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Problem 1

Question 1

We have seen that for any f : {0, 1}n → R, there exists a unique multilinear poly-
nomial Pf such that Pf (x) = f(x) for all x ∈ {0, 1}n. Thus it suffices to give a
multilinear polynomial that computes each function exactly.

• OR. We can write x1 ∨ . . . ∨ xn as ¬(x̄1 ∧ . . . ∧ x̄n). Hence we will use the
multilinear polynomial of AND to obtain

POR(x) = 1− (1− x1)(1− x2) . . . (1− xn).

Thus the exact degree of OR is n.

• PARITY. If our variables were ±1, then the product of the variables captures
the parity exactly. Hence we will use the transformation x→ 1−2x that maps
0 → 1 and 1 → −1 to obtain

PPARITY (x) = (1− 2x1)(1− 2x2) . . . (1− 2xn).

Thus the exact degree of PARITY is n.

• MAJORITY. We will write the multilinear polynomial by considering all pos-
sible inputs. First, define the linear function

1zi(xi) =

{
1− xi zi = 0
xi zi = 1

that outputs 1 if the bits zi, xi are equal and 0 otherwise. Now we can easily
write PMAJ as a sum of ‘indicators’ as follows:

PMAJ(x) =
∑

z∈{0,1}n
MAJ(z)=1

n∏
i=1

1zi(xi).
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Now we should show that PMAJ has degree n. We just have to consider the coef-
ficient of x1x2 . . . xn. It is easy to see that its coefficient is

∑n
k=⌈n/2⌉(−1)n−k

(
n
k

)
,

which is never equal to 0.

Question 2

The majority, as we have seen, is a function whose block sensitivity is not equal to
its exact degree. Recall that its block sensitivity was ⌈n/2⌉, whereas its degree is
equal to n.

Question 3

We have seen how we can represent a classical query algorithm A (deterministic or
randomized) via a decision tree. If this algorithm makes q queries to its input, then
this decision tree has depth at most q. Every leaf of the decision tree v is assigned
the value A(v), which is the output of the algorithm in that branch.

For simplicity, we will use the following linear function

1zi(xi) =

{
1− xi zi = 0
xi zi = 1

.

Note that 1zi(xi) = 1 iff xi = zi. We can then write down a polynomial that has
a term for every such leaf. We will represent with path(v) the set of variables and
their values in the path to leaf v. Then the polynomial is

P (x) =
∑
leaf v

A(v)
∏

(xi,bi)∈path(v)

1bi(xi).

Since the path to each leaf contains at most q variables, P (x) is a multilinear poly-
nomial with degree at most q.

Now, if A is a deterministic algorithm, then the number of queries is at most
D(f) and the algorithm always succeeds, hence P (x) = f(x). We conclude that
deg(f) ≤ D(f). For a randomized A, the number of queries is at most R(f) and the
algorithm succeeds with probability at least 2

3
, thus the same polynomial is actually
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an approximation P̃ (x) to f(x) that satisfies |P̃ (x) − f(x)|≤ 1
3
. We conclude that

R(f) ≤ ˜deg(f).
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Problem 2

Question 1

Consider the multivariate polynomial P (x1, . . . , xn) that approximates OR of mini-
mal degree. As in the lecture, we define with Bk to be the set of inputs with Hamming
weight k. We will define

Psym(k) = E
x1,...,xn∼Bk

P (x1, . . . , xn).

Since P approximates OR, it should hold that{
Psym(0) ∈

[
0, 1

3

]
Psym(k) ∈

[
2
3
, 1
]
k ∈ {1, . . . , n}.

Also note that Psym ‘jumps’ from at most 1
3
to at least 2

3
from 0 to 1. Hence there must

exist some x ∈ [0, 1] such that P ′
sym(x) ≥ 1

3
by the mean value theorem. This allows us

to use the Ehlich, Zeller and Rivlin, Cheney inequality with a = 0, b = 1, c = 1
3
, k = n.

This implies that deg(Psym) ≥
√

n
3
.

This already implies that

Q(OR) ≥
˜deg(OR)

2
=

deg(P )

2
≥ deg(Psym)

2
≥ Ω(

√
n).

Question 2.1

Let P be a multilinear polynomial that approximates PARITY. We will define the
univariate polynomial Q to be as follows:

Q(k) = Ex∈{0,1}n∑
i xi=k

[1− 2P (x)].

Note that deg(Q) ≤ deg(P ) and for any x with odd Hamming weight k we have that
|P (x)− 1|≤ 1

3
=⇒ |Q(k)− (−1)|≤ 2

3
, and for any x with even Hamming weight k

|P (x)−0|≤ 1
3

=⇒ |Q(k)−1|≤ 2
3
. Thus Q(k) approximates Sign(k) up to 2

3
additive

error.

4



Yassine Hamoudi, Angelos Pelecanos Problem Session 2

Question 2.2

This polynomial Q(k) is positive when k is even and negative and k is odd for all
k ∈ {0, . . . , n}. This means that it has at least n distinct roots from the mean value
theorem, which implies that the degree of Q must be at least n.

Combining with the previous question we conclude that ˜deg(PARITY) = n and thus
Q(f) ≥ n

2
.

Question 3

Let P̃n be the polynomial that achieves the ˜deg for PALINDROME with n inputs (n
is even). Consider the following polynomial

Psym(x1, . . . , xn) = 1− P̃2n(0, . . . , 0, xn, . . . , x1)].

One can verify that 0 . . . 0xn . . . x1 is a palindrome iff OR(x1, . . . , xn) = 0, thus
Psym(x) approximates the OR function. now note that the degree of Psym is at most
the approximate degree of PALINDROME on 2n inputs. Since the approximate
degree of OR is Ω(

√
n), we deduce that ˜deg(PAL) = Ω(

√
n) as well.

Question 4

Similar to the previous question, we will embed OR inside the polynomial that
approximates f . Let P̃n be the polynomial that achieves the ˜deg for f with n
inputs and let y be an input that achieves the maximal number of sensitive blocks
B1, . . . , Bk. For simplicity let k = bs(f). Consider the following polynomial

Psym(x1, . . . , xk) = 1− P̃n(y
x).

Here we define yx to be equal to y with the coordinates in Bi flipped if xi = 1. This
can be represented as xi(1− yj) + (1− xi)yj if coordinate j ∈ Bi.

Now note that Psym can distinguish between the all-zeros input 0 and the inputs with
hamming weight exactly one i from Lecture 1. Using a symmetrization argument,
no matter the values of Psym for the rest of the inputs, it must hold that the degree

of Psym is at least Ω(
√
k) = Ω(

√
bs(f)). Since P̃n(y

x) has the same degree as P̃n(y),
it must hold
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Problem 3

Question 1

Primal. We will represent the degree-(< d) polynomial using its coefficients {αS}S⊆[n]

as:
P (x) =

∑
S⊆[n]
|S|<d

αSx
S,

where we define xS =
∏

i∈S xi. Hence the primal becomes:

min
ϵ,{αS}S

ϵ

s.t.
∑
S

αSx
S − f(x) ≤ ϵ ∀ x ∈ {−1, 1}n∑

S

αSx
S − f(x) ≥ −ϵ ∀ x ∈ {−1, 1}n

We will convert it into standard form using some well-known tricks. First, we will
replace the unconstrained coefficients with non-negative ones as follows:

αS := α+
S − α−

S .

Additionally, we will change the right hand side variables to be non-negative by
changing the sign of both sides. Finally, we change the inequalities to equalities by
introducing slack variables, e.g.∑

S

αSx
S − f(x) + ξx = ϵ.

The final format is:

min ϵ

s.t.
∑
S

(α+
S − α−

S )x
S − f(x) + ξx = ϵ ∀ x ∈ {−1, 1}n∑

S

−(α+
S − α−

S )x
S + f(x) + ψx = −ϵ ∀ x ∈ {−1, 1}n

ϵ, {α±
S }S, {ξx}x, {ψx}x ≥ 0
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Dual. We will first show that we can ‘relax’ the second condition to
∑

x|ϕ(x)|≤ 1,
without changing the optimal value. This is because if there exists some ϕ with∑

x|ϕ(x)|< 1, then we can obtain ϕ′(x), which is scaled up to make the inequality
tight. By scaling up to ϕ′(x), we are also scaling the objective value, which will give
us something larger. This is because the optimal of the dual is always non-negative.
Thus we will convert the following program into standard form:

max
ϕ

∑
x

ϕ(x) · f(x)

s.t.
∑
x

|ϕ(x)|≤ 1∑
x

ϕ(x) · P (x) = 0 ∀ P, deg(P ) < d

We will follow the same recipe as the primal. Write the polynomial ϕ as

ϕ(x) =
∑
S⊆[n]
|S|≥d

(β+
S − β−

S )x
S.

Now we will write the
∑

x|ϕ(x)|≤ 1 by bounding each term separately, i.e.

|ϕ(x)|≤ γx =⇒ −γx ≤ ϕ(x) ≤ γx, ∀ x ∈ {±1}n,

and imposing the condition that
∑

x γx = 1.
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The final format is:

max
∑
x

∑
S⊆[n]
|S|≥d

(β+
S − β−

S )x
S

 · f(x)

s.t.
∑
S⊆[n]
|S|≥d

(β+
S − β−

S )x
S + ξx = γx ∀ x ∈ {±1}n

−
∑
S⊆[n]
|S|≥d

(β+
S − β−

S )x
S + ϕx = γx ∀ x ∈ {±1}n

∑
x

γx = 1

{β±
S }S ≥ 0, {ξx}x ≥ 0, {ϕx}x ≥ 0, {γx}x ≥ 0

Question 2

The dual polynomial certificate is ϕ(x) = 1
2n
x1 . . . xn. It is easy to see that ϕ(x) =

1
2n
f(x), and thus ∑

x∈{±1}n
ϕ(x) · f(x) = 1.

Additionally, we can check that
∑

x|ϕ(x)|= 2n · 1
2n

= 1, and ϕ has no monomial of

degree < n. Thus, by weak duality ˜PARITY = n.
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Problem 4

Question 1

Since the marginal distribution D|S is uniform over {0, 1}|S| for any k-wise indepen-
dent distribution D, any randomized algorithm that makes less than k + 1 queries
will just see a uniform set of bits.

Hence the view of the algorithm is the same for both distributions. Thus the algo-
rithm cannot distinguish between the two distributions.

Question 2

Consider a quantum query algorithm A that makes less than k + 1 queries and
outputs 1 if it thinks its input x ∈ {0, 1}n was drawn from D and 0 otherwise.

We construct the polynomial p(x) that captures the probability that A outputs 1 on
input x. Since A makes ≤ k queries, then p(x) has degree at most 2k. Write p(x)
as:

p(x) =
∑
S⊆[n]
|S|≤2k

αSx
S.

Then the expected behavior of A for x drawn from D is

E
x∼D

[A(x)] = E
x∼D

[p(x)]

= E
x∼D

 ∑
S⊆[n]
|S|≤2k

αSx
S


=

∑
S⊆[n]
|S|≤2k

αS E
x∼D

[xS]

Now note that since D is a 2k-wise independent distribution, it means that the
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distribution of any ≤ 2k bits is equal to the uniform distribution. Thus we can write

E
x∼D

[A(x)] =
∑
S⊆[n]
|S|≤2k

αS E
x∼U

[xS]

= E
x∼U

[p(x)]

= E
x∼U

[A(x)].

As a result, A’s output distribution is the same when given input from D or U . Thus
no quantum query algorithm can distinguish between U and D.
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