Quantum Chebyshev's Inequality

Yassine Hamoudi and Frédéric Magniez

IRIF, Université Paris Diderot, CNRS

A quantum sample is defined as one (controlled-)execution of a unitary operator S_X or S_X^{-1} that satisfies

 $S_X | 0 \rangle = \sum_{x \in \Omega} \sqrt{p_x} | \psi_x \rangle | x \rangle$

with ψ_x = arbitrary unit vector.

Quantum setting

Main result: there is a quantum algorithm that estimates μ with relative error ε using $\tilde{O}\left(\frac{\Delta}{\epsilon} \cdot \log^3\left(\frac{H}{E(X)}\right)\right)$ quantum samples, given $H \ge E(X)$.

Previous results: Number of samples **Additional inputs** $(\Delta^2 - 1)/\epsilon^2$ Classical samples Amplitude-Estimation [Brassard et al.'11] Sample space [Wocjan et al.'09] $\sqrt{B}/\left(\epsilon\sqrt{\mathrm{E}(X)}\right)$ $\Omega \subset [0,B]$ [Montanaro'15] Δ^2/ϵ [Montanaro'15] $(\Delta/\epsilon) \cdot (H/L)$ $L \leq \mathrm{E}(X) \leq H$ [Li, Wu'17]

Another model of quantum sampling? If we only have access to copies of a quantum state $\sum_{x \in \Omega} \sqrt{p_x} |\psi_x\rangle |x\rangle$ (instead of access to a unitary S_X preparing it) then one can show that $\Omega ((\Delta^2 - 1)/\epsilon^2)$ copies are necessary to estimate the mean with relative error ε . \longrightarrow No speed-up

3. Set B = B/ ϵ and run the Amplitude-Estimation algorithm for $\Delta/\epsilon^{3/2}$ steps on X_B. Output the result as $\tilde{\mu}$.

<u>Correctness</u>: combine (4) with the fact (cf [Brassard et al.'02]) that the output of Amplitude-Estimation is 0 w.h.p. when the (normalized) estimated mean (*here:* $E(X_B)/B$) is below the inverse-square of the number of samples (*here:* $1/\Delta^2$).

Step 3 can be refined to run in $\tilde{O}(\Delta/\epsilon)$.

The frequency moment $F_k = \sum_{i=1}^{n} |x_i|^k$ can be estimated using P passes over the stream and a quantum memory of size $M = \frac{n^{1-2/k}}{p^2}$. (vs classical memory of size $M = \frac{n^{1-2/k}}{p^2}$. (vs classical memory of size $M = \frac{n^{1-2/k}}{p^2}$. (vs classical memory of size $M = \frac{n^{1-2/k}}{p}$ [Monemizadeh, Woodruff'10]) • L_2-sampler $i \sim n$ with probability $|x_i|^2/F_2$ • Reversibility of linear sketch algorithms • Non-decr. f with $f(E(X))^2 \ge \frac{E(X^2)}{E(X)^2}$

arXiv: 1807.06456