applications section, would require encoding the
solutions over {1, . . . , n} × {1, . . . , n}).

The average-case condition is also a weakening of the output condition stated in Section 1.1.
Here, the algorithm must perform well for a large fraction of inputs (under the given distribution),
instead of being successful on all of them. The complexity of the optimal algorithm under a
given distribution is called the average-case quantum query complexity.

Definition 34 (Average-case quantum query complexity). The average-case quantum query
complexity Qµ(F) of a relation F under a distribution µ is the smallest integer T such that
there exists a quantum algorithm with query complexity T that, given an input x sampled
according to µ, outputs y ∈ Fx with probability at least 2/3. Similarly, we define Rµ(F) as the
average-case randomized query complexity.

Query record. The core idea of the recording method is to construct a quantum object
that keeps track of what queries an algorithm has made. If the queries were classical, it would
suffice to take the record Rt = ((i1, xi1), (i2, xi2), . . . , (it, xit)) of all the query-answers seen by
the algorithm after t queries (it is a random variable, which depends on the random input x
and on the random actions of the algorithm). This object is very helpful to quantify the
knowledge gained by an algorithm toward solving a problem. It becomes however more blurry
to define a similar record for quantum queries. For instance, a single quantum query can learn
information on the whole input by querying all coordinates in superposition. The solution will be
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to construct a record that is itself a quantum state – entangled with the state of the algorithm.
The construction proceeds in three steps:

1. Input purification: the input distribution is encoded into a bipartite quantum state, one
system being the state of the algorithm and the other being a purification register.

2. Record state: the purification register is mapped to a different basis in which it can be
interpreted as a quantum record.

3. Recording oracle: the query oracle is modified to operate directly on the record state with
some desirable properties.

We detail each step of the construction below. The reader can refer in parallel to the pictures
in Figures 4 and 5 summarizing the main ideas of the process.

1. Input purification. We first address the question of representing the state of an algorithm
whose input is random. This will also be useful in Section 5 when describing the adversary
method. Recall that we denote the state of an algorithm after t queries on a fixed input x
as |ψtx⟩. There are two equivalent ways of representing the average state of the algorithm when x
is chosen randomly with some probability µ(x),

ρt =
∑
x

µ(x)|ψtx⟩⟨ψtx| ←→ |ψt⟩ =
∑
x

√
µ(x)|ψtx⟩ ⊗ |x⟩.

The first representation uses the density matrix formalism. The system is described by the pure-
state ensemble {µ(x), |ψtx⟩}x corresponding to the density operator ρt. The second representation
is a purification of ρt, where the purification register holds a copy of the input x. In this section,
we will work with the last representation, as it retains the joint state of the algorithm and input
distribution (whereas ρt encodes only the marginal state on the algorithm registers).

We extend the formalism given in Definition 5 to define a query algorithm using the joint
state |ψt⟩. The purification register acts as a control state for the joint oracle O± defined as:
O±(|i, b⟩ ⊗ |x⟩) = (O±

x |i, b⟩)⊗ |x⟩ = ωbxi |i, b⟩ ⊗ |x⟩. The unitaries Ut applied by the algorithm
do not depend on x, hence they are extended to act as the identity on the purification register.
The new formalism is given in the next definition and displayed in Figure 4.

Definition 35 (Joint state of a quantum query algorithm with input distribution). A (memory-
less) quantum query algorithm with query complexity T and input alphabet Σ = {0, . . . ,m− 1}
is a sequence U0, . . . , UT of unitary operators acting on the Hilbert space spanned by the
vectors |i, b⟩ where i ∈ {1, . . . , n} and b ∈ Σ.

The joint phase oracle is O± =
∑

x∈Σn O±
x ⊗ |x⟩⟨x|, and the joint state |ψt⟩ of the algorithm

and input after t ∈ {0, . . . , T} queries on an input distribution (µ(x))x∈Σn is defined as,

|ψt⟩ = (Ut ⊗ Id)O± . . . (U1 ⊗ Id)O±(U0 ⊗ Id)
(
|0, 0⟩ ⊗

∑
x∈Σn

√
µ(x)|x⟩

)
.

Equivalently, |ψt⟩ =
∑

x∈Σn

√
µ(x)|ψtx⟩ ⊗ |x⟩ where |ψtx⟩ = UtO±

x . . . U1O±
x U0|0, 0⟩ is the state of

the algorithm on the input x. The reduced density matrix representing the state of the algorithm
after t queries is denoted ρt and is equal to

∑
x∈Σn µ(x)|ψtx⟩⟨ψtx|.

The output of the algorithm is the random value i obtained by measuring the index register
of |ψT ⟩ in the standard basis. The (average) success probability pµsucc of the algorithm in
computing a relation F on the input distribution µ is the probability of measuring a correct
output for a random input: pµsucc =

∑
x∈Σn,i∈Fx

∥∥(|i⟩⟨i| ⊗ Id⊗ |x⟩⟨x|)|ψT ⟩
∥∥2.
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Index register: |0⟩

|ψ0⟩ |ψ1⟩ |ψT ⟩

Figure 4: Canonical form of a (memoryless) quantum query algorithm with input distribution.

2. Record state. We explain how to construct the quantum record by embedding the input
register of |ψt⟩ into a Hilbert space of higher dimension and applying a certain unitary on it.
The input register is originally supported over the mn basis states |x⟩ = |x1, . . . , xn⟩ where
xi ∈ {0, . . . ,m − 1}. The latter alphabet is augmented with a new “empty” symbol ∅, which
will be used to represent the absence of knowledge from the algorithm about a coordinate of the
input. The record space is the Hilbert space of dimension (m+ 1)n spanned by the vectors,

|x1, . . . , xn⟩ = |x1⟩ ⊗ · · · ⊗ |xn⟩ where xi ∈ {0, . . . ,m− 1} ∪ {∅}.

Equivalently, it is the n-fold tensor product of the Hilbert space of dimension m+ 1 spanned by
the vectors |0⟩, . . . , |m− 1⟩, |∅⟩. The input register of |ψt⟩ is renamed the record register when it
is interpreted as living in the record space. We aim at defining a recording unitary R – operating
on the record space – that prepares a state |ψtrec⟩ = (Id⊗R)|ψt⟩ whose record register contains
the record state of the algorithm. This unitary will depend solely on the input distribution µunif
and inherit its product structure. We can consider two situations that guide the choice of this
operator:

• (Initial state) The initial state of the algorithm conveys no information on the input, hence
the record should start in the all-empty state |∅⟩⊗n. This corresponds to the initial joint
state |ψ0⟩ being mapped to,

|ψ0⟩ = (U0|0, 0⟩)⊗

(
1

mn/2

∑
x∈Σn

|x⟩

)
Id⊗R7−−−→ |ψ0

rec⟩ = (U0|0, 0⟩)⊗ |∅⟩⊗n.

Hence, the unitary R shall map the uniform superposition to the state |∅⟩⊗n.

• (Phase kickback) If the algorithm queries the state |i, b⟩ ⊗
(

1
mn/2

∑
x∈Σn |x⟩

)
with b ̸= 0

then the post-query state is (omitting the normalization factor 1/mn/2):

|i, b⟩ ⊗
∑

x∈Σn |x⟩ O±
7−−→

∑
x∈Σn ωbxi |i, b⟩ ⊗ |x⟩

= |i, b⟩ ⊗
(∑

x1...xi−1∈Σi−1 |x1 . . . xi−1⟩
)
⊗
(∑

xi∈Σ ω
bxi |xi⟩

)
⊗
(∑

xi+1...xn∈Σn−i |xi+1 . . . xn⟩
)
.

Hence, a query can equivalently be seen as a modification of the record state, rather than
of the state of the algorithm. Furthermore, when querying the index i, only the i-th
subsystem of the record register is modified and becomes orthogonal to the initial uniform
superposition. This provides a natural criterion for including an input coordinate in the
record state: if the state of its register is orthogonal to the uniform superposition, then
the unitary R should keep it intact into the record; otherwise, it should replace it with an
empty record,∑

x∈Σn

ωbxi |i, b⟩ ⊗ |x⟩ Id⊗R7−−−→ |i, b⟩ ⊗ |∅⟩⊗i−1 ⊗
(∑
xi∈Σ

ωbxi |xi⟩
)
⊗ |∅⟩⊗(n−i).
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It is easy to find a unitary R that satisfies all of the above conditions. Due to the symmetries
of the input distribution µunif , it suffices to take the tensor product R = R1 ⊗ · · · ⊗ Rn of n
identical operators Ri acting on each subsystem of the record register as follows.

Definition 36 (Recording operator). Let Ri denote the unitary and Hermitian operator acting
on the i-th subsytem of the record space as follows:

Ri :


1√
m

∑
xi∈Σ|xi⟩ 7→ |∅⟩,

1√
m

∑
xi∈Σ ω

bxi |xi⟩ 7→ 1√
m

∑
xi∈Σ ω

bxi |xi⟩ if b ∈ {1, . . . ,m− 1},

|∅⟩ 7→ 1√
m

∑
xi∈Σ|xi⟩.

Given the joint state |ψt⟩ of an algorithm and input distribution µunif (Definition 35), we define
the joint state |ψtrec⟩ of the algorithm and record as,

|ψtrec⟩ = (Id⊗ (R1 ⊗ · · · ⊗ Rn))|ψt⟩ = (Id⊗R)|ψt⟩

where R = R1 ⊗ · · · ⊗ Rn is the recording operator acting on the record space.

As a first simple observation, the size of the quantum record (i.e., the maximum number of
non-∅ entries in the basis states over which it is supported) cannot be larger than the number
of quantum queries made so far.

Fact 37 (Record size). The state |ψtrec⟩ = (Id⊗R)|ψt⟩ after t queries is supported only over
basis states |i, b⟩ ⊗ |x1, . . . , xn⟩ whose record size is at most |{j : xj ̸= ∅}| ≤ t.

Proof. By tracking the action of the phase oracle O± during t queries, one can see that the joint
state of the algorithm and input admits a decomposition of the form,

|ψt⟩ =
∑

i∈{0,...,n},b∈Σ,c∈Σn

αi,b,c|i, b⟩ ⊗
∑
x∈Σn

ωc1x1+···+cnxn |x⟩

for some complex coefficients αi,b,c that can be non-zero only when |{j : cj ̸= 0}| ≤ t. For
a given c, the state

∑
x∈Σn ωc1x1+···+cnxn |x⟩ = (

∑
x1∈Σ ω

c1x1 |x1⟩) ⊗ · · · ⊗ (
∑

xn∈Σ ω
cnxn |xn⟩) is

mapped by the recording operator R to the product state |R1⟩⊗ · · ·⊗ |Rn⟩ where |Rj⟩ =
√
m|∅⟩

if cj = 0, and |Rj⟩ =
∑

xj∈Σ ω
cjxj |xj⟩ otherwise. Hence, |ψtrec⟩ = (Id⊗R)|ψt⟩ is supported over

basis states that have at most t coordinates different from ∅.

The quantum record can behave very differently from its classical counterpart. For instance,
its size can decrease in time if the algorithm uses query parameters (i, b) that make the i-th
subsystem back into the uniform superposition. This phenomenon is unavoidable to preserve
the reversibility of the computation. The purpose of the next section is to better understand
how the record evolves after each query.

3. Recording oracle. It is not clear yet that the quantum record has any meaningful
properties beyond that of Fact 37. We provide a different viewpoint on the construction of the
quantum record, which better explains its evolution during the computation. To that end, we
define a third query operator – the recording oracle Orec – that conjugates the phase oracle O±

with the recording operator Id⊗R. Unlike the binary and phase oracles, the recording oracle
depends on the chosen input distribution encoded into R.

Definition 38 (Recording oracle). The recording oracle for the input distribution µunif is the
unitary operator acting on the joint state of the algorithm and record as follows,

Orec = (Id⊗R)O±(Id⊗R),

where the phase oracle is extended to act on the record space as O± =
∑

x∈(Σ∪{∅})n O±
x ⊗ |x⟩⟨x|

with O±
x |i, b⟩ = ωbxi |i, b⟩ when xi ∈ Σ, and O±

x |i, b⟩ = |i, b⟩ when xi = ∅.
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Figure 5: Canonical form of a (memoryless) quantum query algorithm with recording oracle.

The need to specify the behavior of the phase oracle on xi = ∅ is an artifact of the
construction. This case will never occur in practice, but it makes the analysis simpler.

The recording oracle Orec has two central properties that are at the core of the recording
method. First, the joint state |ψtrec⟩ can equally be viewed as the state obtained by replacing the
phase oracle with the recording oracle in the algorithm. This is represented in Figure 5. Second,
the evolution of the record state upon querying Orec obeys almost the same rules as a classical
record: if a coordinate is not in the record prior to the query then a uniform superposition is
recorded, and if it is already in the record then the state remains (almost) unchanged.

Theorem 39 (Recording method). Consider a quantum algorithm that accesses a random
input drawn from the uniform distribution µunif . Let |ψt⟩ denote the joint state of the
algorithm and input after t queries (Definition 35). Then,

• (Indistinguishability) The joint state |ψtrec⟩ = (Id⊗R)|ψt⟩ of the algorithm and record
is also equal to |ψtrec⟩ = (Ut ⊗ Id)Orec(Ut−1 ⊗ Id)Orec(U0 ⊗ Id)(|0, 0⟩ ⊗ |∅, . . . ,∅⟩).

• (Recording action) The action of the recording oracle Orec on a basis state |i, b⟩ ⊗
|x1, . . . , xn⟩ where i ∈ {1, . . . , n}, b ∈ Σ \ {0} and x ∈ (Σ ∪ {∅})m is given by the
equations,

(xi = ∅) Orec|i, b⟩ ⊗ |. . . xi−1,∅, xi+1 . . .⟩ = |i, b⟩ ⊗ |. . . xi−1⟩
( 1√

m

∑
x′i∈Σ

ωbx
′
i |x′i⟩

)
|xi+1 . . .⟩,

(xi ∈ Σ) Orec|i, b⟩⊗|. . . xi−1, xi, xi+1 . . .⟩ = |i, b⟩⊗|. . . xi−1⟩
(
ωbxi |xi⟩+ |errorxi⟩

)
|xi+1 . . .⟩,

where |errorxi⟩ = ωbxi√
m
|∅⟩+

∑
x′i∈Σ

1−ωbxi−ωbx′i
m |x′i⟩.

If b = 0 then Orec makes no change to the state |i, b⟩ ⊗ |x1, . . . , xn⟩.

Proof of the indistinguishability. The proof is by induction on t. The base case (t = 0) uses
that U0 and R are acting on different registers, hence their order can be inverted: |ψ0

rec⟩ = (Id⊗
R)|ψ0⟩ = (Id⊗R)(U0⊗Id)

(
|0, 0⟩⊗ 1

mn/2

∑
x∈Σn |x⟩

)
= (U0⊗Id)(Id⊗R)

(
|0, 0⟩⊗ 1

mn/2

∑
x∈Σn |x⟩

)
=

(U0 ⊗ Id)(|0, 0⟩ ⊗ |∅, . . . ,∅⟩). The induction step applies the same argument to Ut+1 and uses
the fact that R squares to the identity: |ψt+1

rec ⟩ = (Id⊗R)(Ut+1 ⊗ Id)O±|ψt⟩ = (Ut+1 ⊗ Id)(Id⊗
R)O±|ψt⟩ = (Ut+1 ⊗ Id)(Id⊗R)O±(Id⊗R)(Id⊗R)|ψt⟩ = (Ut+1 ⊗ Id)Orec|ψtrec⟩.

Proof of the recording action. We assume b ≠ 0, as it is easy to see that Orec acts as the identity
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otherwise. We decompose the action of Orec = (Id⊗R)O±(Id⊗R) when xi = ∅,

|i, b⟩ ⊗ |. . . xi−1,∅, xi+1 . . .⟩
Id⊗R7−−−→ |i, b⟩ ⊗ (· · · ⊗ Ri−1|xi−1⟩)

( 1√
m

∑
x′i∈Σ

|x′i⟩
)
(Ri+1|xi+1⟩ ⊗ . . . )

O±
7−→ |i, b⟩ ⊗ (· · · ⊗ Ri−1|xi−1⟩)

( 1√
m

∑
x′i∈Σ

ωbx
′
i |x′i⟩

)
(Ri+1|xi+1⟩ ⊗ . . . )

Id⊗R7−−−→ |i, b⟩ ⊗ |. . . xi−1⟩
( 1√

m

∑
x′i∈Σ

ωbx
′
i |x′i⟩

)
|xi+1 . . .⟩.

The last step uses that R2
j = Id for all j, hence all registers are restored to their initial basis

state, except the i-th record register.
We now consider the case of xi ∈ Σ. For the ease of notation, we only track the evolution of

the i-th record register (the other registers do not change, for the same reasons as above),

|xi⟩
Ri7−−→ |xi⟩+

1√
m
|∅⟩ − 1

n

∑
x′i∈Σ

|x′i⟩

O±
7−−→ ωbxi |xi⟩+

1√
m
|∅⟩ − 1

n

∑
x′i∈Σ

ωbx
′
i |x′i⟩

Ri7−−→ ωbxi |xi⟩+
ωbxi√
m
|∅⟩ − 1

m

∑
x′i∈Σ

ωbxi |x′i⟩+
1

m

∑
x′i∈Σ

|x′i⟩ −
1

m

∑
x′i∈Σ

ωbx
′
i |x′i⟩.

The first step has been obtained by rewriting the action of the recording operator (Definition 36)
in the standard basis.

4.2 Applications

We illustrate the recording method on two problems that are ubiquitous in cryptography: finding
a preimage or a collision in a random (hash) function. Beyond establishing the query complexity
of these problems, the recording method will give very tight upper bounds on the best average
success probability that is possible to achieve with a given number of quantum queries. This
refinement is useful, for instance, in choosing the security parameters (e.g., key length) of
cryptographic schemes based on hash functions.

Application 1: The Search problem. This problem is a variant of OR, where instead of
deciding if the input contains a particular value (e.g., the bit 1), the task is to find such a value
(when it exists). We will be studying the hardness of this problem under the uniform input
distribution.

Definition 40 (Search). The Search problem is to find a coordinate i ∈ {1, . . . , n} such
that xi = 1 in an input x ∈ {0, . . . ,m− 1}n.

The lower bound will be given as a function of the alphabet size m. The input size n appears
indirectly in the result, as it constraints the values of m for which the problem is non trivial
under the uniform distribution (for instance, if m ≫ n then a random input has no solution
at all with high probability). If it helps the reader, one can fix m = n/2 since it guarantees
the existence of two solutions in expectation, and the probability to have no solution is small
(1− 2/n)n ≤ e−2 ≤ 1/7 (this event can be ignored as long as its probability is below the allowed
failure probability, e.g. 1/3).

It is straightforward to argue that classical algorithms need Ω(m) queries to solve the Search
problem. We provide a detailed proof that will help understanding the quantum case after.
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Proposition 41. The average-case randomized query complexity of the Search problem under
the uniform distribution is at least Rµunif (Search) ≥ 2m/3− 1.

Proof. We measure the progress of an algorithm by the probability of the event Et: “the algorithm
queries at least one coordinate equals to xi = 1 during its first t queries”. The probability that
the t+1-th query triggers the event is at most Pr[Et+1 |Et] ≤ 1/m, irrespectively of the behavior
of the algorithm (since the xi’s are independent, identically distributed random variables). Hence,
the progress behaves as,

• (Initial condition) Pr[E0] = 0,

• (Progress evolution) Pr[Et+1] = Pr[Et] + Pr[Et+1 | Et] · Pr[Et] ≤ Pr[Et] + 1/m.

It remains to relate the average success probability pµunifsucc of an algorithm making T queries to its
final progress Pr[ET ]. If the algorithm never queried a coordinate equal to 1 (i.e., the event ET
does not happen), then it is left to guess randomly where such a coordinate can be. This is
somewhat the same as the event ET+1 given ET , except that the algorithm cannot see the result
of the last query.

• (Final condition) pµunifsucc ≤ Pr[ET ] + 1/m.

By combining the three bullet points together, we obtain that the best possible success probability
after T queries must be at most pµunifsucc ≤ (T + 1)/m. In particular, succeeding with average
probability at least pµunifsucc ≥ 2/3 requires making at least T ≥ 2m/3− 1 queries.

We are now going to mimick the above proof in the quantum query model, using the
recording method formalism. The main challenge is to adapt the progress measure when the
query record (hence, the event Et) is no longer properly defined as a random variable. The
solution is to measure the progress as the total amplitude (norm) of the part of the quantum
record that contains a solution. The quadratic decrease in the lower bound can be traced back
to manipulating amplitudes in the proof, rather than probabilities (squared norm).

Proposition 42. The average-case quantum query complexity of the Search problem under
the uniform distribution is at least Qµunif (Search) ≥

√
m/15−

√
1/5.

Proof. Consider any quantum algorithm that solves the Search problem in doing some number T
of queries. Define the progress measure ∆t after t ∈ {0, . . . , T} queries as the norm of the state
obtained by projecting |ψtrec⟩ (Definition 36) onto the records containing at least one coordinate
equals to xi = 1,

∆t = ∥Π|ψtrec⟩∥ where Π = Id⊗
∑

x∈(Σ∪{∅})n,
∃i,xi=1

|x⟩⟨x|.

We show that the progress ∆t and success probability pµunifsucc of the algorithm obey the following
inequalities,

• (Initial condition) ∆0 = 0,

• (Progress evolution) ∆t+1 ≤ ∆t +
√
10/m,

• (Final condition) pµunifsucc ≤ (∆T +
√

2/m)2.

It follows immediately that pµunifsucc ≤ (
√
10T +

√
2)2/m. Hence, succeeding with probability at

least pµunifsucc ≥ 2/3 requires making at least T ≥
√
m/15−

√
1/5 quantum queries.

Proof of the initial condition. The record is initially all empty, |ψ0
rec⟩ = (U0|0, 0⟩)⊗ |∅⟩⊗n,

hence the progress starts at ∆0 = ∥Π|ψ0
rec⟩∥ = 0.
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Proof of the progress evolution. We first prove an analogous statement to the equality
Pr[Et+1] = Pr[Et] + Pr[Et+1, Et] used in the classical setting. We substitute the use of the law
of total probability with the triangle inequality. The progress increases at most by the norm of
the part of the state recording a value xi = 1 for the first time.

∆t+1 = ∥Π(Ut+1 ⊗ Id)Orec|ψtrec⟩∥ (definition of |ψt+1
rec ⟩)

= ∥(Ut+1 ⊗ Id)ΠOrec|ψtrec⟩∥ (Π and Ut+1 ⊗ Id commute)
= ∥ΠOrec|ψtrec⟩∥ (unitary invariance of the norm)
≤ ∥ΠOrecΠ|ψtrec⟩∥+ ∥ΠOrec(Id−Π)|ψtrec⟩∥ (triangle inequality)
≤ ∥Π|ψtrec⟩∥+ ∥ΠOrec(Id−Π)|ψtrec⟩∥ (contraction of the norm)
= ∆t + ∥ΠOrec(Id−Π)|ψtrec⟩∥.

Next, we show that ∥ΠOrec(Id−Π)|ψtrec⟩∥ ≤
√
10/m∥(Id−Π)|ψtrec⟩∥, in analogy to the statement

Pr[Et+1, Et] = Pr[Et+1 |Et] · Pr[Et] ≤ 1/mPr[Et]. The proof is carried out in greater generality,
replacing (Id−Π)|ψtrec⟩ with any state |ψ⟩ =

∑
i,b,x αi,b,x|i, b⟩ ⊗ |x⟩ in the support of Id−Π (i.e.,

no record in the support of |ψ⟩ shall contain the value 1). We decompose such a state into n+ 2
mutually orthogonal components |ψ⟩ = |ψid⟩+ |ψ∅⟩+

∑
y∈Σ|ψy⟩ defined as follows:

– |ψid⟩ =
∑

i,b,x:b=0 αi,b,x|i, b⟩ ⊗ |x⟩ (null query),

– |ψ∅⟩ =
∑

i,b,x:xi=∅,b ̸=0 αi,b,x|i, b⟩ ⊗ |x⟩ (non-null query, empty record),

– |ψy⟩ =
∑

i,b,x:xi=y,b̸=0 αi,b,x|i, b⟩ ⊗ |x⟩ (non-null query, nonempty record).

The component |ψ1⟩ is zero by definition of Id − Π. We analyse how much the norms of the
other components decrease after applying ΠOrec. The action of the oracle Orec on a basis state
is dictated by Theorem 39. Notice that the only way for these states to be in the support of Π
after applying Orec is to record xi = 1 at the position i indicated by the index register, since the
rest of the record stays unchanged.

– ∥ΠOrec|ψid⟩∥ = 0: The state becomes zero since the record does not change when the value
register holds a zero.

– ∥ΠOrec|ψ∅⟩∥ = 1√
m
∥|ψ∅⟩∥: The state is ΠOrec|ψ∅⟩ =

∑
xi=∅,b ̸=0 αi,b,x

ωb
√
m
|i, b⟩⊗|x{i}⟩ with

x
{i}
i = 1 and x{i}j = xj if j ̸= i. Thus, ∥ΠOrec|ψ∅⟩∥2 =

∑
xi=∅,b ̸=0

|αi,b,x|2
m = 1

m∥|ψ∅⟩∥2.

– ∥ΠOrec|ψy⟩∥ ≤ 3
m∥|ψy⟩∥: The state is ΠOrec|ψy⟩ =

∑
xi=y,b̸=0 αi,b,x

1−ωb−ωby

m |i, b⟩ ⊗ |x{i}⟩.

Thus, ∥ΠOrec|ψy⟩∥2 =
∑

xi=y,b̸=0
|(1−ωb−ωby)αi,b,x|2

m2 ≤ 9
m2 ∥|ψy⟩∥2.

Finally, using the triangle and Cauchy–Schwarz inequalities, we conclude that ∥ΠOrec|ψ⟩∥ ≤
∥ΠOrec|ψ∅⟩∥+

∑
y∈∈Σ\{1}∥ΠOrec|ψy⟩∥ ≤ 1√

m
∥|ψ∅⟩∥+ 3

m

∑
y∈∈Σ\{1}∥|ψy⟩∥ ≤

√
10
m ∥|ψ⟩∥.

Proof of the final condition. The average success probability is defined as pµunifsucc = ∥Πsucc|ψT ⟩∥2
where Πsucc is the projector onto the states |i, b⟩ ⊗ |x⟩ with xi = 1. Using the relationship
between the joint states |ψT ⟩ and |ψTrec⟩ (Definition 36), we have

pµunifsucc = ∥Πsucc(Id⊗R)|ψTrec⟩∥2 (since |ψT ⟩ = (Id⊗R)|ψTrec⟩)

≤
(
∥Πsucc(Id⊗R)Π|ψTrec⟩∥+ ∥Πsucc(Id⊗R)(Id−Π)|ψTrec⟩∥

)2 (triangle inequality)

≤
(
∥Π|ψTrec⟩∥+ ∥Πsucc(Id⊗R)(Id−Π)|ψTrec⟩∥

)2 (contraction of the norm)

=
(
∆T + ∥Π(Id⊗R)(Id−Π)|ψTrec⟩∥

)2
.

The analysis of ∥Π(Id⊗R)(Id−Π)|ψTrec⟩∥ is essentially the same as that of ∥ΠOrec(Id−Π)|ψTrec⟩∥
done before. Using the same notation as before |ψ⟩ = |ψid⟩+ |ψ∅⟩+

∑
y∈Σ\{1}|ψy⟩ for a state
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in the support of Id − Π, we have ∥Π(Id ⊗ R)|ψid⟩∥ = 0, ∥Π(Id ⊗ R)|ψ∅⟩∥ = 1√
m
∥|ψ∅⟩∥ and

∥Π(Id⊗R)|ψy⟩∥ = 1
m∥|ψy⟩∥ (the action of R in the standard basis is given, for instance, in the

proof of Theorem 39). We conclude that ∥Π(Id⊗R)|ψ⟩∥ ≤
√

2
m∥|ψ⟩∥.

Application 2: The Collision problem. We sketch a second application to the recording
method for the Collision problem defined as follows.

Definition 43 (Collision). The Collision problem is to find two distinct coordinates
i ̸= j ∈ {1, . . . , n} such that xi = xj in an input x ∈ {0, . . . ,m− 1}n.

Again, there is a range of parameters n,m for which the problem is relevant to look at under
the uniform distribution. For instance, if m = n then there are 1

m

(
n
2

)
= (n − 1)/2 collision

pairs in expectation, one of which can be found using O(
√
m) classical queries (birthday attack)

or O(m1/3) quantum queries (BHT [BHT98] or Ambainis [Amb07] algorithms).
The classical complexity of the Collision problem can be understood using the event Et:

“the algorithm queries two coordinates with equal values xi = xj during its first t queries”. The
progress evolves as Pr[Et+1] = Pr[Et] + t/m since the probability that the t+1-th query returns
one of the t values observed before (i.e., produces a collision) is at most t/m. It yields that the
progress after T queries is ∆T = 1/m + 2/m + · · · + (T − 1)/m = O(T 2/m), hence requiring
T = Ω(

√
m) queries to make it sufficiently large. We transpose that proof in the quantum setting

using the following progress measure.

Proposition 44 (Quantum progress evolution for Collision). Consider any quantum algorithm
with access to a random input drawn from the uniform distribution µunif . Let |ψtrec⟩ denote the
joint state of the algorithm and record after t queries to the input. Define the progress measure ∆t

as the norm of the state obtained by projecting |ψtrec⟩ onto the records containing at least two
equal coordinates xi = xj,

∆t = ∥Π|ψtrec⟩∥ where Π = Id⊗
∑

x∈(Σ∪{∅})n,
∃i ̸=j,xi=xj ̸=∅

|x⟩⟨x|.

Then the progress ∆t obeys the inequality ∆t+1 ≤ ∆t +
√

10t
m .

Proof. Using the same argument as in the proof of Proposition 42, the progress increases after
each query by at most ∆t+1 ≤ ∆t + ∥ΠOrec(Id − Π)|ψtrec⟩∥. Let |ψ⟩ =

∑
i,b,x αi,b,x|i, b⟩ ⊗ |x⟩

denote any state in the support of Id−Π and with records of size at most |{j : xj ̸= ∅}| ≤ t.
Notice that the latter condition is satisfied by the state (Id − Π)|ψtrec⟩ according to Fact 37.

Hence, it suffices to show that ∥ΠOrec|ψ⟩∥ ≤
√

10t
m ∥|ψ⟩∥.

Let |ψ⟩ = |ψid⟩+ |ψ∅⟩+
∑

y∈Σ|ψy⟩ be the decomposition of |ψ⟩ as defined in the proof of

Proposition 42. We claim that ∥ΠOrec|ψid⟩∥ = 0, ∥ΠOrec|ψ∅⟩∥ ≤
√

t
m∥|ψ∅⟩∥ and ∥ΠOrec|ψy⟩∥ ≤

3t
m∥|ψy⟩∥. The first statement is immediate since Orec|ψid⟩ = |ψid⟩. Let us detail the second
statement (the last one is similar). By Theorem 39, the state evolves into

ΠOrec|ψ∅⟩ = Π
∑

i,b,x:xi=∅,b ̸=0

αi,b,x|i, b⟩ ⊗ |. . . xi−1⟩
( 1√

m

∑
x′i∈Σ

ωbx
′
i |x′i⟩

)
|xi+1 . . .⟩

=
∑

i,b,x:xi=∅,b ̸=0

αi,b,x|i, b⟩ ⊗ |. . . xi−1⟩
( 1√

m

∑
x′i∈Σ,

∃j ̸=i,xj=x′i

ωbx
′
i |x′i⟩

)
|xi+1 . . .⟩.

Hence, the norm is ∥ΠOrec|ψ∅⟩∥2 =
∑

i,b,x:xi=∅,b ̸=0|αi,b,x|2
|{x′i∈Σ:∃j,xj=x′i}|

m ≤ t
m∥|ψ∅⟩∥2 since the

records with non-zero amplitudes αi,b,x ̸= 0 are of size at most t by assumption. Finally, using

the triangle and Cauchy–Schwarz inequalities, we conclude that ∥ΠOrec|ψ⟩∥ ≤
√

10t
m ∥|ψ⟩∥.
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We leave it to the reader to prove that any algorithm solving Collision using T queries
must satisfy the final condition pµunifsucc = (∆T +O(

√
T/m))2 = O(T 3/m) (our definition of the

computational model should be slightly adapted to allow for the output of two indices). It entails
that the average-case quantum query complexity must be at least Qµunif (Collision) = Ω(m1/3),
which is optimal since it matches the complexity of the existing quantum algorithms [BHT98;
Amb07].

5 The Adversary Method

The adversary method is arguably the most popular and versatile technique for proving quantum
query lower bounds. It comes in many flavors, the simplest of which is the hybrid method
presented in Section 2. The most evolved versions have virtually no limits, as they can always
provide the optimal complexity (the catch being the difficulty in applying such methods to
concrete problems). In this section, we will present the modern formulation of the adversary
method, based on the spectral properties of an adversially chosen matrix with real-weight
entries [HLŠ07].

5.1 Technique

Our presentation of the adversary method extends the approaches introduced in the hybrid and
recording methods. Unlike in the previous section, we revert to the model with a binary input
alphabet x ∈ {0, 1}n, Boolean decision problems f : {0, 1}n → {0, 1} and joint binary oracle
O(|i, b⟩ ⊗ |x⟩) = |i, b⊕ xi⟩ ⊗ |x⟩.

First, the adversary method introduces the possibility of assigning weights to the pairs of
inputs considered in the hybrid method, as follows.

Weighted Gram matrix. Recall that the inner product ⟨ψTx |ψTy ⟩ between two final states
with f(x) ̸= f(y) relates to the probability with which the algorithm can be correct (final condition
in Theorem 10). The adversary method exploits the entire Gram matrix Gt = (⟨ψtx |ψty⟩)x,y∈{0,1}n
and places some non-zero weights Γx,y on its entries (a somewhat unintuitive aspect of the
method is to allow for negative weights as well). The inner products ⟨ψtx |ψty⟩ evolve under
querying the indices i with xi ̸= yi (progress evolution in Theorem 10). The adversary method
quantifies this evolution in terms of the “punctured” weights (Γi)x,y obtained by zeroing-out all
entries of Γ with xi = yi. The constraints on the resulting matrices are summarized into the
next definition.

Definition 45 (Adversary matrix). Let f : {0, 1}n → {0, 1} be a Boolean function over n
variables. We say that Γ ∈ R2n×2n is an adversary matrix for f if it satisfies the two conditions,

• (Symmetric) Γx,y = Γy,x for all x, y ∈ {0, 1}n,

• (f -sparse) Γx,y = 0 when f(x) = f(y).

For all i ∈ {1, . . . , n}, we define the i-th punctured adversary matrix Γi ∈ R2n×2n of Γ as the
matrix satisfying also the condition,

• (Punctured) (Γi)x,y = 0 when xi = yi, and (Γi)x,y = Γx,y otherwise.

While the adversary matrix provides a way to emphasize pairs of inputs that are difficult
to distinguish, another source of hardness can be introduced by placing a distribution on the
input, as was done in the recording method. This is achieved below by extending the purification
technique introduced in the last section.
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Generalized input purification. We described in Definition 35 how the state of an algorithm
operating under an input distribution µ can be represented as the bipartite state |ψt⟩ =∑

x∈{0,1}n
√
µ(x)|ψtx⟩ ⊗ |x⟩. The amplitude

√
µ(x) can in fact be replaced with any complex

number ax satisfying |ax|2 = µ(x), since the reduced density matrix of the algorithm remains
equal to ρt =

∑
x∈Σn µ(x)|ψtx⟩⟨ψtx|. In the adversary method, the choice of these amplitudes is

going to determine the initial value ∆0 of the progress measure. Indeed, the progress is quantified
by the value of,

|⟨ψt | (Id⊗ Γ) |ψt⟩| =
∣∣∣∑
x,y

Γx,yaxa
∗
y⟨ψtx |ψty⟩

∣∣∣
which is maximized at t = 0 when (ax)x is the principal eigenvector of the adversary matrix Γ.
With that optimal choice, the adversary method is stated as follows.

Theorem 46 (Adversary method). Consider a quantum algorithm that accesses a random
input x ∈ {0, 1}n drawn from a distribution µ. Let a ∈ C2n be a unit vector such that
µ(x) = |ax|2 for all x. Define the joint state of the algorithm and input after t queries as,

|ψt⟩ =
∑

x∈{0,1}n
ax|ψtx⟩ ⊗ |x⟩.

Given a function f : {0, 1}n → {0, 1} and a non-zero adversary matrix Γ ∈ R2n×2n for f
with principal eigenvector a, define the following progress measure,

∆t = ∥Γ∥ − |⟨ψt | (Id⊗ Γ) |ψt⟩|

Then the progress obeys the following inequalities,

• (Initial condition) ∆0 = 0,

• (Progress evolution) ∆t+1 ≤ ∆t + 2maxi∈{1,...,n}∥Γi∥.

Furthermore, the average success probability pµsucc of the algorithm in computing f after T
queries is at most,

• (Final condition) pµsucc ≤ 1
2 +

√
∆T /(2∥Γ∥).

Consequently, the average-case quantum query complexity of f under the distribution µ is at
least Qµ(f) ≥ ∥Γ∥

36maxi∈{1,...,n}∥Γi∥ .

Proof of the initial condition. The initial state is |ψ0⟩ = |0, 0⟩ ⊗ |a⟩ where |a⟩ =
∑

x∈{0,1}n ax|x⟩
is a principal unit eigenvector of Γ. Hence, ∆0 = ∥Γ∥ − |⟨a |Γ | a⟩| = 0.

Proof of the progress evolution. The progress increases as most by, ∆t+1 −∆t ≤ |⟨ψt+1 | (Id⊗
Γ) |ψt+1⟩ − ⟨ψt | (Id⊗ Γ) |ψt⟩|. By definition, |ψt+1⟩ = (Ut+1 ⊗ Id)O|ψt⟩ where O(|i, b⟩ ⊗ |x⟩) =
(Ox|i, b⟩) ⊗ |x⟩ = |i, b ⊕ xi⟩ ⊗ |x⟩ is the joint binary oracle. Since (Ut+1 ⊗ Id) and (Id ⊗ Γ)
commute, we obtain that

∆t+1 −∆t ≤ |⟨ψt | O(Id⊗ Γ)O |ψt⟩ − ⟨ψt | (Id⊗ Γ) |ψt⟩|.

The operator O(Id ⊗ Γ)O − Id ⊗ Γ can be expressed in the standard basis as
∑

i,b,x,y(|i, b ⊕
xi⟩⟨i, b⊕ yi| − |i, b⟩⟨i, b|)⊗ Γx,y|x⟩⟨y|. The two-by-two matrix

∑
b∈{0,1}|b⊕ xi⟩⟨b⊕ yi| − |b⟩⟨b| is

equal to 0 when xi = yi, and to X − Id when xi ̸= yi (where X is the Pauli-X matrix). The
condition on (xi, yi) can be absorbed into the matrix Γi, since (Γi)xy = 0 when xi = yi by
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definition (punctured property). Hence, continuing the above inequality,

∆t −∆t ≤
∣∣∣ ∑
i∈{1,...,n}

⟨ψt+1 | (|i⟩⟨i| ⊗ (X − Id)⊗ Γi) |ψt⟩
∣∣∣

≤
∑

i∈{1,...,n}

∥Id⊗ (X − Id)⊗ Γi∥ · ∥(|i⟩⟨i| ⊗ Id)|ψt⟩∥2 (Cauchy-Schwarz inequality)

≤ max
i∈{1,...,n}

∥Id⊗ (X − Id)⊗ Γi∥ ·
∑

i∈{1,...,n}

∥(|i⟩⟨i| ⊗ Id)|ψt⟩∥2 = 2 max
i∈{1,...,n}

∥Γi∥.

Proof of the final condition. The average success probability of the algorithm is defined as
pµsucc = ∥Πsucc|ψT ⟩∥2, where Πsucc is the projector onto the states |i, b⟩ ⊗ |x⟩ with b = f(x). The
progress after T queries is given by:

∥Γ∥ −∆T = |⟨ψT | (Id⊗ Γ) |ψT ⟩|
=
∣∣⟨ψT |Πsucc(Γ⊗ Id)Πsucc |ψT ⟩+ ⟨ψT | (Id−Πsucc)(Γ⊗ Id)(Id−Πsucc) |ψT ⟩
+ ⟨ψT |Πsucc(Γ⊗ Id)(Id−Πsucc) |ψT ⟩+ ⟨ψT | (Id−Πsucc)(Γ⊗ Id)Πsucc |ψT ⟩

∣∣
= |⟨ψT |Πsucc(Γ⊗ Id)(Id−Πsucc) |ψT ⟩+ ⟨ψT | (Id−Πsucc)(Γ⊗ Id)Πsucc |ψT ⟩|

where the last equality uses that Γxy = 0 when f(x) = f(y) (f -sparse property). By the
Cauchy-Schwarz inequality, we obtain

∥Γ∥ −∆T ≤ 2∥Γ⊗ Id∥ · ∥Πsucc|ψT ⟩∥ · ∥(Id−Πsucc)|ψT ⟩∥

= 2∥Γ∥ ·
√
pµsucc(1− pµsucc)

≤ 2∥Γ∥ · (1/4 + pµsucc(1− pµsucc)) = 2∥Γ∥ ·
(
1/2− (pµsucc − 1/2)2

)
.

Reordering the terms, we obtain that pµsucc ≤ 1/2 +
√

∆T /(2∥Γ∥). Given the progress evolution,
the success probability is at most pµsucc ≤ 1/2+

√
T ·maxi∈{1,...,n}∥Γi∥/∥Γ∥, hence the algorithm

needs at least T ≥ ∥Γ∥
36maxi∈{1,...,n}∥Γi∥ queries to succeed with probability pµsucc ≥ 2/3.

The adversary method is often stated under the worst-case output condition, where the
algorithm must be correct on any input with probability at least 2/3 (as was defined in Section 1
and Definition 6). In this case, the lower bound depends on the adversary value Adv(f), which
is obtained by maximizing the above argument over the entire set of adversary matrices (or,
equivalently, over all input distributions).

Definition 47 (Adversary value). The adversary value of a function f : {0, 1}n → {0, 1} is the
non-negative real number defined as,

Adv(f) = max
Γ

∥Γ∥
maxi∈{1,...,n}∥Γi∥

where the maximum is taken over all non-zero adversary matrices Γ ∈ R2n×2n for f .

Corollary 48. The quantum query complexity of any function f : {0, 1}n → {0, 1} is at
least Q(f) ≥ Adv(f)/36.

Unlike other combinatorial measures of complexity – such as the block sensitivity – the
adversary value is always equal to the optimal query complexity, up to a constant factor. The
proof of the upper bound Q(f) = O(Adv(f)) will be the focus of Section 6. The crucial insight
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is that Adv(f) can be expressed as the optimum of a semidefinite program, whose dual can be
turned into a quantum algorithm.

Another interesting aspect of the adversary method is to scale naturally with function
composition, in the sense that applying it to a composed function f •g only requires understanding
the method separately for f and g.

Proposition 49 (Function composition [HLŠ07; Rei09]). Let f : {0, 1}n → {0, 1} and g :
{0, 1}m → {0, 1} be two Boolean functions. Define their composition f • g : {0, 1}nm → {0, 1} as
f • g(x) = f(g(x1, . . . , xm), . . . , g(x(n−1)m+1, . . . , xnm)). Then, Adv(f • g) = Adv(f)Adv(g).

The reader interested in the proof of this result may attempt to demonstrate the case
Adv(OR • g) ≥

√
n ·Adv(g) by combining an optimal adversary matrix for g with the adversary

matrix for the OR function described in the next section.

5.2 Applications

One of the most challenging aspects of the adversary method is identifying which adversary ma-
trices maximize the ratio ∥Γ∥/(maxi∈{1,...,n}∥Γi∥). In this section, we develop some applications
where Γ belongs to {0, 1}2n×2n (sometimes referred to as the “basic adversary method”). This
restriction on the entries of Γ can severely limit the adversary method in general, but it makes
it somewhat more intuitive. The merits of introducing more general classes of matrices were
identified later (see [ŠS06] for instance), with the most general case, allowing negative entries,
discovered by Høyer, Lee and Špalek [HLŠ07].

Application 1: The OR function. We provide a simple adversary matrix for the OR
function showing that the query complexity is at least Ω(

√
n).

Proposition 50. The quantum query complexity of the OR function is at least Q(OR) ≥
√
n/36.

Proof. We consider the (0, 1)-adversary matrix Γ with nonzero weights placed on the same
hard-to-distinguish pairs of inputs (x(0), y(i)) as defined in the application to the hybrid method
(Proposition 12). The non-zero parts of the adversary and punctured adversary matrices are,

Γ =

x(0) y(1) . . . y(n)


0 1 . . . 1 x(0)

1 0 . . . 0 y(1)

...
...

. . .
...

...
1 0 . . . 0 y(n)

Γi =

x(0) y(1) . . . y(i) . . . . . . y(n)



0 . . . 0 1 0 . . . 0 x(0)

... 0 . . . . . . . . . . . . 0 y(1)

0
...

. . .
...

...

1
...

. . .
... y(i)

0
...

. . .
...

...
...

...
. . .

...
...

0 0 . . . . . . . . . . . . 0 y(n)

It is a simple calculation to check that ∥Γ∥ =
√
n and ∥Γi∥ = 1, hence Q(OR) ≥ ∥Γ∥/(36∥Γi∥) =√

n/36. The fact that
(

1√
2
, 1√

2n
, . . . , 1√

2n

)
is a principal eigenvector of Γ informs us that the

lower bound holds also for the average-case complexity Qµ(OR) ≥
√
n/36 under the input

distribution µ(x(0)) = 1/2, µ(y(1)) = · · · = µ(y(n)) = 1/(2n).

Application 2: Combinatorial formulation of the basic adversary method. The
adversary method was originally introduced by Ambainis [Amb02] for adversary matrices
with (0, 1) entries. Here, we reproduce the combinatorial formulation of this approach and
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develop its application to the Connectivity problem in the next section. The basic adversary
method represents hard-to-distinguish pairs of inputs as a bipartite graph and relates the
adversary value (therefore, the query complexity) to the degree expansion properties of that
graph.

Proposition 51 (Basic adversary method [Amb02]). Let f : {0, 1}n → {0, 1} be a Boolean
function. Choose two sets of inputs V0 ⊆ {x : f(x) = 0}, V1 ⊆ {x : f(x) = 1} and a relation
E ⊆ V0 × V1. Let G be the bipartite graph with vertex set V = V0 ∪ V1 and edge set E. For
each index i ∈ {1, . . . , n}, define the subgraph Gi of G obtained by removing all edges (x, y) for
which xi = yi.

For each x ∈ {0, 1}n, let d(x) be the degree of the vertex x in the graph G and d(x, i) be its
degree in the graph Gi. Then, the adversary value of f is at least

Adv(f) ≥

√
min(x,y)∈V0×V1 d(x)d(y)

max(x,y)∈E,i∈{1,...,n} d(x, i)d(y, i)
.

Proof. We define Γ as the adjacency matrix of the graph G (i.e., Γx,y = 1 if and only if
(x, y) ∈ E). One can check that Γ is indeed an adversary matrix. Let m0 = minx∈V0 d(x) and
m1 = miny∈V1 d(y) be the minimal left and right degrees in the bipartite graph G. We can
assume without loss of generality that m0,m1 ≥ 1 (otherwise the lower bound is vacuous).

We show first that ∥Γ∥ ≥ √m0m1. Let a ∈ Rn be the vector defined as ax =
√
m0/(2m1|E|)

when x ∈ V0 and ay =
√
m1/(2m0|E|) when y ∈ V1. Then, ∥a∥2 = m0|V0|/(2m1|E|) +

m1|V1|/(2m0|E|) ≤ 1 and ∥Γa∥2 =
∑

x∈V0 d(x)
2m1/(2m0|E|) +

∑
y∈V1 d(y)

2m0/(2m1|E|) ≥
m0m1|V0|/(2|E|) +m0m1|V1|/(2|E|) = m0m1. Hence, ∥Γ∥ ≥ ∥Γa∥/∥a∥ ≥ √m0m1.

We claim next that ∥Γi∥ ≤ max(x,y)∈E
√
d(x, i)d(y, i) for all i. This follows immediately

from the next inequality on the spectral norm of symmetric (0, 1)-matrices.

Lemma 52 (Appendix A in [ŠS06]). The spectral norm of a symmetric (0, 1)-matrix A is at
most ∥A∥ ≤ maxx,y:Ax,y=1

√
rx(A)cy(A), where rx(A) (resp. cy(A)) is the sum of the elements

in the x-th row (resp. y-th column) of A.

The proposition follows by definition of Adv(f) ≥
√
∥Γ∥/maxi∈{1,...,n}∥Γi∥.

Application 3: The Connectivity function. We study the complexity of determining
whether an undirected n-vertex graph is connected or not. The input is encoded over

(
n
2

)
bits x ∈ {0, 1}(

n
2) representing the adjacency matrix of the graph (where x{i,j} = 1 if and only if

there is an edge between vertices i and j).

Definition 53 (Connectivity). The Connectivity problem is to output 1 if the graph
represented by the input x ∈ {0, 1}(

n
2) is connected, and 0 otherwise.

The query complexity of this problem was first established by Dürr, Heiligman, Høyer and
Mhalla [DHHM06]. The classical query complexity is easily shown to be maximal through a
reduction from the OR problem.

Proposition 54. The randomized query complexity of the Connectivity function is at
least R(Connectivity) = Ω(n2).

Proof. Assume that n is even. We describe a reduction from the OR problem over n2/4 bits to
the Connectivity problem over

(
n
2

)
bits. Fix P1 and P2 to be two path graphs of lengths n/2

over the vertices {1, . . . , n/2} and {n/2+1, . . . , n}, respectively. Given an input y ∈ {0, 1}n/2×n/2
to the OR problem (indexed as a square matrix for convenience), define the graph obtained
by the union of P1, P2 and all the edges {i, j + n/2} for which yi,j = 1. Then, the resulting
graph is connected if and only if OR(y) = 1. Since computing OR(y) requires Ω(n2) queries, the
reduction implies that the same lower bound applies to the Connectivity problem as well.
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The same reduction yields an Ω(
√
n2/4) = Ω(n) quantum lower bound for Connectivity.

This is however not optimal, as is shown in the next proposition based on the basic adversary
method (we will describe a matching upper bound in Proposition 68, using the dual to the
adversary method).

Proposition 55 ([DHHM06]). The quantum query complexity of the Connectivity function
is at least Q(Connectivity) = Ω(n3/2).

Proof. We first construct the two sets of inputs V0 and V1 needed to apply Proposition 51. The
set V0 consists of the graphs x ∈ {0, 1}(

n
2) made of two disjoint cycles, each of length at least n/3.

The set V1 consists of the graphs x ∈ {0, 1}(
n
2) made of a single cycle of length n. We define

the relation E ⊆ V0 × V1 as all pairs of graphs (x, y) ∈ V0 × V1 that are related by the following
process: y can be obtained by disconnecting one edge from each cycle in x and gluing the two
resulting paths together into a cycle of length n.

Using the notations of Proposition 51, each input x ∈ V0 belongs to at least d(x) ≥ (n/3)2

pairs in E, since there are at least n/3 choices to disconnect each cycle in x. Conversely, each
input y ∈ V1 belongs to at least d(y) ≥ n2/6 pairs since there are at least n2/6 choices to
disconnect two edges in y at distance at least n/3 from each other. We leave it to the reader to
verify that the number of pairs remaining, when an edge {i, j} must be in one graph but not in the
other, satisfies the relation d(x, {i, j})d(y, {i, j}) = O(n). By Proposition 51 and Corollary 48,
the quantum query complexity is at least Q(Connectivity) = Ω(Adv(Connectivity)) =
Ω(
√
n2 · n2/n) = Ω(n3/2).

Connectivity is part of a larger family of graph problems – the non-trivial monotone graph
properties – whose complexities attract a lot of attention. The interested reader can refer to the
Aanderaa-Karp-Rosenberg conjectures (e.g., [ABK+21, Section 5]).

6 Algorithmic Dual to the Adversary Method

The study of lower-bound methods is often not entirely separate from that of upper bounds,
i.e., algorithm design. This principle is particularly well illustrated by the adversary method.
Indeed, any solution to its dual, defined through semidefinite optimization, can be adapted into
a surprisingly efficient converse algorithm. This result, first established by Reichardt [Rei11],
provides a tight characterization of quantum query complexity in terms of the adversary value,
up to constant factors: Q(f) = Θ(Adv(f)).

This section presents the dual of the adversary method and explains how its solutions
can be converted into quantum algorithms. We follow the approach of [LMR+11; Wol19].
In the application section, we derive optimal algorithms for the OR, AND-OR tree and
Connectivity functions.

6.1 Technique

The adversary value Adv(f) was defined in the previous section as the supremum of the
ratio ∥Γ∥/maxi∈{1,...,n}∥Γi∥ evaluated over the set of adversary matrices Γ (Definition 47). It
is not complicated to see that this optimization problem can be phrased as a semidefinite
program (SDP), i.e., a generalization of a linear program where, in addition to linear constraints,
some variables X (structured as square matrices) must satisfy the positive semidefinite constraint
(PSD) X ⪰ 0.

The dual of an SDP often provides valuable insights into its optimal solutions. Below, we
state the primal-dual formulation of the adversary value. The dual program associates a PSD
matrix V (i) with each query index i, and it minimizes the largest diagonal entry of

∑
i V

(i)

under the constraint that the off-diagonal terms of the partial sum
∑

i:xi ̸=yi V
(i)
x,y are equal to 1

whenever f(x) ̸= f(y).
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Proposition 56 (Dual program for Adv(f), proven in [Rei09] or Theorem 3.29 in [Bel14]). Let
f : {0, 1}n → {0, 1} be a Boolean function. Define the two following semidefinite programs.

Primal semidefinite program Dual semidefinite program

max
Γ

∥Γ∥
maxi∈{1,...,n}∥Γi∥

s.t. Γx,y = Γy,x ∀x, y ∈ {0, 1}n

Γx,y = 0 ∀x, y : f(x) = f(y)

Γ ∈ R2n×2n

min
V (1),...,V (n)

max
x∈{0,1}n

∑
i∈{1,...,n}

V
(i)
x,x

s.t. V (i) ⪰ 0 ∀i ∈ {1, . . . , n}∑
i:xi ̸=yi V

(i)
x,y = 1 ∀x, y : f(x) ̸= f(y)

V (1), . . . , V (n) ∈ C2n×2n

Then, the two programs are dual to each other, and they satisfy the strong duality property.
In particular, their optimum are both equal to Adv(f).

By (weak) duality, one can certify that the adversary value is at most Adv(f) ≤ T by
exhibiting a feasible solution to the dual program with value T . The striking property, which
we establish next, is the ability to also derive a quantum algorithm computing f with complex-
ity O(T ). The rest of this section is dedicated to the description and analysis of this algorithm.
We start by rewriting the solutions of the dual program in terms of the vector realizations of the
PSD matrices.

Lemma 57 (Vector realization of a dual solution). Let V (1), . . . , V (n) ∈ C2n×2n be a feasible so-
lution to the dual program from Proposition 56 with value T = maxx∈{0,1}n

∑
i∈{1,...,n} V

(i)
x,x. Then,

there exist an integer d and a set {|w(x,i)⟩}x∈{0,1}n,i∈{1,...,n} of complex vectors |w(x,i)⟩ ∈ Cd such
that

∑
i:xi ̸=yi⟨w

(x,i) |w(y,i)⟩ = 1 when f(x) ̸= f(y), and T = maxx∈{0,1}n
∑

i∈{1,...,n}∥w(x,i)∥2.

Proof. A necessary (and sufficient) condition for a matrix V ∈ C2n×2n to be PSD is to be equal
to a Gram matrix Vx,y = ⟨w(x) |w(y)⟩ for some vectors |w(0)⟩, . . . , |w(2n−1)⟩ ∈ Cd and integer d.
It is immediate to verify that using such a vector realization for the matrices V (1), . . . , V (n) leads
to the conclusion of the lemma.

The dimension d of a vector solution can always be chosen as 2n (for instance, by taking the
column vectors of the Cholesky decompositions of the matrices V (1), . . . , V (n)). However, the
smaller d is, the less memory the quantum algorithm will require.

The algorithm is going to determine the value of f(x) based on the outcome of a quantum
phase estimation procedure. The estimated eigenphase will be close to 0 when f(x) = 1 and at
least 1/(2T ) when f(x) = 0. The eigenphase gap between the two cases ensures that running
phase estimation with a precision of O(1/T ) is sufficient.

We now define the input unitary Rx used in the phase estimation procedure. It is given
by the product of two reflection operators acting on three registers, over a Hilbert space H of
dimension 2nd+ 1. The first two registers represent a query index i ∈ {1, . . . , n} and a query
value b ∈ {0, 1}. The third register has d dimensions used to encode the given vector realization.
The extra dimension allows us to define a special state |⋆⟩, which will serve as the guiding state
for phase estimation.

Definition 58 (Unitaries Rx associated with a vector realization). Fix two integers n, d. For
each x ∈ {0, 1}n, let Hx be the Hilbert space of dimension 2nd+ 1 defined as,

Hx = span
{
|i, xi⟩ ⊗ |w⟩ : i ∈ {1, . . . , n}, w ∈ {1, . . . , d}

}
⊕ span{|1, 0⟩ ⊗ |d+ 1⟩}.

Let H =
∑

xHx be the Hilbert space spanned by the union of the sets. Define |⋆⟩ = |1, 0⟩⊗|d+1⟩.
Fix a vector realization |w(x,i)⟩ ∈ span{|1⟩, . . . , |d⟩} as described in Lemma 57. For each

x ∈ {0, 1}n, let |t+x ⟩ ∈ Hx and |t−x ⟩ ∈ Hx̄ be the two (unnormalized) states defined as,

|t+x ⟩ = |⋆⟩+
1√
4T

∑
i∈{1,...,n}

|i, xi⟩ ⊗ |w(x,i)⟩ and |t−x ⟩ = |⋆⟩ −
√
4T

∑
i∈{1,...,n}

|i, xi⟩ ⊗ |w(x,i)⟩,
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∆

Π|t⟩

Π|t⟩
θ/2

Figure 6: The orthogonal projection of the vector |t⟩ on Π has norm ∥Π|t⟩∥ = sin(θ/2)∥|t⟩∥.

where xi = 1− xi.
Rx = (2Πx − Id)(2∆− Id).

where Πx and ∆ are the two orthogonal projectors onto Hx and span
{
|t−y ⟩ : f(y) = 1

}
respec-

tively.

Before analyzing the spectral properties of Rx, note that it can be implemented using only
two queries to a quantum oracle for x.

Lemma 59 (Query implementation of Rx). There exists two unitary operators U0, U1 such that,
for any x ∈ {0, 1}n, the operation Rx given in Definition 58 can be decomposed as the product
Rx = (Ox ⊗ Id)U1(Ox ⊗ Id)U0, where Ox is the quantum binary oracle to x.

Proof. The first unitary can be chosen as the reflection U0 = 2∆ − Id, since the projector ∆
does not depend on x. By definition, the second reflection 2Πx − Id must flip the sign of the
basis states |i, xi⟩ ⊗ |w⟩ when w ̸= d + 1, and keep the other states the same. Omitting the
last register, it suffices to use the Pauli-Z gate to obtain Ox(Id ⊗ Z)Ox|i, xi⟩ = −|i, xi⟩ and
Ox(Id ⊗ Z)Ox|i, xi⟩ = |i, xi⟩. The unitary U1 applies the same Pauli-Z transformation, but
conditioned on the last register being not in the state |d+ 1⟩.

We now state the central result regarding the spectral properties of Rx. If f(x) = 1 then
it is shown that the state |⋆⟩ lies close the eigenspaces of Rx with eigenphase 0. On the
other hand, if f(x) = 0 then the state |⋆⟩ belongs principally to the eigenspaces with larger
eigenphases Ω(1/T ).

Proposition 60 (Phase gap). Let Λx,θ be the projector onto the eigenspaces of Rx with eigen-
values in the set {eiφ : |φ| ≤ θ}. Then, ∥Λx,0|⋆⟩∥2 ≥ 3/4 if f(x) = 1 and ∥Λx, 1

3T
|⋆⟩∥2 ≤ 2/9 if

f(x) = 0.

Proof. First, we consider the case f(x) = 1. The state |t+x ⟩ is both in the support of ∆
and Πx. Hence, Rx|t+x ⟩ = |t+x ⟩, meaning that it is in the support of Λx,0 as well. The
lemma follows by observing that the distance with the state |⋆⟩ is at most ∥|⋆⟩ − |t+x ⟩∥2 =
1
4T ∥
∑

i∈{1,...,n}|i, xi⟩ ⊗ |w(x,i)⟩∥2 = 1
4T

∑
i∈{1,...,n}∥|w(x,i)⟩∥2 ≤ 1

4T · T ≤
1
4 .

Next, we consider the case f(x) = 0. We let the reader verifies that the state |t−x ⟩ is
orthogonal to the support of ∆, i.e., ∆|t−x ⟩ = 0, and its projection onto the support of Πx is
|⋆⟩ = Πx|t−x ⟩ (the former equality makes use of the condition

∑
i:xi ̸=yi⟨w

(x,i) |w(y,i)⟩ = 1 satisfied
by the vector realization when f(x) ̸= f(y)). The proof will conclude by using general results
about operators that are a product of two reflections (as is Rx). If Π and ∆ were rank-one
projectors, then the eigenvalues e±iθ of the rotation (2Π− Id)(2∆− Id) would be dictacted by
the angle θ between the two projectors. Moreover, the norm of a state |t⟩ orthogonal to ∆ would
decrease by a factor sin(θ/2) ≤ θ/2 when projected on Π, as shown in Figure 6.

For higer-rank projectors, a similar argument applies to the norm of a state orthogonal to ∆
that is projected on the small-phase eigenspaces.

Lemma 61 (Effective spectral gap lemma [LMR+11]). Let Π and ∆ be two projectors and
set R = (2Π− Id)(2∆− Id). Let Λθ be the projector onto the eigenspaces of R with eigenvalues
in {eiφ : |φ| ≤ θ}. Then, for any state |t⟩ with ∆|t⟩ = 0, we have ∥ΛθΠ|t⟩∥ ≤ θ

2∥|t⟩∥.
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By applying this lemma to the state |t−x ⟩, we conclude ∥Λx,1/3T |⋆⟩∥2 = ∥Λx,1/3TΠx|t−x ⟩∥2 ≤
1

36T 2 ∥|t−x ⟩∥2 = 1
36T 2 (1 + 4T

∑
i∈{1,...,n}∥|w(x,i)⟩∥2) ≤ 1

36T 2 (1 + 4T 2) ≤ 2
9 .

The last ingredient of the construction is the well-known quantum phase estimation algorithm,
which allows estimating (in superposition) the eigenphase of a guiding eigenvector.

Lemma 62 (Phase estimation). Let R be a unitary operator and |ψ⟩ be an eigenvector with
eigenphase φ ∈ (−π, π], i.e., R|ψ⟩ = eiφ|ψ⟩. Given a precision parameter ϵ ∈ (0, 1), the
quantum phase estimation algorithm implements a unitary QPER that uses the controlled-R
operation O(1/ϵ) times and computes a superposition QPER(|ψ⟩ ⊗ |0⟩) = |ψ⟩ ⊗ (

∑
φ̃ αφ̃|φ̃⟩) of

phase estimates φ̃ such that the probability of measuring an estimate with error |φ̃− φ| < ϵ is at
least

∑
φ̃:|φ̃−φ|≤ϵ|αφ̃|2 ≥ 8/9.

We now state the main theorem about converting the vector realization of a dual solution
into a quantum algorithm.

Theorem 63 (Dual algorithm). Let f : {0, 1}n → {0, 1} be a Boolean function and
{w(x,i)}x∈{0,1}n,i∈{1,...,n} be a set of complex vectors w(x,i) ∈ Cd, for some integer d, satisfying
the condition ∑

i:xi ̸=yi

⟨w(x,i) |w(y,i)⟩ = 1 for all x, y such that f(x) ̸= f(y).

Then, there exists a quantum algorithm that computes f with query complexity,

T = O

(
max

x∈{0,1}n

∑
i∈{1,...,n}

∥w(x,i)∥2
)
.

Moreover, there exists at least one such set of vectors that satisfies T = Θ(Adv(f)).

Proof. The algorithm consists simply of running phase estimation (Lemma 62) on the unitary Rx
and guiding state |⋆⟩ (Definition 58) with precision ϵ = 1/(6T ), and measuring a value φ̃ in the
phase estimate register. If |φ̃| ≤ 1/(6T ) then it outputs 1, otherwise it outputs 0.

The query complexity is O(T ) by Lemmas 59 and 62. It remains to show that the output is
equal to f(x) with probability at least 2/3.

If f(x) = 0, then the probability of measuring |φ̃| ≤ 1/(6T ) is at least ∥Λx,0|⋆⟩∥2 · 8/9 ≥ 3/4 ·
8/9 = 2/3, which is the squared norm of the component in |⋆⟩ with eigenphase 0 (Proposition 60)
multiplied by the probability of measuring an estimate less than 1/(6T ) for such a component
(Lemma 62).

If f(x) = 1, then the probability of measuring |φ̃| ≤ 1/(6T ) is at most ∥Λx, 1
3T
|⋆⟩∥2 + 1/9 ≤

2/9+1/9 = 1/3, which is the squared norm of the component in |⋆⟩ with eigenphase at most 1/(3T )
(Proposition 60), added to the probability of measuring an estimate less than 1/(6T ) for the
component with eigenphase at least 1/(3T ) (Lemma 62).

Finally, the algorithm can be made to work with the optimal value T = Θ(Adv(f)) by using
a vector realization (Lemma 57) for an optimal solution to the dual from Proposition 56.

Together with Corollary 48, this result shows that the adversary value is a tight characteriza-
tion of the quantum query complexity, up to constant factors.

Corollary 64. There exist two universal constant c1 < c2 such that the quantum query complexity
of any function f : {0, 1}n → {0, 1} satisfies c1Adv(f) ≤ Q(f) ≤ c2Adv(f).
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6.2 Applications

The dual of the adversary method has proven surprisingly useful in the design and analysis of
new quantum algorithms. Several algorithmic frameworks have been developed based on the
result established in Theorem 63, such as span programs [Rei09], learning graphs [Bel12], and,
more recently, transducers [BJY24]. These frameworks can simplify the search of dual solutions
and the study of their properties.

In this section, we explicitly design the vector realizations of dual solutions that lead to
optimal quantum algorithms for the OR and Connectivity functions. We also use the
composition property of the adversary value for solving the AND-OR tree problem optimally.

Application 1: The OR function. We describe an optimal solution to the dual ad-
versary proving that the lower bound Q(OR) = Ω(

√
n) is indeed optimal. We proceed by

exhibiting a vector realization w(x,i) satisfying the conditions stated in Lemma 57 with value
maxx∈{0,1}n

∑
i∈{1,...,n}∥w(x,i)∥2 = O(

√
n).

For convenience in the proof, we first establish a general result stating that the value of a
vector realization can be balanced between the 0-inputs and 1-inputs, such that the maximum
of maxx∈{0,1}n

∑
i∈{1,...,n}∥w(x,i)∥2 can be replaced with the geometric mean of the maximum

evaluated on the 0-inputs and 1-inputs separetely.

Lemma 65 (Balanced vector realization). Suppose that {|w(x,i)⟩} is a vector realization of a
solution with value T = maxx∈{0,1}n

∑
i∈{1,...,n}∥w(x,i)∥2, as described in Lemma 57. Define,

T0 = max
x∈{0,1}n:f(x)=0

∑
i∈{1,...,n}

∥w(x,i)∥2 and T1 = max
x∈{0,1}n:f(x)=1

∑
i∈{1,...,n}

∥w(x,i)∥2.

Then there exists a vector realization of a solution with value
√
T0T1.

Proof. It suffices to define the vectors v(x,i) = (T1/T0)
1/4 · w(x,i) when f(x) = 0 and v(x,i) =

(T0/T1)
1/4 · w(x,i) when f(x) = 1. The condition

∑
i:xi ̸=yi⟨v

(x,i) | v(y,i)⟩ = 1 when f(x) ̸= f(y) is
immediate, as the new factors cancel out: (T1/T0)

1/4(T0/T1)
1/4 = 1. The value of the solution is

maxx
∑

i∥v(x,i)∥2 = max{maxx:f(x)=0

√
T1/T0

∑
i∥w(x,i)∥2,maxx:f(x)=1

√
T0/T1

∑
i∥w(x,i)∥2} ≤

max{
√
T1/T0 · T0,

√
T0/T1 · T1} =

√
T0T1.

We now describe the algorithm for OR.

Proposition 66. There exists a quantum algorithm for the OR function with query complex-
ity Q(OR) = O(

√
n).

Proof. We describe a feasible vector realization with dimension d = 1 (i.e., the vectors are scalar
numbers). For each x ∈ {0, 1}n and i ∈ {1, . . . , n}, set:

w(x,i) =


1 if x is the all-0 input,
1 if xi = 1 and xj = 0 for all j < i,
0 otherwise.

The condition
∑

i:xi ̸=yi⟨w
(x,i) |w(y,i)⟩ = 1 is easily verified when OR(x) ̸= OR(y), hence it is a

valid vector realization.
The all-0 input gives the value of T0 = maxx:f(x)=0

∑
i∈{1,...,n}∥w(x,i)∥2 = n, and the other

inputs gives the value of T1 = maxx:f(x)=1

∑
i∈{1,...,n}∥w(x,i)∥2 = 1. Hence, by rebalancing the

vector realization using Lemma 65 (which amounts to multiplying w(x,i) with 1/n1/4 when x is
the all-0 input, and n1/4 otherwise) and applying Theorem 63, we obtain a quantum algorithm
with query complexity O(

√
T0T1) = O(

√
n).
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Application 2: AND-OR tree. A read-once formula is a Boolean function that can be
represented as the evaluation of a rooted tree whose nodes are labeled with OR, AND and NOT
gates, and where each input bit appears exactly once in the leaves. The composition property of
the adversary value (Proposition 49) and Theorem 63 enable the design of optimal quantum
algorithms for such functions, achieving a query complexity of Θ(

√
n) [Rei11]. We outline the

argument for the balanced AND-OR tree, a depth-2 read-once formula with an AND gate at
the root and OR gates at the first level (each with input size

√
n).

Proposition 67. The quantum query complexity of the balanced AND-OR tree function
is Q(AND •OR) = Θ(

√
n).

Proof. The query complexities of the OR and AND functions over m =
√
n bits are Q(OR) =

Q(AND) = Θ(
√
m) (this was established, for instance, in Propositions 50 and 66). By the

composition property of the adversary value (Proposition 49) and its characterization of quantum
query complexity (Corollary 64), we deduce that the complexity of the AND-OR tree function
is Θ(

√
m×

√
m) = Θ(

√
n).

While the lower bound may not seem particularly surprising here, the upper bound falls below
the natural complexity O(

√
n log n), which would be achieved using standard error reduction

techniques when composing bounded-error algorithms. This errorless composition property is a
striking feature of quantum query algorithms, allowing arbitrarily many levels of composition
without any drift in the query complexity.

Application 3: The Connectivity function. We return to the Connectivity problem,
for which a lower bound of Ω(n3/2) was established in Proposition 55. We complement this result
with a matching upper bound due to Belovs and Reichardt [BR12], obtained by exhibiting the
vector realization of an optimal solution to the dual adversary. These vectors will have a very
compact description of dimension d = log n, leading to a quantum algorithm with only O(log n)
qubits of memory. This uses exponentially less space that an older quantum algorithm for
Connectivity [DHHM06] that requires O(n log n) memory.

Proposition 68. There exists a quantum algorithm for the Connectivity function with query
complexity Q(Connectivity) = O(n3/2).

Proof. We first describe a vector realization for the problem of deciding if two vertices s and t
are connected by a path (called st-Connectivity), and we adapt it next to Connectivity.

Recall that a graph over n vertices is represented by its adjacency matrix x ∈ {0, 1}(
n
2). We

let Cx(v) ⊆ {1, . . . , n} denote the set of vertices that belong to the same connected component
as the vertex v. Given two vertices s, t ∈ {0, 1}n, we partition the set of graphs into two
parts Gst0 ∪ Gst1 = {0, 1}(

n
2), where Gst0 contains the graphs that are not st-connected, and Gst1

contains the graphs that are st-connected (i.e., t ∈ Cx(s)). For each input x ∈ {0, 1}(
n
2) and edge

{i, j} ⊂ [n] (representing a query index), we define the vector |v(x,{i,j})st ⟩ ∈ span{|1⟩, . . . , |n⟩} as,

• If x ∈ Gst0 then:

|v(x,{i,j})st ⟩ =
{
|i⟩ − |j⟩ if i ∈ Cx(s) and j /∈ Cx(s),
0 otherwise.

• If x ∈ Gst1 then fix a path of shortest length from s to t, and define:

|v(x,{i,j})st ⟩ =
{

0 if {i, j} is not an edge on that path,
|i⟩ if {i, j} is an edge on the path and i is visited first.
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We claim that this construction is a valid vector realization for the problem of deciding whether
the vertices s and t are connected. Indeed, let x ∈ Gst0 and y ∈ Gst1 . Then, the quantity∑

{i,j}:x{i,j} ̸=y{i,j}⟨v
(x,{i,j})
st | v(y,{i,j})st ⟩ counts the number of times the (oriented) st-path associated

with x is leaving the connected component of s in x, minus the number of times it is entering
the component. The former occurs exactly one more time than the latter (since the path starts
at s ∈ Cx(s) and ends at t /∈ Cx(s)), hence

∑
{i,j}:x{i,j} ̸=y{i,j}⟨v

(x,{i,j})
st | v(y,{i,j})st ⟩ = 1.

We now adapt this vector realization to the Connectivity problem. We use the basic
observation that a graph is connected if and only if it is st-connected for s = 1 and all
t ∈ {2, . . . , n}. Let G0 ⊂ {0, 1}(

n
2) be the set of all graphs that are not connected, and G1 those

that are connected. For each x ∈ {0, 1}(
n
2) and {i, j} ⊂ [n], we define |w(x,{i,j})⟩ ∈ span{|k⟩|t⟩ :

k ∈ {1, . . . , n}, t ∈ {2, . . . , n}} as,

• If x ∈ G0 then |w(x,{i,j})⟩ = 1
n−|Cx(1)|

∑
t/∈Cx(1)

|v(x,{i,j})1t ⟩|t⟩.

• If x ∈ G1 then |w(x,{i,j})⟩ =
∑

t∈{2,...,n}|v
(x,{i,j})
1t ⟩|t⟩.

Given x ∈ G0 and y ∈ G1, we have
∑

{i,j}:x{i,j} ̸=y{i,j}⟨w
(x,{i,j}) |w(y,{i,j})⟩ =

∑
t/∈Cx(1)

1
n−|Cx(1)| ·1 =

1, hence it is a valid vector realization for the Connectivity problem.
Finally, we compute the value of the solution. For all x ∈ G0, we have

∑
{i,j}∥|w(x,{i,j})⟩∥2 =

1
(n−|Cx(1)|)2

∑
t/∈Cx(1)

∑
{i,j}∥|v

(x,{i,j})
1t ⟩∥2 = 1

(n−|Cx(1)|)2
∑

t/∈Cx(1)
2|Cx(1)|(n− |Cx(1)|) = 2|Cx(1)|

≤ 2(n− 1) = T0. For all x ∈ G1, we have
∑

{i,j}∥w(x,{i,j})∥2 =
∑

t∈{2,...,n}
∑

{i,j}∥|v
(x,{i,j})
1t ⟩∥2 ≤∑

t∈{2,...,n}(n−1) = (n−1)(n−2) = T1, where the inequality uses the fact that the shortest path
between s = 1 and t must be of size at most n−1. By Lemma 65 and Theorem 63, we can convert
this vector realization into a quantum algorithm with query complexity O(

√
T0T1) = O(n3/2).
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