
? samples with Amplitude-Estimation… but                            is unknown

 Number of samples Additional inputs

Classical samples

[Brassard et al.’11]  
[Wocjan et al.’09] 
[Montanaro’15]

Amplitude-Estimation
Sample space  
Ω ⊂ [0,B]

[Montanaro’15]

[Li, Wu’17] "(Δ/ϵ) ⋅ (H/L)

"Δ2/ϵ

"L ≤ E(X) ≤ H

The optimal strategy is to compute the empirical mean                                      of 

                                         samples                            .

Given a non-negative r.v. X with mean                , how many samples from 

X are necessary to compute an ε-relative error estimate     such that 

with probability 2/3, provided we know an upper-bound                             .                               

A quantum sample is defined as one (controlled-)execution of 
a unitary operator      or        that satisfies
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μ̃

1 Problem 2 Classical setting

| μ̃ − μ | ≤ ϵμ

3 Quantum setting

4 Two fundamental properties

5 The algorithm 6 New Applications

0

1 Distribution of X

Probability px

0

1

Probability px

0

Sample x

Distribution of XB Normalized truncated mean

E(XB)
B

Threshold B

B ≥ ϵ−1 ⋅ E(X)Δ2 ⟹ (1 − ϵ)E(X) ≤ E(XB) ≤ E(X)

The outcomes of X that are larger than                    can 
be replaced with 0 without changing the mean much.

B

The “normalized truncated mean”                 is small when  

Sample x
0 0

0

B ≳ E(X)Δ2 .

∼ 1/Δ2

∼ E(X)Δ2

E(XB)/B ≥ 1/(8Δ2) when B ∈ [2E(X)Δ2, 4E(X)Δ2]

E(XB)/B ≤ 1/(16Δ2) when B ≥ 16E(X)Δ2

ϵ−1 ⋅ E(X)Δ2 E(XB)/B1/ 2/

SX |0⟩ = ∑
x∈Ω

px |ψx⟩ |x⟩

with            arbitrary unit vector.ψx =

SX S−1
X

Main result: there is a quantum algorithm that estimates µ 

with relative error ε using                                    quantum 

samples, given                . H ≥ E(X)

Õ ( Δ
ϵ

⋅ log3 ( H
E(X) ))

Previous results:

(Δ2 − 1)/ϵ2

Another model of quantum sampling?

B /(ϵ E(X))

If we only have access to copies of a 

quantum state                              

(instead of access to a unitary SX 

preparing it) then one can show that 

copies are necessary to estimate the 

mean with relative error ε.

∑x∈Ω
px |ψx⟩ |x⟩

Ω ((Δ2 − 1)/ϵ2)

μ̃ =
x1 + … + xn

n
x1, …, xn

iid∼ X

The correctness is a direct consequence of Chebyshev’s inequality.

n = Ω((Δ2 − 1)/ϵ2)

Δ2 ≥
E(X2)
E(X)2

No speed-up

𝟷 . 𝚂𝚎𝚝 𝙱 = 𝟺𝙷 𝚊𝚗𝚍 μ̃𝙱 = 𝟶 .

𝟸 . 𝚆𝚑𝚒𝚕𝚎 μ̃𝙱 = 𝟶 :
𝟸 . 𝟷 𝚁𝚞𝚗 𝚝𝚑𝚎 𝙰𝚖𝚙𝚕𝚒𝚝𝚞𝚍𝚎-𝙴𝚜𝚝𝚒𝚖𝚊𝚝𝚒𝚘𝚗 𝚊𝚕𝚐𝚘𝚛𝚒𝚝𝚑𝚖

𝚏𝚘𝚛 Δ 𝚜𝚝𝚎𝚙𝚜 𝚘𝚗 𝚇𝙱 . 𝙳𝚎𝚗𝚘𝚝𝚎 𝚝𝚑𝚎 𝚛𝚎𝚜𝚞𝚕𝚝 𝚋𝚢 μ̃𝙱 .

𝟹 . 𝚂𝚎𝚝 𝙱 = 𝙱/ϵ 𝚊𝚗𝚍 𝚛𝚞𝚗 𝚝𝚑𝚎 𝙰𝚖𝚙𝚕𝚒𝚝𝚞𝚍𝚎-𝙴𝚜𝚝𝚒𝚖𝚊𝚝𝚒𝚘𝚗
𝚊𝚕𝚐𝚘𝚛𝚒𝚝𝚑𝚖 𝚏𝚘𝚛 Δ/ϵ𝟹/𝟸 𝚜𝚝𝚎𝚙𝚜 𝚘𝚗 𝚇𝙱 . 𝙾𝚞𝚝𝚙𝚞𝚝 𝚝𝚑𝚎
𝚛𝚎𝚜𝚞𝚕𝚝 𝚊𝚜 μ̃ .

Correctness: combine          with the fact (cf [Brassard et al.’02]) 
that the output of Amplitude-Estimation is 0 w.h.p. when the 
(normalized) estimated mean (here: E(XB)/B) is below the inverse-
square of the number of samples (here: 1/Δ2).

Step 3 can be refined to run in Õ(Δ/ϵ) .

Frequency moments in 
the streaming model

Number of edges/triangles in the 
graph model with query access

0 3 1 0 7 2 6x = 
1 2 n

+2

Model: stream of (classical) updates to x (turnstile model)

The frequency moment                           can be 

estimated using P passes over the stream and a 

quantum memory of size                   .

Fk = ∑
n

i=1
|xi |

k

M =
n1−2/k

P2

(vs classical memory of size                     [Monemizadeh, Woodruff’10])M =
n1−2/k

P

Model: degrees, neighbors and edges can be queried 
in superposition.

Number m of edges:                   queries 

Number t of triangles:                           queriesΘ̃ (
n

t1/6
+

m3/4

t )

Θ̃ (
n

m1/4 )

(quadratic speed-ups over [Goldreich, Ron’08] [Eden, Levi, Ron’15])

• Variable-time amplitude-estimation 

• Non-decr.    with

• L2-sampler          with probability  

• Reversibility of linear sketch algorithms f(E(X))2 ≥
E(X2)
E(X)2

𝟸 . 𝟸 𝚂𝚎𝚝 𝙱 = 𝙱/𝟸

f

μ = E(X)

|xi |
2 /F2

4

B = ϵ−1E(X )Δ2B /(ϵ E(XB)) = Δ/ϵ3/2

i ∼ n


