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Problem 1

Question 1

The statement that Adv∗(f) ≤ Adv(f) will follow from the following two observa-
tions.

1. The feasible region of the second program is a superset of the feasible region of
the first program. Since both programs are minimizing, having a larger feasible
region means that a smaller quantity may appear and decrease the optimum
of the second program.

We can see that the feasible region is a superset, since the first program has
the constraint that for all x, y∑

i: xi ̸=yi

〈
v(x,i)|v(y,i)

〉
=

{
1 f(x) ̸= f(y)
0 f(x) = f(y)

.

The second program only constraints the sum of the inner products to be equal
to 1 if f(x) ̸= f(y), but otherwise the sum of the inner products can be any
arbitrary value.

2. The objective function of the second program is at most as large as the objective
function of the first program at every point.

This is because if we use the variables of the second program, the first objective
equals max{C0, C1}. Then it holds that

max{C0, C1} =
√

max{C0, C1}2 ≥
√

C0C1.
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Question 2

Given a feasible solution {v(x,i)} to the first program, we will construct another
feasible solution with value

√
C0C1. This solution will satisfy

u(x,i) =

(
C1

C0

)1/4

· v(x,i) for f(x) = 0,

u(x,i) =

(
C0

C1

)1/4

· v(x,i) for f(x) = 1.

We can verify that∑
i:xi ̸=yi

〈
u(x,i)|u(y,i)

〉
=

∑
i:xi ̸=yi

(
C0

C1

)1/4

·
(
C1

C0

)1/4

·
〈
v(x,i)|v(y,i)

〉
=

∑
i:xi ̸=yi

·
〈
v(x,i)|v(y,i)

〉
= 1f(x)̸=f(y).

Additionally,

max
x:f(x)=0

∑
i

∥u(x,i)∥2 =
√

C1

C0

· max
x:f(x)=0

∑
i

∥v(x,i)∥2 =
√

C0C1,

max
x:f(x)=1

∑
i

∥u(x,i)∥2 =
√

C0

C1

· max
x:f(x)=1

∑
i

∥v(x,i)∥2 =
√

C0C1.

Thus the value of the program for u(x,i) is
√
C0C1.

Question 3

∑
i:xi ̸=yi

〈
w(x,i)|w(y,i)

〉
=

∑
i:xi ̸=yi

〈
v(x,i), xi ⊕ f(x)|v(y,i), yi ⊕ f(y)

〉
If f(x) = f(y), then xi ⊕ f(x) ̸= yi ⊕ f(y), and thus the inner product is zero for
all i. If on the other hand, f(x) ̸= f(y), then xi ⊕ f(x) = yi ⊕ f(y) and thus the
summation becomes

=
∑

i:xi ̸=yi

〈
v(x,i)|v(y,i)

〉
,
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which is equal to 1 since {v(x,i)} is a feasible solution to the second program.

Question 4

Let v(x,i) be such that achieves the minimum value of
√
C0C1 in the second program.

Then we define w(x,i) as in Question 3, which implies that w(x,i) is a feasible solution
to the first program. Additionally, note that ∥w(x,i)∥ = ∥v(x,i)∥. Thus the values of
C0 and C1 in the first program for the w variables are the same as the C0, C1 in the
second program for the v variables. Now we use Question 2 and obtain that there
exists a feasible solution to the first program that obtains the value

√
C0C1.

Thus the minimum value of the first program is at least as small as the minimum
value of the second program =⇒ Adv∗(f) ≥ Adv(f). Finally, from Question 1 we
conclude the equality.
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Problem 2

Question 1

We only need to consider the edges {i, j} that are on the st-path used to construct∣∣w(y,{i,j})〉, since for the other edges ⟨w(x,{i,j})|w(y,{i,j})⟩ = 0.

Fix any st-path i1 = s → i2 → . . . → t of shortest length in y. The quantity
⟨w(x,{iℓ,iℓ+1})|w(y,{iℓ,iℓ+1})⟩ is +1 when iℓ ∈ Vx(1), iℓ+1 /∈ Vx(1) and −1 when iℓ /∈ Vx(1),
iℓ+1 ∈ Vx(1). It is 0 otherwise. Since the path starts in 1 ∈ Vx(1) ends at t /∈ Vx(1),
we must have one more edge in the first case than in the second. Thus the summation
is equal to 1 as desired.

Question 2

We construct a solution
∣∣v(x,{i,j})〉 ∈ span {|k⟩ |t⟩ : 1 ≤ k ≤ n, 2 ≤ t ≤ n} to the dual

adversary, where the extra register |t⟩ will be used to embed the st-Connectivity
problem with s = 1 and all t as follows.

Define G ′
0 as the set of input graphs that are not connected, and G ′

1 as the graphs
that are connected.

If x ∈ G ′
0, observe first that Vx(1) ̸= ∅ since at least one vertex doesn’t belong to

the connected component of 1. Define:∣∣v(x,{i,j})〉 =
1

|Vx(1)|

∑
t∈Vx(1)

∣∣∣w(x,{i,j})
t

〉
|t⟩

where
∣∣∣w(x,{i,j})

t

〉
is the vector analyzed in question 1 for st-connectivity (actually∣∣∣w(x,{i,j})

t

〉
=

∣∣w(x,{i,j})〉 since it doesn’t depend on t when x ∈ G ′
0).

If x ∈ G ′
1 then we similarly take:∣∣v(x,{i,j})〉 =

∑
t∈{2,...,n}

∣∣∣w(x,{i,j})
t

〉
|t⟩ .
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By construction, for all x ∈ G ′
0, y ∈ G ′

1, we have:
∑

{i,j}:x{i,j} ̸=y{i,j}
⟨v(x,{i,j})|v(y,{i,j})⟩ =∑

t∈Vx(1)
1

|Vx(1)|

∑
{i,j}:x{i,j} ̸=y{i,j}

⟨w(x,{i,j})
t |w(y,{i,j})

t ⟩ =
∑

t∈Vx(1)
1

|Vx(1)|
· 1 = 1, using the

result shown in question 1.

It remains to prove that the value of that solution is O(n3/2). One can easily check
that C1 = O(n2) since the shortest length st-paths are always of size at most n−1. We

show that C0 = O(n). Fix any x ∈ G ′
0. Observe that

∑
{i,j}∥w

(x,{i,j})
t ∥2= O(n|Vx(1)|)

since the only edges that can contribute to the sum are those going from Vx(1) to
Vx(1). Hence,

∑
{i,j}∥v(x,{i,j})∥2= O( 1

|Vx(1)|2
· |Vx(1)|·n|Vx(1)|) = O(n). Thus

√
C0C1

for our construction of the v variables is equal to O(n3/2).
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Problem 3

Question 1

We will use the candidate dual adversary solution provided in the hint. Then we can
compute for f ◦ g(X) = 0 and f ◦ g(Y ) = 1:

∑
(i,j)

X(i,j) ̸=Y(i,j)

⟨v(X,(i,j))
f◦g |v(Y,(i,j))f◦g ⟩

=
∑
i

⟨v(g(X1),...,g(Xn)),i)
f |v(g(Y1),...,g(Yn)),i)

f ⟩
∑
j

X(i,j) ̸=Y(i,j)

⟨v(Xi,j)
g |v(Yi,j)

g ⟩

=
∑
i

⟨v(g(X1),...,g(Xn)),i)
f |v(g(Y1),...,g(Yn)),i)

f ⟩ · 1[g(Xi) ̸= g(Yi)]

=
∑
i

g(Xi )̸=g(Yi)

⟨v(g(X1),...,g(Xn)),i)
f |v(g(Y1),...,g(Yn)),i)

f ⟩

= 1[f ◦ g(X) ̸= f ◦ g(Y )]

Thus the candidate solution is a feasible point. Let us now compute its value:∑
(i,j)

∥∥∥v(X,(i,j))
f◦g

∥∥∥2

= max
X

∑
(i,j)

⟨v(g(X1),...,g(Xn)),i)
f |v(g(Y1),...,g(Yn)),i)

f ⟩ · ⟨v(Xj ,j)
g |v(Yi,j)

g ⟩

≤ max
X

∑
i

⟨v(g(X1),...,g(Xn)),i)
f |v(g(Y1),...,g(Yn)),i)

f ⟩ ·max
X

∑
j

⟨v(Xi,j)
g |v(Yi,j)

g ⟩

≤ max
X

∑
i

⟨v(g(X1),...,g(Xn)),i)
f |v(g(Y1),...,g(Yn)),i)

f ⟩ · Adv(g)

= Adv(f) · Adv(g)

Where for the last two equalities we used the fact that vf , vg are the dual adversary
solutions for f and g. Thus we have constructed a feasible solution for the f ◦ g
function that has a value at most Adv(f) · Adv(g). Since the adversary program is
minimizing, its optimal value may be even lower, and thus the statement holds.
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Question 2

As per the hint, let Γ be the primal adversary solution for g. We will construct a
primal adversary solution for f ◦ g as a block matrix. For simplicity, define G0 =
{X | g(X) = 0} and G1 = {Y | g(Y ) = 1}. Then our new adversary matrix Γ′ will
have blocks that are indexed as n-tuples of G0, G1. In particular,

Γ′[(i1, . . . , in), (j1, . . . , jn)] =

{
Γ if {

∑
k ik,

∑
k jk} = {0, 1}

0 o.w.

This is just the adversary matrix we saw for the OR function, but each block now
includes the adversary matrix Γ for g.

One can verify that Γ′ is a valid adversary matrix since it is symmetric and is equal
to zero for inputs that map to the same value.

It remains for us to bound
∥Γ′∥

maxi∥Γ′
i∥
.

It is easy to see that ∥Γ′∥ =
√
n · ∥Γ∥ since it is a block matrix with n copies of Γ in

each block.

Let us now investigate the form of Γ′
i. Here i is a coordinate from 1 tomn. Coordinate

i lies in the rth block and cth coordinate of the block, where r = ⌈i/m⌉ and c = i
mod m+ 1.

Then Γ′
i will have all blocks equal to 0, except possibly block (0, . . . , 0) and (0, . . . , 1, . . . , 0),

where the 1 is in the rth position. This block will be equal to Γc. Thus ∥Γ′
i∥ = ∥Γc∥,

due to the block format of the big matrix. Thus

Adv(f ◦ g) = ∥Γ′∥
maxi∥Γ′

i∥
≥

√
n · ∥Γ∥

maxmc=1∥Γc∥
=

√
n · Adv(g).
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