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Problem 1

Question 1

Consider a randomized algorithm that outputs some value i. Then the algorithm
wins if

• i is in the record and xi = 1. This happens with probability at most ∆T , or

• i is not in the record, and when xi is sampled, it records 1. This happens with
probability 1

n
.

From the union-bound inequality, the probability that the randomized algorithm
succeeds is at most the sum of the probabilities of the two events, which is at most
∆T + 1

n
.

Thus any randomized algorithm that succeeds with probability at least 2
3
must satisfy

that

∆T +
1

n
≥ 2

3

=⇒ T + 1

n
≥ 2

3

=⇒ T = Ω(n).
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Question 2.1

Case xi = ∅.∥∥Πsucceed

(
S⊗n |x1, . . . , xi = ∅, . . . , xn⟩ ⊗ |i, b⟩

)∥∥
=

∥∥∥∥∥Πsucceed

(
1√
n

∑
0≤y<n

S |x1⟩ , . . . , |y⟩ , . . . , S |xn⟩ ⊗ |i, b⟩

)∥∥∥∥∥
=

∥∥∥∥ 1√
n
S |x1⟩ , . . . , |1⟩ , . . . , S |xn⟩ ⊗ |i, b⟩

∥∥∥∥
=

1√
n
.

Case xi = 1. We will use the fact that S |y⟩ = |y⟩+ |err⟩

∥∥Πsucceed

(
S⊗n |x1, . . . , xi = 1, . . . , xn⟩ ⊗ |i, b⟩

)∥∥
= ∥Πsucceed (S |x1⟩ , . . . , (|1⟩+ |err⟩), . . . , S |xn⟩ ⊗ |i, b⟩)∥

=

∥∥∥∥n− 1

n
(S |x1⟩ , . . . , |1⟩ , . . . , S |xn⟩ ⊗ |i, b⟩)

∥∥∥∥
=
n− 1

n

Case xi ∈ {0, . . . , n− 1} \ {1}. Say xi = y ̸= 1.

∥∥Πsucceed

(
S⊗n |x1, . . . , xi = y, . . . , xn⟩ ⊗ |i, b⟩

)∥∥
= ∥Πsucceed (S |x1⟩ , . . . , (|y⟩+ |err⟩), . . . , S |xn⟩ ⊗ |i, b⟩)∥

=

∥∥∥∥− 1

n
(S |x1⟩ , . . . , |1⟩ , . . . , S |xn⟩ ⊗ |i, b⟩)

∥∥∥∥
=

1

n
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Question 2.2

Write
∣∣ψT

rec

〉
=
∑

x,i,b αx,i,b |x⟩⊗|i, b⟩. We will decompose the state into n+1 mutually
orthogonal states, following the proof of Lemma 3.5:

• |ψ∅⟩ =
∑

x,i,b
xi=∅

αx,i,b |x⟩ ⊗ |i, b⟩

• |ψy⟩ =
∑

x,i,b
xi=y

αx,i,b |x⟩ ⊗ |i, b⟩ for all 0 ≤ y < n

Then it holds that ∣∣ψT
rec

〉
= |ψ∅⟩+

n−1∑
y=0

|ψy⟩ .

Now we write, using triangle inequality:∥∥Πsucceed

∣∣ψT
〉∥∥ =

∥∥Πsucceed(S
⊗n ⊗ Id)

∣∣ψT
rec

〉∥∥
≤
∥∥Πsucceed(S

⊗n ⊗ Id) |ψ∅⟩
∥∥+ n−1∑

y=0

∥∥Πsucceed(S
⊗n ⊗ Id) |ψy⟩

∥∥
We will now compute these terms separately using our results from the previous
question.

• |ψ∅⟩:

∥∥Πsucceed(S
⊗n ⊗ Id) |ψ∅⟩

∥∥2 =
∥∥∥∥∥∥∥∥Πsucceed(S

⊗n ⊗ Id)
∑
x,i,b
xi=∅

αx,i,b |x⟩ ⊗ |i, b⟩

∥∥∥∥∥∥∥∥
2

=
∑
x,i,b
xi=∅

|αx,i,b|2·
∥∥Πsucceed(S

⊗n ⊗ Id) |x⟩ ⊗ |i, b⟩
∥∥2

=
1

n

∑
x,i,b
xi=∅

|αx,i,b|2

=
1

n
∥ψ∅∥2

3
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The second equality follows because Πsucceed(S
⊗n⊗ Id) preserves orthogonality

between states |x⟩ ⊗ |i, b⟩ with xi = ∅.

• |ψ1⟩:

∥∥Πsucceed(S
⊗n ⊗ Id) |ψ1⟩

∥∥2 =
∥∥∥∥∥∥∥Πsucceed(S

⊗n ⊗ Id)
∑
x,i,b
xi=1

αx,i,b |x⟩ ⊗ |i, b⟩

∥∥∥∥∥∥∥
2

=
∑
x,i,b
xi=1

|αx,i,b|2·
∥∥Πsucceed(S

⊗n ⊗ Id) |x⟩ ⊗ |i, b⟩
∥∥2

=
n− 1

n

∑
x,i,b
xi=1

|αx,i,b|2

=
n− 1

n
∥ψ1∥2

• |ψy⟩ for y ̸= 1:

∥∥Πsucceed(S
⊗n ⊗ Id) |ψy⟩

∥∥2 =
∥∥∥∥∥∥∥Πsucceed(S

⊗n ⊗ Id)
∑
x,i,b
xi=y

αx,i,b |x⟩ ⊗ |i, b⟩

∥∥∥∥∥∥∥
2

=
∑
x,i,b
xi=y

|αx,i,b|2·
∥∥Πsucceed(S

⊗n ⊗ Id) |x⟩ ⊗ |i, b⟩
∥∥2

=
1

n2

∑
x,i,b
xi=y

|αx,i,b|2

=
1

n2
∥ψy∥2

We conclude that∥∥Πsucceed

∣∣ψT
〉∥∥ ≤

∥∥Πsucceed(S
⊗n ⊗ Id) |ψ∅⟩

∥∥+ n−1∑
y=0

∥∥Πsucceed(S
⊗n ⊗ Id) |ψy⟩

∥∥
≤ 1√

n
∥|ψ∅⟩∥+

√
n− 1√
n

∥|ψ1⟩∥+
1

n

∑
y ̸=1

∥|ψy⟩∥
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We note that ∥|ψ1⟩∥ =
∥∥Πsucceed

∣∣ψT
rec

〉∥∥ ≤
∥∥Πrec

∣∣ψT
rec

〉∥∥ =
√
∆T . We can also use

Cauchy-Schwarz on the remaining terms and conclude that

∥∥Πsucceed

∣∣ψT
〉∥∥ ≤

√
∆T +O

(
1√
n

)
.

Question 2.3

Any successful SEARCH quantum query algorithm must satisfy
∥∥Πsucceed

∣∣ψT
〉∥∥2 ≥

2
3

=⇒
∥∥Πsucceed

∣∣ψT
〉∥∥ ≥ 1

2
. From the previous question, this implies that it must

hold: √
∆T +O

(
1√
n

)
≥ 1

2

From the lecture, this means that

T ·
√

10

n
+O

(
1√
n

)
≥ 1

2
=⇒ T = Ω(

√
n).
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Problem 2

Question 1

A classical (deterministic) algorithm is to query the input at positions 1, 2, 3, . . .
until the same number appears twice. From the birthday bound, we know that the
query complexity of this algorithm is O(

√
n) with high probability.

Question 2

Define Ct to be the event that there is a collision after t queries. Then

Pr[Ct] = Pr[Ct−1] + Pr[collision at t | ¬Ct−1]

= ∆t−1 +
t− 1

n
.

Where the last equality follows because the tth query can collide with any of the t−1
distinct values with probability t−1

n
.

Now by expanding the ∆t−1 term we get that

∆t =
t− 1

n
+
t− 2

n
+ · · ·+ 1

n
=
t(t− 1)

2n
= O

(
t2

n

)
.

Thus any classical algorithm that succeeds with at least constant probability must
satisfy t = Ω(

√
n).

Question 3

We will prove this by induction. Initially, the state |ψ0
rec⟩ is supported onto basis

states |x⟩ ⊗ |i, b⟩ such that x = ∅n. Thus the statement holds for t = 0.
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We now show that if the statement holds for t = k, it also holds for t = k+1. Recall
that ∣∣ψk+1

rec

〉
= Uk+1R

∣∣ψk
rec

〉
.

Since Uk+1 does not affect the support of the oracle register, we only need to consider
R applied on

∣∣ψk
rec

〉
.

We have seen in the lecture that we can decompose
∣∣ψk

rec

〉
into |ψ∅⟩ which is the span

of |x⟩ ⊗ |i, b⟩ for x such that xi = ∅, and |ψy⟩ where xi ∈ {0, . . . , n − 1}. From the
proposition of the lecture, we know that

R |ψ∅⟩ adds a uniformly random value to xi

R |ψy⟩ either keeps xi the same, resamples, or deletes it.

Hence in both cases, the number of recorded values increases by at most 1. Thus∣∣ψk+1
rec

〉
is supported over |x⟩ with at most k + 1 non-∅ values.

Question 4

We will define the operator Π that projects onto span{|x⟩⊗|i, b⟩ | x contains collision}.
Thus ∆t = ∥Π |ψt

rec⟩∥2. From the lecture, we have seen that√
∆t ≤

√
∆t−1 + ∥ΠR (Id− Π)

∣∣ψt−1
rec

〉︸ ︷︷ ︸
∈ker(Π)

∥

Claim. For any recording state |ψ⟩ ∈ ker(Π) with t− 1 queries, we have

∥ΠR |ψ⟩∥ ≤ O

(√
t− 1√
n

)
∥|ψ⟩∥

Proof. We will closely follow the proof of Lemma 3.5 from the lecture notes. Write

|ψ⟩ =
∑
x,i,b

αx,i,b |x⟩ ⊗ |i, b⟩ .

Since |ψ⟩ is in the kernel of Π, it means that αx,i,b is non-zero only for x with no
collisions. Additionally, since |ψ⟩ has t − 1 recording queries, the number of non-∅
entries in the |x⟩ in the support of |ψ⟩ is at most t− 1.
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We will decompose |ψ⟩ into n+ 1 mutually orthogonal states:

• |ψ∅⟩ =
∑

x,i,b
xi=∅

αx,i,b |x⟩ ⊗ |i, b⟩

• |ψy⟩ =
∑

x,i,b
xi=y

αx,i,b |x⟩ ⊗ |i, b⟩ for all 0 ≤ y < n.

Then
∥ΠR |ψ⟩∥ ≤ ∥ΠR |ψ∅⟩∥+

∑
y

∥ΠR |ψy⟩∥.

We bound each term separately.

•
R |ψ∅⟩ =

1√
n

∑
x,i,b
xi=∅

αx,i,b

∑
y

ωby |. . . , xi = y, . . .⟩ ⊗ |i, b⟩

=⇒ ΠR |ψ∅⟩ =
1√
n

∑
x,i,b
xi=∅

αx,i,b

∑
y∈supp(x)

ωby |. . . , xi = y, . . .⟩ ⊗ |i, b⟩

=⇒ ∥ΠR |ψ∅⟩∥2 =
1

n

∑
x,i,b
xi=∅

|αx,i,b|2
∑

y∈supp(x)

|ωby|2≤ t− 1

n
∥|ψ∅⟩∥2.

Where the last equality holds because the support of x is at most t− 1 (since
we only made t− 1 queries).

• Following a similar proof we deduce that

∥ΠR |ψy⟩∥2 ≤
9(t− 1)

n2
∥|ψy⟩∥2.

We conclude from the Cauchy-Schwarz inequality that

∥ΠR |ψ⟩∥ ≤
√
t− 1√
n

∥ΠR |ψ∅⟩∥+
3
√
t− 1

n

∑
y

∥ΠR |ψy⟩∥ ≤ O

(√
t− 1√
n

)
∥|ψ⟩∥.
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Thus we have proved that

√
∆t ≤

√
∆t−1 +O

(√
t− 1√
n

)
≤ O

(√
t− 1√
n

)
+O

(√
t− 2√
n

)
+ · · ·+O

(
1√
n

)
= O

(
t3/2√
n

)
Thus the probability that the record contains a collision after t quantum queries is
∆t = O(t3/n).

Note. This does not directly imply that a quantum query algorithm requires Ω(n1/3)
quantum queries to solve the Collision problem since we have to argue that the
progress is close to the success probability. This can be proven in a similar manner.
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Problem 3

Question 1

Any deterministic query algorithm can keep track of the bipartite graph G and
update the edges of the graph, maintaining the invariant that if edge (x, y) is in the
graph, then the algorithm cannot distinguish between inputs x and y.

If the deterministic algorithm queries input bit i, then it can distinguish all pairs
(x, y) that differ on coordinate i. Hence the edges of Gi can be removed from G.

Note that we originally have |E| pairs, and each time we are removing the edges of
Gi, which are |Ei|≤ maxi|Ei|. Thus any deterministic algorithm that can distinguish

all pairs in G, needs at least |E|
maxi|Ei| = mini

|E|
|Ei| queries to the input.

We can deduce that |E|≥ max{m0|V0|,m1|V1|}, and |Ei|≤ max{ℓ0,i|V0|, ℓ1,i|V1|}.
Hence

min
i

|E|
|Ei|

≥ max{m0|V0|,m1|V1|}
maxi{ℓ0,i|V0|, ℓ1,i|V1|}

≥ min
i

{
m0

ℓ0,i
+
m1

ℓ1,i

}
.

Question 2

We have seen in lecture that

Q(f) ≥ max
Γ

∥Γ∥
40 ·maxi∥Γi∥

.

We will use the Γ given by
Γx,y = 1[(x, y) ∈ G].

One can verify that Γi also corresponds to the edges of Gi. Thus we want to show
that

∥Γ∥ ≥ Ω (
√
m0m1)

and
∥Γi∥ ≤ O

(√
ℓ0ℓ1

)
∀ i.
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Bound ∥Γ∥. We will use the definition of the spectral norm. But before that,
observe that Γ is a block matrix of the form

Γi =

[
0 A
B 0

]
.

Then we know that ∥Γ∥ = max{∥A∥, ∥B∥}. Now we can use the definition:

∥A∥ = max
x

∥Ax∥
∥x∥

.

Note that A is a |V0|×|V1| matrix and B a |V1|×|V0| matrix. Consider x to be the
all-ones vector of length |V1| and y the all-ones vector of length |V0|. Then

∥Ax∥
∥x∥

≥
√
m2

0|V0|√
|V1|

,
∥By∥
∥y∥

≥
√
m2

1|V1|√
|V0|

Thus

∥Γ∥ ≥ max

{
m0

√
|V0|√

|V1|
,
m1

√
|V1|√

|V0|

}
≥

√
m0

√
|V0|√

|V1|
·
m1

√
|V1|√

|V0|
=

√
m0m1.

Bound ∥Γi∥. We will use the inequality given in the hint. But before that, observe
that Γi is a block matrix of the form

Γi =

[
0 A
B 0

]
.

Then we know that ∥Γi∥ = max{∥A∥, ∥B∥}. Now we can use the hint to get:

∥A∥ ≤ max
i,j

∥Ai,·∥ · ∥A·,j∥

=⇒ ∥A∥ ≤
√
ℓ0,iℓ1,i.

The same holds for B, and thus we conclude that ∥Γi∥ ≤
√
ℓ0,iℓ1,i.
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Question 3

We will construct a bipartite graph over V0, V1 of the f := k-Threshold function and
use the quantum adversary to lower bound the quantum query complexity of f .

We will define the edges of our graph to be (x, y) ∈ V0×V1, where |x|= k− 1, |y|= k
and there exists a unique i such that xi = 0 ̸= 1 = yi. In other words, for every
input x with Hamming weight k− 1, we flip each of its n− k+1 0 bits to obtain the
n− k + 1 neighbors of x.

For every input y with Hamming weight k, we flip each of its k 1 bits to obtain its
k neighbors in V0. Thus m0 = n− k + 1 and m1 = k.

Additionally, for every node x ∈ V0 and every index i, there exists at most one
neighbor y ∈ V1. The same holds for all y ∈ V1, by the construction of our graph.
Thus ℓ0 = ℓ1 = 1.

From the results of Question 1, we conclude that

D(f) ≥ max{m0/ℓ0,m1/ℓ1} = max{n− k + 1, k}.

In the quantum case,

Q(f) ≥
√
m0m1

ℓ0ℓ1
=
√
k(n− k + 1).

Question 4

Note. For this problem we will use a stronger version of the result we proved in
Question 2. Let ℓv,i be the degree of vertex v in Γi (v ∈ V0 ∪ V1). We define m0,m1

as in Question 2. Then

D(f) ≥ Ω

(
min

i
min

(x,y)∈Γi

m0

ℓx,i
+
m1

ℓy,i

)

Q(f) ≥ Ω

( √
m0m1

maxi max(x,y)∈Γi

√
ℓx,iℓy,i

)
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As per the hint, we will take

V0 = {x ∈ {0, 1}(
n
2) : x represents two disjoint cycles, each of length ≥ n

4
}

V1 = {x ∈ {0, 1}(
n
2) : x represents a cycle graph}

We will define our bipartite graph G to include edges (x, y) ∈ V0 × V1 if the cycle
graph y can be obtained by removing an edge from each of the two cycles and ‘glue’
the endpoints of the two paths of x.

As an example, if x consists of cycles C1, C2, we can remove the edges (a1, b1) and
(a2, b2) respectively. Then we can obtain a cycle graph by connecting a1 − a2 and
b1 − b2, or a1 − b2 and a2 − b1.

Bounding m0,m1. From the example above we can see that each pair of disjoint
cycles can be made to a cycle in Θ(n2) ways. This is because we need to choose an
edge from each cycle and then there are two ways to glue the endpoints together.
Since the cycles have length Ω(n), the total number of ways to remove the two edges
is Θ(n2).

Similarly, for the degree of a cycle y ∈ V1, we can choose any edge e1 of the cycle
(n choices) and then another edge e2 (which has to be sufficiently far in order for
the disjoint cycles to be sufficiently long, but there are still Ω(n) edge choices). This
implies that m1 ≥ Ω(n2).

Bounding ℓx,iℓy,i. We now consider an input x and a bit i (that corresponds to
an edge). If xi = 1, then edge i corresponds to an edge that was removed from one
of the cycles to construct cycle y. Since the other edge to be removed can be any
of Θ(n) edges, we conclude that ℓx,i = O(n). Now consider a neighboring cycle y of
x. Since x, y are neighbors in Γi, this means that edge i is the edge that was added
to y to ‘close’ one of the cycles. Let the endpoints of this edge be (a, b). Then we
know that the edges removed from y must be one of the incident edges of a and b,
thus giving at most a constant number of ways to break y into disjoint cycles. Thus
ℓy,i = O(1).

If xi = 0, then edge i is an edge that was added to glue together the two cycles. Say
the endpoints of this edge are (a, b). Then the other added edge to x must be the
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edge that connects one of the two neighbors of a with the two neighbors of b. Thus
there is only a constant number of ways to glue together the two cycles in Γi, hence
ℓx,i = 1 in this case. Since xi ̸= yi = 1, then (a, b) is one of the edges that we remove
to make the two cycles. The other edge is one of O(n) edges of the cycle y, thus
ℓy,i = O(n) in this case.

In conclusion, in both cases ℓx,iℓy,i = O(n) for all (x, y) ∈ Γi. Thus

Q(f) ≥ Ω

(√
n4

n

)
= Ω(n3/2).

Also note that for each (x, y) ∈ Γi, at least one of ℓx,i, ℓy,i is constant. Thus

D(f) ≥ Ω

(
n2

1
+
n2

n

)
= Ω(n2).
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