Quantum Query Complexity Problem Session 2Instructor: Yassine HamoudiTeaching Assistant: Angelos Pelecanos

Problem 1

Question 1

We have seen that for any $f : \{0,1\}^n \to \mathbb{R}$, there exists a *unique* multilinear polynomial P_f such that $P_f(x) = f(x)$ for all $x \in \{0,1\}^n$. Thus it suffices to give a multilinear polynomial that computes each function exactly.

• OR. We can write $x_1 \vee \ldots \vee x_n$ as $\neg(\bar{x_1} \wedge \ldots \wedge \bar{x_n})$. Hence we will use the multilinear polynomial of AND to obtain

$$P_{OR}(x) = 1 - (1 - x_1)(1 - x_2) \dots (1 - x_n).$$

Thus the exact degree of OR is n.

• PARITY. If our variables were ± 1 , then the product of the variables captures the parity exactly. Hence we will use the transformation $x \to 1-2x$ that maps $0 \to 1$ and $1 \to -1$ to obtain

$$P_{PARITY}(x) = (1 - 2x_1)(1 - 2x_2)\dots(1 - 2x_n).$$

Thus the exact degree of PARITY is n.

• MAJORITY. We will write the multilinear polynomial by considering all possible inputs. First, define the linear function

$$\mathbf{1}_{z_i}(x_i) = \begin{cases} 1 - x_i & z_i = 0\\ x_i & z_i = 1 \end{cases}$$

that outputs 1 if the bits z_i, x_i are equal and 0 otherwise. Now we can easily write P_{MAJ} as a sum of 'indicators' as follows:

$$P_{MAJ}(x) = \sum_{\substack{z \in \{0,1\}^n \\ \text{MAJ}(z)=1}} \prod_{i=1}^n \mathbf{1}_{z_i}(x_i).$$

Now we should show that P_{MAJ} has degree n. We just have to consider the coefficient of $x_1x_2...x_n$. It is easy to see that its coefficient is $\sum_{k=\lceil n/2\rceil}^n (-1)^{n-k} \binom{n}{k}$, which is never equal to 0.

Question 2

The majority, as we have seen, is a function whose block sensitivity is not equal to its exact degree. Recall that its block sensitivity was $\lceil n/2 \rceil$, whereas its degree is equal to n.

Question 3

We have seen how we can represent a classical query algorithm \mathcal{A} (deterministic or randomized) via a decision tree. If this algorithm makes q queries to its input, then this decision tree has depth at most q. Every leaf of the decision tree v is assigned the value $\mathcal{A}(v)$, which is the output of the algorithm in that branch.

For simplicity, we will use the following linear function

$$\mathbf{1}_{z_i}(x_i) = \begin{cases} 1 - x_i & z_i = 0\\ x_i & z_i = 1 \end{cases}$$

Note that $\mathbf{1}_{z_i}(x_i) = 1$ iff $x_i = z_i$. We can then write down a polynomial that has a term for every such leaf. We will represent with path(v) the set of variables and their values in the path to leaf v. Then the polynomial is

$$P(x) = \sum_{\text{leaf } v} \mathcal{A}(v) \prod_{(x_i, b_i) \in \text{path}(v)} \mathbf{1}_{b_i}(x_i).$$

Since the path to each leaf contains at most q variables, P(x) is a multilinear polynomial with degree at most q.

Now, if \mathcal{A} is a deterministic algorithm, then the number of queries is at most D(f) and the algorithm always succeeds, hence P(x) = f(x). We conclude that $\deg(f) \leq D(f)$. For a randomized \mathcal{A} , the number of queries is at most R(f) and the algorithm succeeds with probability at least $\frac{2}{3}$, thus the same polynomial is actually

an approximation $\tilde{P}(x)$ to f(x) that satisfies $|\tilde{P}(x) - f(x)| \le \frac{1}{3}$. We conclude that $R(f) \le \tilde{\deg}(f)$.

Problem 2

Question 1

Consider the multivariate polynomial $P(x_1, \ldots, x_n)$ that approximates OR of minimal degree. As in the lecture, we define with B_k to be the set of inputs with Hamming weight k. We will define

$$P_{sym}(k) = \mathop{\mathbb{E}}_{x_1,\ldots,x_n \sim B_k} P(x_1,\ldots,x_n).$$

Since P approximates OR, it should hold that

 $\begin{cases} P_{sym}(0) \in \left[0, \frac{1}{3}\right] \\ P_{sym}(k) \in \left[\frac{2}{3}, 1\right] & k \in \{1, \dots, n\}. \end{cases}$

Also note that P_{sym} 'jumps' from at most $\frac{1}{3}$ to at least $\frac{2}{3}$ from 0 to 1. Hence there must exist some $x \in [0, 1]$ such that $P'_{sym}(x) \geq \frac{1}{3}$ by the mean value theorem. This allows us to use the Ehlich, Zeller and Rivlin, Cheney inequality with $a = 0, b = 1, c = \frac{1}{3}, k = n$. This implies that $\deg(P_{sym}) \geq \sqrt{\frac{n}{3}}$.

This already implies that

$$Q(OR) \ge \frac{\deg(OR)}{2} = \frac{\deg(P)}{2} \ge \frac{\deg(P_{sym})}{2} \ge \Omega(\sqrt{n}).$$

Question 2.1

Let P be a multilinear polynomial that approximates PARITY. We will define the univariate polynomial Q to be as follows:

$$Q(k) = \mathbb{E}_{\substack{x \in \{0,1\}^n \\ \sum_i x_i = k}} [1 - 2P(x)].$$

Note that $\deg(Q) \leq \deg(P)$ and for any x with odd Hamming weight k we have that $|P(x) - 1| \leq \frac{1}{3} \implies |Q(k) - (-1)| \leq \frac{2}{3}$, and for any x with even Hamming weight k $|P(x) - 0| \leq \frac{1}{3} \implies |Q(k) - 1| \leq \frac{2}{3}$. Thus Q(k) approximates $\operatorname{Sign}(k)$ up to $\frac{2}{3}$ additive error.

Question 2.2

This polynomial Q(k) is positive when k is even and negative and k is odd for all $k \in \{0, ..., n\}$. This means that it has at least n distinct roots from the mean value theorem, which implies that the degree of Q must be at least n.

Combining with the previous question we conclude that deg(PARITY) = n and thus $Q(f) \ge \frac{n}{2}$.

Question 3

Let \tilde{P}_n be the polynomial that achieves the deg for PALINDROME with *n* inputs (*n* is even). Consider the following polynomial

$$P_{sym}(x_1,\ldots,x_n) = 1 - P_{2n}(0,\ldots,0,x_n,\ldots,x_1)].$$

One can verify that $0 \dots 0x_n \dots x_1$ is a palindrome iff $OR(x_1, \dots, x_n) = 0$, thus $P_{sym}(x)$ approximates the OR function. now note that the degree of P_{sym} is at most the approximate degree of PALINDROME on 2n inputs. Since the approximate degree of OR is $\Omega(\sqrt{n})$, we deduce that $\operatorname{deg}(PAL) = \Omega(\sqrt{n})$ as well.

Question 4

Similar to the previous question, we will embed OR inside the polynomial that approximates f. Let \tilde{P}_n be the polynomial that achieves the deg for f with n inputs and let y be an input that achieves the maximal number of sensitive blocks B_1, \ldots, B_k . For simplicity let k = bs(f). Consider the following polynomial

$$P_{sym}(x_1,\ldots,x_k) = 1 - \tilde{P}_n(y^x).$$

Here we define y^x to be equal to y with the coordinates in B_i flipped if $x_i = 1$. This can be represented as $x_i(1-y_i) + (1-x_i)y_i$ if coordinate $j \in B_i$.

Now note that P_{sym} can distinguish between the all-zeros input **0** and the inputs with hamming weight exactly one **i** from Lecture 1. Using a symmetrization argument, no matter the values of P_{sym} for the rest of the inputs, it must hold that the degree of P_{sym} is at least $\Omega(\sqrt{k}) = \Omega(\sqrt{bs(f)})$. Since $\tilde{P}_n(y^x)$ has the same degree as $\tilde{P}_n(y)$, it must hold

Problem 3

Question 1

Primal. We will represent the degree-(< d) polynomial using its coefficients $\{\alpha_S\}_{S \subseteq [n]}$ as:

$$P(x) = \sum_{\substack{S \subseteq [n] \\ |S| < d}} \alpha_S x^S,$$

where we define $x^{S} = \prod_{i \in S} x_{i}$. Hence the primal becomes:

$$\min_{\epsilon,\{\alpha_S\}_S} \epsilon$$

s.t. $\sum_S \alpha_S x^S - f(x) \le \epsilon$ $\forall x \in \{-1,1\}^n$
 $\sum_S \alpha_S x^S - f(x) \ge -\epsilon$ $\forall x \in \{-1,1\}^n$

We will convert it into standard form using some well-known tricks. First, we will replace the unconstrained coefficients with non-negative ones as follows:

$$\alpha_S := \alpha_S^+ - \alpha_S^-.$$

Additionally, we will change the right hand side variables to be non-negative by changing the sign of both sides. Finally, we change the inequalities to equalities by introducing slack variables, e.g.

$$\sum_{S} \alpha_{S} x^{S} - f(x) + \xi_{x} = \epsilon.$$

The final format is:

$$\min \epsilon$$
s.t.
$$\sum_{S} (\alpha_{S}^{+} - \alpha_{S}^{-}) x^{S} - f(x) + \xi_{x} = \epsilon$$

$$\forall x \in \{-1, 1\}^{n}$$

$$\sum_{S} -(\alpha_{S}^{+} - \alpha_{S}^{-}) x^{S} + f(x) + \psi_{x} = -\epsilon$$

$$\forall x \in \{-1, 1\}^{n}$$

$$\epsilon, \{\alpha_{S}^{\pm}\}_{S}, \{\xi_{x}\}_{x}, \{\psi_{x}\}_{x} \ge 0$$

Dual. We will first show that we can 'relax' the second condition to $\sum_{x} |\phi(x)| \leq 1$, without changing the optimal value. This is because if there exists some ϕ with $\sum_{x} |\phi(x)| < 1$, then we can obtain $\phi'(x)$, which is scaled up to make the inequality tight. By scaling up to $\phi'(x)$, we are also scaling the objective value, which will give us something larger. This is because the optimal of the dual is always non-negative. Thus we will convert the following program into standard form:

$$\begin{split} \max_{\phi} & \sum_{x} \phi(x) \cdot f(x) \\ \text{s.t.} & \sum_{x} |\phi(x)| \leq 1 \\ & \sum_{x} \phi(x) \cdot P(x) = 0 \end{split} \quad \forall \ P, \deg(P) < d \end{split}$$

We will follow the same recipe as the primal. Write the polynomial ϕ as

$$\phi(x) = \sum_{\substack{S \subseteq [n] \\ |S| \ge d}} (\beta_S^+ - \beta_S^-) x^S.$$

Now we will write the $\sum_{x} |\phi(x)| \leq 1$ by bounding each term separately, i.e.

$$|\phi(x)| \le \gamma_x \implies -\gamma_x \le \phi(x) \le \gamma_x, \ \forall \ x \in \{\pm 1\}^n,$$

and imposing the condition that $\sum_x \gamma_x = 1$.

The final format is:

$$\max \sum_{x} \left[\sum_{\substack{S \subseteq [n] \\ |S| \ge d}} (\beta_{S}^{+} - \beta_{S}^{-}) x^{S} \right] \cdot f(x)$$

s.t.
$$\sum_{\substack{S \subseteq [n] \\ |S| \ge d}} (\beta_{S}^{+} - \beta_{S}^{-}) x^{S} + \xi_{x} = \gamma_{x} \qquad \forall x \in \{\pm 1\}^{n}$$
$$- \sum_{\substack{S \subseteq [n] \\ |S| \ge d}} (\beta_{S}^{+} - \beta_{S}^{-}) x^{S} + \phi_{x} = \gamma_{x} \qquad \forall x \in \{\pm 1\}^{n}$$
$$\sum_{x} \gamma_{x} = 1$$
$$\{\beta_{S}^{\pm}\}_{S} \ge 0, \{\xi_{x}\}_{x} \ge 0, \{\phi_{x}\}_{x} \ge 0, \{\gamma_{x}\}_{x} \ge 0\}$$

Question 2

The dual polynomial certificate is $\phi(x) = \frac{1}{2^n} x_1 \dots x_n$. It is easy to see that $\phi(x) = \frac{1}{2^n} f(x)$, and thus

$$\sum_{x\in\{\pm 1\}^n}\phi(x)\cdot f(x)=1.$$

Additionally, we can check that $\sum_{x} |\phi(x)| = 2^n \cdot \frac{1}{2^n} = 1$, and ϕ has no monomial of degree < n. Thus, by weak duality PARITY = n.

Problem 4

Question 1

Since the marginal distribution $D_{|S|}$ is uniform over $\{0,1\}^{|S|}$ for any k-wise independent distribution D, any randomized algorithm that makes less than k + 1 queries will just see a uniform set of bits.

Hence the view of the algorithm is the same for both distributions. Thus the algorithm cannot distinguish between the two distributions.

Question 2

Consider a quantum query algorithm \mathcal{A} that makes less than k + 1 queries and outputs 1 if it thinks its input $x \in \{0, 1\}^n$ was drawn from D and 0 otherwise.

We construct the polynomial p(x) that captures the probability that \mathcal{A} outputs 1 on input x. Since \mathcal{A} makes $\leq k$ queries, then p(x) has degree at most 2k. Write p(x) as:

$$p(x) = \sum_{\substack{S \subseteq [n] \\ |S| \le 2k}} \alpha_S x^S.$$

Then the expected behavior of \mathcal{A} for x drawn from D is

$$\begin{split} \underset{x \sim D}{\mathbb{E}} [\mathcal{A}(x)] &= \underset{x \sim D}{\mathbb{E}} [p(x)] \\ &= \underset{x \sim D}{\mathbb{E}} \left[\sum_{\substack{S \subseteq [n] \\ |S| \leq 2k}} \alpha_S x^S \right] \\ &= \sum_{\substack{S \subseteq [n] \\ |S| \leq 2k}} \alpha_S \underset{x \sim D}{\mathbb{E}} [x^S] \end{split}$$

Now note that since D is a 2k-wise independent distribution, it means that the

distribution of any $\leq 2k$ bits is equal to the uniform distribution. Thus we can write

$$\mathbb{E}_{x \sim D}[\mathcal{A}(x)] = \sum_{\substack{S \subseteq [n] \\ |S| \le 2k}} \alpha_S \mathbb{E}_{x \sim \mathcal{U}}[x^S]$$
$$= \mathbb{E}_{x \sim \mathcal{U}}[p(x)]$$
$$= \mathbb{E}_{x \sim \mathcal{U}}[\mathcal{A}(x)].$$

As a result, \mathcal{A} 's output distribution is the same when given input from D or \mathcal{U} . Thus no quantum query algorithm can distinguish between \mathcal{U} and D.