Quantum Query Complexity Problem Session 3

Instructor: Yassine Hamoudi
Teaching Assistant: Angelos Pelecanos

Problem 1

Question 1

Consider a randomized algorithm that outputs some value i. Then the algorithm wins if

- i is in the record and $x_{i}=1$. This happens with probability at most Δ_{T}, or
- i is not in the record, and when x_{i} is sampled, it records 1 . This happens with probability $\frac{1}{n}$.

From the union-bound inequality, the probability that the randomized algorithm succeeds is at most the sum of the probabilities of the two events, which is at most $\Delta_{T}+\frac{1}{n}$.

Thus any randomized algorithm that succeeds with probability at least $\frac{2}{3}$ must satisfy that

$$
\begin{aligned}
& \Delta_{T}+\frac{1}{n} \geq \frac{2}{3} \\
& \Longrightarrow \frac{T+1}{n} \geq \frac{2}{3} \\
& \Longrightarrow T=\Omega(n)
\end{aligned}
$$

Question 2.1

Case $x_{i}=\emptyset$.

$$
\begin{aligned}
& \| \Pi_{\text {succeed }}\left(S^{\otimes n}\left|x_{1}, \ldots, x_{i}=\emptyset, \ldots, x_{n}\right\rangle \otimes|i, b\rangle\right) \| \\
& =\| \Pi_{\text {succeed }}\left(\frac{1}{\sqrt{n}} \sum_{0 \leq y<n} S\left|x_{1}\right\rangle, \ldots,|y\rangle, \ldots, S\left|x_{n}\right\rangle \otimes|i, b\rangle\right) \| \\
& =\| \frac{1}{\sqrt{n}} S\left|x_{1}\right\rangle, \ldots,|1\rangle, \ldots, S\left|x_{n}\right\rangle \otimes|i, b\rangle \| \\
& =\frac{1}{\sqrt{n}} .
\end{aligned}
$$

Case $x_{i}=1$. We will use the fact that $S|y\rangle=|y\rangle+\mid$ err \rangle

$$
\begin{aligned}
& \| \Pi_{\text {succeed }}\left(S^{\otimes n}\left|x_{1}, \ldots, x_{i}=1, \ldots, x_{n}\right\rangle \otimes|i, b\rangle\right) \| \\
& \left.=\| \Pi_{\text {succeed }}\left(S\left|x_{1}\right\rangle, \ldots,(|1\rangle+\mid \text { err }\rangle\right), \ldots, S\left|x_{n}\right\rangle \otimes|i, b\rangle\right) \| \\
& =\| \frac{n-1}{n}\left(S\left|x_{1}\right\rangle, \ldots,|1\rangle, \ldots, S\left|x_{n}\right\rangle \otimes|i, b\rangle\right) \| \\
& =\frac{n-1}{n}
\end{aligned}
$$

Case $x_{i} \in\{0, \ldots, n-1\} \backslash\{1\} . \quad$ Say $x_{i}=y \neq 1$.

$$
\begin{aligned}
& \| \Pi_{\text {succeed }}\left(S^{\otimes n}\left|x_{1}, \ldots, x_{i}=y, \ldots, x_{n}\right\rangle \otimes|i, b\rangle\right) \| \\
& \left.=\| \Pi_{\text {succeed }}\left(S\left|x_{1}\right\rangle, \ldots,(|y\rangle+\mid \text { err }\rangle\right), \ldots, S\left|x_{n}\right\rangle \otimes|i, b\rangle\right) \| \\
& =\|-\frac{1}{n}\left(S\left|x_{1}\right\rangle, \ldots,|1\rangle, \ldots, S\left|x_{n}\right\rangle \otimes|i, b\rangle\right) \| \\
& =\frac{1}{n}
\end{aligned}
$$

Question 2.2

Write $\left|\psi_{\text {rec }}^{T}\right\rangle=\sum_{x, i, b} \alpha_{x, i, b}|x\rangle \otimes|i, b\rangle$. We will decompose the state into $n+1$ mutually orthogonal states, following the proof of Lemma 3.5:

- $\left|\psi_{\emptyset}\right\rangle=\sum_{\substack{x, i, b \\ x_{i}=\emptyset}} \alpha_{x, i, b}|x\rangle \otimes|i, b\rangle$
- $\left|\psi_{y}\right\rangle=\sum_{\substack{x, i, b \\ x_{i}=y}} \alpha_{x, i, b}|x\rangle \otimes|i, b\rangle$ for all $0 \leq y<n$

Then it holds that

$$
\left|\psi_{\text {rec }}^{T}\right\rangle=\left|\psi_{\emptyset}\right\rangle+\sum_{y=0}^{n-1}\left|\psi_{y}\right\rangle .
$$

Now we write, using triangle inequality:

$$
\begin{aligned}
\| \Pi_{\text {succeed }}\left|\psi^{T}\right\rangle \| & =\| \Pi_{\text {succeed }}\left(S^{\otimes n} \otimes \mathrm{Id}\right)\left|\psi_{\text {rec }}^{T}\right\rangle \| \\
& \leq \| \Pi_{\text {succeed }}\left(S^{\otimes n} \otimes \mathrm{Id}\right)\left|\psi_{\emptyset}\right\rangle\left\|+\sum_{y=0}^{n-1}\right\| \Pi_{\text {succeed }}\left(S^{\otimes n} \otimes \mathrm{Id}\right)\left|\psi_{y}\right\rangle \|
\end{aligned}
$$

We will now compute these terms separately using our results from the previous question.

- $\left|\psi_{\emptyset}\right\rangle$:

$$
\begin{aligned}
\| \Pi_{\text {succeed }}\left(S^{\otimes n} \otimes \mathrm{Id}\right)\left|\psi_{\emptyset}\right\rangle \|^{2} & =\| \Pi_{\text {succeed }}\left(S^{\otimes n} \otimes \mathrm{Id}\right) \sum_{\substack{x, i, b \\
x_{i}=\emptyset}} \alpha_{x, i, b}|x\rangle \otimes|i, b\rangle \|^{2} \\
& =\sum_{\substack{x, i, b \\
x_{i}=\emptyset}}\left|\alpha_{x, i, b}\right|^{2} \cdot \| \Pi_{\text {succeed }}\left(S^{\otimes n} \otimes \mathrm{Id}\right)|x\rangle \otimes|i, b\rangle \|^{2} \\
& =\frac{1}{n} \sum_{\substack{x, i, b \\
x_{i}=\emptyset}}\left|\alpha_{x, i, b}\right|^{2} \\
& =\frac{1}{n}\left\|\psi_{\emptyset}\right\|^{2}
\end{aligned}
$$

The second equality follows because $\Pi_{\text {succeed }}\left(S^{\otimes n} \otimes \mathrm{Id}\right)$ preserves orthogonality between states $|x\rangle \otimes|i, b\rangle$ with $x_{i}=\emptyset$.

- $\left|\psi_{1}\right\rangle$:

$$
\begin{aligned}
\| \Pi_{\text {succeed }}\left(S^{\otimes n} \otimes \mathrm{Id}\right)\left|\psi_{1}\right\rangle \|^{2} & =\| \Pi_{\text {succeed }}\left(S^{\otimes n} \otimes \mathrm{Id}\right) \sum_{\substack{x, i, b \\
x_{i}=1}} \alpha_{x, i, b}|x\rangle \otimes|i, b\rangle \|^{2} \\
& =\sum_{\substack{x, i, b \\
x_{i}=1}}\left|\alpha_{x, i, b}\right|^{2} \cdot \| \Pi_{\text {succeed }}\left(S^{\otimes n} \otimes \mathrm{Id}\right)|x\rangle \otimes|i, b\rangle \|^{2} \\
& =\frac{n-1}{n} \sum_{\substack{x, i, b \\
x_{i}=1}}\left|\alpha_{x, i, b}\right|^{2} \\
& =\frac{n-1}{n}\left\|\psi_{1}\right\|^{2}
\end{aligned}
$$

- $\left|\psi_{y}\right\rangle$ for $y \neq 1$:

$$
\begin{aligned}
\| \Pi_{\text {succeed }}\left(S^{\otimes n} \otimes \mathrm{Id}\right)\left|\psi_{y}\right\rangle \|^{2} & =\| \Pi_{\text {succeed }}\left(S^{\otimes n} \otimes \mathrm{Id}\right) \sum_{\substack{x, i, b \\
x_{i}=y}} \alpha_{x, i, b}|x\rangle \otimes|i, b\rangle \|^{2} \\
& =\sum_{\substack{x, i, b \\
x_{i}=y}}\left|\alpha_{x, i, b}\right|^{2} \cdot \| \Pi_{\text {succeed }}\left(S^{\otimes n} \otimes \mathrm{Id}\right)|x\rangle \otimes|i, b\rangle \|^{2} \\
& =\frac{1}{n^{2}} \sum_{\substack{x, i, b \\
x_{i}=y}}\left|\alpha_{x, i, b}\right|^{2} \\
& =\frac{1}{n^{2}}\left\|\psi_{y}\right\|^{2}
\end{aligned}
$$

We conclude that

$$
\begin{aligned}
\| \Pi_{\text {succeed }}\left|\psi^{T}\right\rangle \| & \leq \| \Pi_{\text {succeed }}\left(S^{\otimes n} \otimes \mathrm{Id}\right)\left|\psi_{\emptyset}\right\rangle\left\|+\sum_{y=0}^{n-1}\right\| \Pi_{\text {succeed }}\left(S^{\otimes n} \otimes \mathrm{Id}\right)\left|\psi_{y}\right\rangle \| \\
& \leq \frac{1}{\sqrt{n}} \|\left|\psi_{\emptyset}\right\rangle\left\|+\frac{\sqrt{n-1}}{\sqrt{n}}\right\|\left|\psi_{1}\right\rangle\left\|+\frac{1}{n} \sum_{y \neq 1}\right\|\left|\psi_{y}\right\rangle \|
\end{aligned}
$$

We note that $\|\left|\psi_{1}\right\rangle\|=\| \Pi_{\text {succeed }}\left|\psi_{\text {rec }}^{T}\right\rangle\|\leq\| \Pi_{\text {rec }}\left|\psi_{\text {rec }}^{T}\right\rangle \|=\sqrt{\Delta_{T}}$. We can also use Cauchy-Schwarz on the remaining terms and conclude that

$$
\| \Pi_{\text {succeed }}\left|\psi^{T}\right\rangle \| \leq \sqrt{\Delta_{T}}+O\left(\frac{1}{\sqrt{n}}\right)
$$

Question 2.3

Any successful SEARCH quantum query algorithm must satisfy $\| \Pi_{\text {succeed }}\left|\psi^{T}\right\rangle \|^{2} \geq$ $\frac{2}{3} \Longrightarrow \| \Pi_{\text {succeed }}\left|\psi^{T}\right\rangle \| \geq \frac{1}{2}$. From the previous question, this implies that it must hold:

$$
\sqrt{\Delta_{T}}+O\left(\frac{1}{\sqrt{n}}\right) \geq \frac{1}{2}
$$

From the lecture, this means that

$$
T \cdot \sqrt{\frac{10}{n}}+O\left(\frac{1}{\sqrt{n}}\right) \geq \frac{1}{2} \Longrightarrow T=\Omega(\sqrt{n})
$$

Problem 2

Question 1

A classical (deterministic) algorithm is to query the input at positions $1,2,3, \ldots$ until the same number appears twice. From the birthday bound, we know that the query complexity of this algorithm is $O(\sqrt{n})$ with high probability.

Question 2

Define C_{t} to be the event that there is a collision after t queries. Then

$$
\begin{aligned}
\operatorname{Pr}\left[C_{t}\right] & =\operatorname{Pr}\left[C_{t-1}\right]+\operatorname{Pr}\left[\text { collision at } t \mid \neg C_{t-1}\right] \\
& =\Delta_{t-1}+\frac{t-1}{n} .
\end{aligned}
$$

Where the last equality follows because the $t^{t h}$ query can collide with any of the $t-1$ distinct values with probability $\frac{t-1}{n}$.

Now by expanding the Δ_{t-1} term we get that

$$
\Delta_{t}=\frac{t-1}{n}+\frac{t-2}{n}+\cdots+\frac{1}{n}=\frac{t(t-1)}{2 n}=O\left(\frac{t^{2}}{n}\right) .
$$

Thus any classical algorithm that succeeds with at least constant probability must satisfy $t=\Omega(\sqrt{n})$.

Question 3

We will prove this by induction. Initially, the state $\left|\psi_{\mathrm{rec}}^{0}\right\rangle$ is supported onto basis states $|x\rangle \otimes|i, b\rangle$ such that $x=\emptyset^{n}$. Thus the statement holds for $t=0$.

We now show that if the statement holds for $t=k$, it also holds for $t=k+1$. Recall that

$$
\left|\psi_{\mathrm{rec}}^{k+1}\right\rangle=U_{k+1} R\left|\psi_{\mathrm{rec}}^{k}\right\rangle
$$

Since U_{k+1} does not affect the support of the oracle register, we only need to consider R applied on $\left|\psi_{\text {rec }}^{k}\right\rangle$.

We have seen in the lecture that we can decompose $\left|\psi_{\text {rec }}^{k}\right\rangle$ into $\left|\psi_{\emptyset}\right\rangle$ which is the span of $|x\rangle \otimes|i, b\rangle$ for x such that $x_{i}=\emptyset$, and $\left|\psi_{y}\right\rangle$ where $x_{i} \in\{0, \ldots, n-1\}$. From the proposition of the lecture, we know that

$$
\begin{gathered}
R\left|\psi_{\emptyset}\right\rangle \text { adds a uniformly random value to } x_{i} \\
R\left|\psi_{y}\right\rangle \text { either keeps } x_{i} \text { the same, resamples, or deletes it. }
\end{gathered}
$$

Hence in both cases, the number of recorded values increases by at most 1. Thus $\left|\psi_{\text {rec }}^{k+1}\right\rangle$ is supported over $|x\rangle$ with at most $k+1$ non- \emptyset values.

Question 4

We will define the operator Π that projects onto $\operatorname{span}\{|x\rangle \otimes|i, b\rangle \mid x$ contains collision $\}$. Thus $\Delta_{t}=\| \Pi\left|\psi_{\text {rec }}^{t}\right\rangle \|^{2}$. From the lecture, we have seen that

$$
\sqrt{\Delta_{t}} \leq \sqrt{\Delta_{t-1}}+\|\Pi R \underbrace{(\mathrm{Id}-\Pi)\left|\psi_{\mathrm{rec}}^{t-1}\right\rangle}_{\in \operatorname{ker}(\Pi)}\|
$$

Claim. For any recording state $|\psi\rangle \in \operatorname{ker}(\Pi)$ with $t-1$ queries, we have

$$
\| \Pi R|\psi\rangle\left\|\leq O\left(\frac{\sqrt{t-1}}{\sqrt{n}}\right)\right\||\psi\rangle \|
$$

Proof. We will closely follow the proof of Lemma 3.5 from the lecture notes. Write

$$
|\psi\rangle=\sum_{x, i, b} \alpha_{x, i, b}|x\rangle \otimes|i, b\rangle .
$$

Since $|\psi\rangle$ is in the kernel of Π, it means that $\alpha_{x, i, b}$ is non-zero only for x with no collisions. Additionally, since $|\psi\rangle$ has $t-1$ recording queries, the number of non- \emptyset entries in the $|x\rangle$ in the support of $|\psi\rangle$ is at most $t-1$.

We will decompose $|\psi\rangle$ into $n+1$ mutually orthogonal states:

- $\left|\psi_{\emptyset}\right\rangle=\sum_{\substack{x, i, b \\ x_{i}=\emptyset}} \alpha_{x, i, b}|x\rangle \otimes|i, b\rangle$
- $\left|\psi_{y}\right\rangle=\sum_{\substack{x, i, b \\ x_{i}=y}} \alpha_{x, i, b}|x\rangle \otimes|i, b\rangle$ for all $0 \leq y<n$.

Then

$$
\| \Pi R|\psi\rangle\|\leq\| \Pi R\left|\psi_{\emptyset}\right\rangle\left\|+\sum_{y}\right\| \Pi R\left|\psi_{y}\right\rangle \|
$$

We bound each term separately.

$$
\begin{gathered}
R\left|\psi_{\emptyset}\right\rangle=\frac{1}{\sqrt{n}} \sum_{\substack{x, i, b \\
x_{i}=\emptyset}} \alpha_{x, i, b} \sum_{y} \omega^{b y}\left|\ldots, x_{i}=y, \ldots\right\rangle \otimes|i, b\rangle \\
\Longrightarrow \Pi R\left|\psi_{\emptyset}\right\rangle=\frac{1}{\sqrt{n}} \sum_{\substack{x, i, b \\
x_{i}=\emptyset}} \alpha_{x, i, b} \sum_{y \in \operatorname{supp}(x)} \omega^{b y}\left|\ldots, x_{i}=y, \ldots\right\rangle \otimes|i, b\rangle \\
\Longrightarrow \\
\Longrightarrow \Pi R\left|\psi_{\emptyset}\right\rangle\left\|^{2}=\frac{1}{n} \sum_{\substack{x, i, b \\
x_{i}=\emptyset}}\left|\alpha_{x, i, b}\right|^{2} \sum_{y \in \operatorname{supp}(x)}\left|\omega^{b y}\right|^{2} \leq \frac{t-1}{n}\right\|\left|\psi_{\emptyset}\right\rangle \|^{2} .
\end{gathered}
$$

Where the last equality holds because the support of x is at most $t-1$ (since we only made $t-1$ queries).

- Following a similar proof we deduce that

$$
\| \Pi R\left|\psi_{y}\right\rangle\left\|^{2} \leq \frac{9(t-1)}{n^{2}}\right\|\left|\psi_{y}\right\rangle \|^{2} .
$$

We conclude from the Cauchy-Schwarz inequality that

$$
\| \Pi R|\psi\rangle\left\|\leq \frac{\sqrt{t-1}}{\sqrt{n}}\right\| \Pi R\left|\psi_{\emptyset}\right\rangle\left\|+\frac{3 \sqrt{t-1}}{n} \sum_{y}\right\| \Pi R\left|\psi_{y}\right\rangle\left\|\leq O\left(\frac{\sqrt{t-1}}{\sqrt{n}}\right)\right\||\psi\rangle \| .
$$

Thus we have proved that

$$
\begin{aligned}
\sqrt{\Delta_{t}} & \leq \sqrt{\Delta_{t-1}}+O\left(\frac{\sqrt{t-1}}{\sqrt{n}}\right) \\
& \leq O\left(\frac{\sqrt{t-1}}{\sqrt{n}}\right)+O\left(\frac{\sqrt{t-2}}{\sqrt{n}}\right)+\cdots+O\left(\frac{1}{\sqrt{n}}\right) \\
& =O\left(\frac{t^{3 / 2}}{\sqrt{n}}\right)
\end{aligned}
$$

Thus the probability that the record contains a collision after t quantum queries is $\Delta_{t}=O\left(t^{3} / n\right)$.

Note. This does not directly imply that a quantum query algorithm requires $\Omega\left(n^{1 / 3}\right)$ quantum queries to solve the Collision problem since we have to argue that the progress is close to the success probability. This can be proven in a similar manner.

Problem 3

Question 1

Any deterministic query algorithm can keep track of the bipartite graph G and update the edges of the graph, maintaining the invariant that if edge (x, y) is in the graph, then the algorithm cannot distinguish between inputs x and y.

If the deterministic algorithm queries input bit i, then it can distinguish all pairs (x, y) that differ on coordinate i. Hence the edges of G_{i} can be removed from G.

Note that we originally have $|E|$ pairs, and each time we are removing the edges of G_{i}, which are $\left|E_{i}\right| \leq \max _{i}\left|E_{i}\right|$. Thus any deterministic algorithm that can distinguish all pairs in G, needs at least $\frac{|E|}{\max _{i}\left|E_{i}\right|}=\min _{i} \frac{|E|}{\left|E_{i}\right|}$ queries to the input.

We can deduce that $|E| \geq \max \left\{m_{0}\left|V_{0}\right|, m_{1}\left|V_{1}\right|\right\}$, and $\left|E_{i}\right| \leq \max \left\{\ell_{0, i}\left|V_{0}\right|, \ell_{1, i}\left|V_{1}\right|\right\}$. Hence

$$
\min _{i} \frac{|E|}{\left|E_{i}\right|} \geq \frac{\max \left\{m_{0}\left|V_{0}\right|, m_{1}\left|V_{1}\right|\right\}}{\max _{i}\left\{\ell_{0, i}\left|V_{0}\right|, \ell_{1, i}\left|V_{1}\right|\right\}} \geq \min _{i}\left\{\frac{m_{0}}{\ell_{0, i}}+\frac{m_{1}}{\ell_{1, i}}\right\} .
$$

Question 2

We have seen in lecture that

$$
Q(f) \geq \max _{\Gamma} \frac{\|\Gamma\|}{40 \cdot \max _{i}\left\|\Gamma_{i}\right\|}
$$

We will use the Γ given by

$$
\Gamma_{x, y}=\mathbf{1}[(x, y) \in G]
$$

One can verify that Γ_{i} also corresponds to the edges of G_{i}. Thus we want to show that

$$
\|\Gamma\| \geq \Omega\left(\sqrt{m_{0} m_{1}}\right)
$$

and

$$
\left\|\Gamma_{i}\right\| \leq O\left(\sqrt{\ell_{0} \ell_{1}}\right) \forall i
$$

Bound $\|\Gamma\|$. We will use the definition of the spectral norm. But before that, observe that Γ is a block matrix of the form

$$
\Gamma_{i}=\left[\begin{array}{cc}
0 & A \\
B & 0
\end{array}\right]
$$

Then we know that $\|\Gamma\|=\max \{\|A\|,\|B\|\}$. Now we can use the definition:

$$
\|A\|=\max _{x} \frac{\|A x\|}{\|x\|}
$$

Note that A is a $\left|V_{0}\right| \times\left|V_{1}\right|$ matrix and B a $\left|V_{1}\right| \times\left|V_{0}\right|$ matrix. Consider x to be the all-ones vector of length $\left|V_{1}\right|$ and y the all-ones vector of length $\left|V_{0}\right|$. Then

$$
\frac{\|A x\|}{\|x\|} \geq \frac{\sqrt{m_{0}^{2}\left|V_{0}\right|}}{\sqrt{\left|V_{1}\right|}}, \quad \frac{\|B y\|}{\|y\|} \geq \frac{\sqrt{m_{1}^{2}\left|V_{1}\right|}}{\sqrt{\left|V_{0}\right|}}
$$

Thus

$$
\|\Gamma\| \geq \max \left\{\frac{m_{0} \sqrt{\left|V_{0}\right|}}{\sqrt{\left|V_{1}\right|}}, \frac{m_{1} \sqrt{\left|V_{1}\right|}}{\sqrt{\left|V_{0}\right|}}\right\} \geq \sqrt{\frac{m_{0} \sqrt{\left|V_{0}\right|}}{\sqrt{\left|V_{1}\right|}} \cdot \frac{m_{1} \sqrt{\left|V_{1}\right|}}{\sqrt{\left|V_{0}\right|}}}=\sqrt{m_{0} m_{1}} .
$$

Bound $\left\|\Gamma_{i}\right\|$. We will use the inequality given in the hint. But before that, observe that Γ_{i} is a block matrix of the form

$$
\Gamma_{i}=\left[\begin{array}{cc}
0 & A \\
B & 0
\end{array}\right]
$$

Then we know that $\left\|\Gamma_{i}\right\|=\max \{\|A\|,\|B\|\}$. Now we can use the hint to get:

$$
\begin{gathered}
\|A\| \leq \max _{i, j}\left\|A_{i, \cdot}\right\| \cdot\left\|A_{\cdot, j}\right\| \\
\Longrightarrow\|A\| \leq \sqrt{\ell_{0, i} \ell_{1, i}}
\end{gathered}
$$

The same holds for B, and thus we conclude that $\left\|\Gamma_{i}\right\| \leq \sqrt{\ell_{0, i} \ell_{1, i}}$.

Question 3

We will construct a bipartite graph over V_{0}, V_{1} of the $f:=k$-Threshold function and use the quantum adversary to lower bound the quantum query complexity of f.

We will define the edges of our graph to be $(x, y) \in V_{0} \times V_{1}$, where $|x|=k-1,|y|=k$ and there exists a unique i such that $x_{i}=0 \neq 1=y_{i}$. In other words, for every input x with Hamming weight $k-1$, we flip each of its $n-k+10$ bits to obtain the $n-k+1$ neighbors of x.

For every input y with Hamming weight k, we flip each of its $k 1$ bits to obtain its k neighbors in V_{0}. Thus $m_{0}=n-k+1$ and $m_{1}=k$.

Additionally, for every node $x \in V_{0}$ and every index i, there exists at most one neighbor $y \in V_{1}$. The same holds for all $y \in V_{1}$, by the construction of our graph. Thus $\ell_{0}=\ell_{1}=1$.

From the results of Question 1, we conclude that

$$
D(f) \geq \max \left\{m_{0} / \ell_{0}, m_{1} / \ell_{1}\right\}=\max \{n-k+1, k\}
$$

In the quantum case,

$$
Q(f) \geq \sqrt{\frac{m_{0} m_{1}}{\ell_{0} \ell_{1}}}=\sqrt{k(n-k+1)}
$$

Question 4

Note. For this problem we will use a stronger version of the result we proved in Question 2. Let $\ell_{v, i}$ be the degree of vertex v in $\Gamma_{i}\left(v \in V_{0} \cup V_{1}\right)$. We define m_{0}, m_{1} as in Question 2. Then

$$
\begin{gathered}
D(f) \geq \Omega\left(\min _{i} \min _{(x, y) \in \Gamma_{i}} \frac{m_{0}}{\ell_{x, i}}+\frac{m_{1}}{\ell_{y, i}}\right) \\
Q(f) \geq \Omega\left(\frac{\sqrt{m_{0} m_{1}}}{\max _{i} \max _{(x, y) \in \Gamma_{i}} \sqrt{\ell_{x, i} \ell_{y, i}}}\right)
\end{gathered}
$$

As per the hint, we will take

$$
\begin{gathered}
V_{0}=\left\{x \in\{0,1\}^{\binom{n}{2}}: x \text { represents two disjoint cycles, each of length } \geq \frac{n}{4}\right\} \\
V_{1}=\left\{x \in\{0,1\}^{\binom{n}{2}}: x \text { represents a cycle graph }\right\}
\end{gathered}
$$

We will define our bipartite graph G to include edges $(x, y) \in V_{0} \times V_{1}$ if the cycle graph y can be obtained by removing an edge from each of the two cycles and 'glue' the endpoints of the two paths of x.

As an example, if x consists of cycles C_{1}, C_{2}, we can remove the edges $\left(a_{1}, b_{1}\right)$ and $\left(a_{2}, b_{2}\right)$ respectively. Then we can obtain a cycle graph by connecting $a_{1}-a_{2}$ and $b_{1}-b_{2}$, or $a_{1}-b_{2}$ and $a_{2}-b_{1}$.

Bounding m_{0}, m_{1}. From the example above we can see that each pair of disjoint cycles can be made to a cycle in $\Theta\left(n^{2}\right)$ ways. This is because we need to choose an edge from each cycle and then there are two ways to glue the endpoints together. Since the cycles have length $\Omega(n)$, the total number of ways to remove the two edges is $\Theta\left(n^{2}\right)$.

Similarly, for the degree of a cycle $y \in V_{1}$, we can choose any edge e_{1} of the cycle (n choices) and then another edge e_{2} (which has to be sufficiently far in order for the disjoint cycles to be sufficiently long, but there are still $\Omega(n)$ edge choices). This implies that $m_{1} \geq \Omega\left(n^{2}\right)$.

Bounding $\ell_{x, i} \ell_{y, i}$. We now consider an input x and a bit i (that corresponds to an edge). If $x_{i}=1$, then edge i corresponds to an edge that was removed from one of the cycles to construct cycle y. Since the other edge to be removed can be any of $\Theta(n)$ edges, we conclude that $\ell_{x, i}=O(n)$. Now consider a neighboring cycle y of x. Since x, y are neighbors in Γ_{i}, this means that edge i is the edge that was added to y to 'close' one of the cycles. Let the endpoints of this edge be (a, b). Then we know that the edges removed from y must be one of the incident edges of a and b, thus giving at most a constant number of ways to break y into disjoint cycles. Thus $\ell_{y, i}=O(1)$.

If $x_{i}=0$, then edge i is an edge that was added to glue together the two cycles. Say the endpoints of this edge are (a, b). Then the other added edge to x must be the
edge that connects one of the two neighbors of a with the two neighbors of b. Thus there is only a constant number of ways to glue together the two cycles in Γ_{i}, hence $\ell_{x, i}=1$ in this case. Since $x_{i} \neq y_{i}=1$, then (a, b) is one of the edges that we remove to make the two cycles. The other edge is one of $O(n)$ edges of the cycle y, thus $\ell_{y, i}=O(n)$ in this case.

In conclusion, in both cases $\ell_{x, i} \ell_{y, i}=O(n)$ for all $(x, y) \in \Gamma_{i}$. Thus

$$
Q(f) \geq \Omega\left(\sqrt{\frac{n^{4}}{n}}\right)=\Omega\left(n^{3 / 2}\right)
$$

Also note that for each $(x, y) \in \Gamma_{i}$, at least one of $\ell_{x, i}, \ell_{y, i}$ is constant. Thus

$$
D(f) \geq \Omega\left(\frac{n^{2}}{1}+\frac{n^{2}}{n}\right)=\Omega\left(n^{2}\right)
$$

