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a Problem e Classical setting

. . . Xt .. T X
Given a non-negative r.v. X with mean p = E(X), how many samples from The optimal strategy 1s to compute the empirical mean f = = of
X are necessary to compute an s-relative error estimate g such that n=Q(( A2 — 1) /62) samples Xi, ..., X, id X &

[ —p| <ep ,
E(X?) — The correctness 1s a direct consequence of Chebyshev’s inequality.

with probability 2/3, provided we know an upper-bound A > .
E(X)-

e Quantum setting

: : ino?
A quantum sample 1s defined as one (controlled-)execution of Previous results: Another model of quantum sampling:
a unitary operator S, or Sy ! that satisfies .
1y oP XX Number of samples  Additional inputs If we only have access to copies of a
SX | O> = Z \/ITX | l//x> lx) Classical samples (Az — 1) / € 2 quantum state erﬂ \/ITX | '//x> |x>
X€Q i -_—--M Aiiwiiii (instead of access to a unitary Sx
with y, = arbitrary unit vector. [[Iz;’iscj‘zl;ldeettazil;’o 1 91]] Amplitude-Estimation ~ Sample space breparing it) then one can show that
[Montanaro’GIS] \/§/<€\/ E(X)> ©2C[0,B] O ((A2 _ 1)/62)
Main result: there is a quantum algorithm that estimates e , .
- N . "Montanaro’15] A2 / ¢ s copies are necessary to estimate the
with relative error € using O <? -log’ <ﬁ> > quantum e mean with relative error &.
samples, given H 3 E(X). [Li, Wu’17] (A/e) - (H/L) L=<EX)<H No speed-up
a Two fundamental properties
5 . . E(Xp)
robability px Probability px
A B
1 I Distribution of X 1 I Distribution of Xg Normalized truncated mean
~ 1/A*
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0— Sample x 0— .||| “"“"""IIH SaneX 0 |||‘”| ||| ;1 Threshold B
0 B 0

~ E(X)A?

|/ The outcomes of X that are larger than ¢~' - E(X)A? can 7/ The “normalized truncated mean” E(Xjy) / B is small when B > E(X)AZ.

be replaced with 0 without changing the mean much.
e B>c¢ 1. EX)A? = (1 -¢€)E(X) <E(Xp) < EX)

@ \/E/ (en/E(Xp)) = Ale>? samples with Amplitude-Estimation... but B = e "B(X)A? is unknown

e The algorithm @ New Applications
1

.Set B=4H and iz =0. Frequency moments in

the streaming model
2.While fig=0":

2.1 Run the Amplitude-Estimation algorithm B I -
for A steps on X;. Denote the result by jg. o ‘ ° ‘ i ‘ Tl ‘ ’ ‘ ________ ‘ / ‘ : ‘ ° ‘
2.2 Set B=B/2 +2

o E(Xp)/B > 1/(8A% when B € [2E(X)A?, 4E(X)A?]

o E(X;) /B < 1/(16A%) when B > 16E(X)A*

Number of edges/triangles in the
graph model with query access

Model: stream of (classical) updates to x (turnstile model) Model: degrees, neighbors and edges can be queried

3. 5et B=DB/e and run the Amplitude-Estimation

algorithm for A/e”? steps on X;. Output the

1=

result as /.

estimated using P passes over the stream and a

in superposition.

The frequency moment Fj, = Zn |x;|* can be | Number m of edges: & < \/34> queries

m

. ) \/% 34
£ nl=2k Number t of triangles: © T ) queries
Correctness: combine @ with the fact (cf [Brassard et al.”’02]) quantum memory ol size M = P2 Vi
1-2/k
that the Output of Amplitude-Estimati()n 1s O whp when the (vs classical memory of size M = & > [Monemizadeh, Woodruff’10]) | (quadratic speed-ups over [Goldreich, Ron’08] [Eden, Levi, Ron’15])
(normalized) estimated mean (kere: E(X3)/B) 1s below the inverse- k
square of the number of samples (here: 1/A?). + La-sampler i ~ n with probability | x;|*/F, * Variable-time amplitude-estimation
o o1 : : 2
- Reversibility of linear sketch algorithms - Non-decr. f with f(E(X))? > E(X7)

Step 3 can be refined to run in O(A/¢) .

arXiv: 1807.06456

~ BX)?



