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Problem 1

Question 1

We will show the first statement: Rϵ(f) ≤ O(R(f) log(1/ϵ)). The second statement
follows using the same argument.

First note that the definition of R(f) that we have seen in lecture corresponds to
R1/3(f).

To prove the statement, consider a randomized algorithm A that makes R(f) queries
and is incorrect with probability at most 1

3
for every input x. We will construct a

randomized algorithm B that makes O(R(f) log(1/ϵ)) queries and makes an error
with probability at most ϵ.

Our algorithm B is quite simple: Run A for k times independently, obtaining k
binary values y1, . . . , yk. Then output the majority of these values.

What is the probability that B makes an error? We know that

Pr[yi ̸= f(x)] = p ≤ 1

3
.

Thus for B to make an error, we want at least k
2
of the yi’s to be incorrect. This

happens with probability at most

pk/2(1− p)k/2 ·
(
k

k/2

)
≤ 1

3k/2
· 2

k/2

3k/2
· 2k =

(
8

9

)k/2

.

Thus choosing k = O(log 1/ϵ) makes the probability that B makes an error at
most ϵ. Since B runs A O(log 1/ϵ) times, the total number of queries is at most
O(R(f) log 1/ϵ).
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Question 2

Everything from the quantum query model transitions seamlessly to inputs x ∈
{0, 1, . . . ,m− 1}n if we use qudits. In particular, we will need to modify the oracle
gate to

Ox |i, b⟩ =

∣∣∣∣∣∣i, b+ xi mod m︸ ︷︷ ︸
{0,...,m−1}

〉

where b ∈ {0, . . . ,m− 1}.
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Problem 2

Question 1

We will show how to simulate the phase query operator using the query operator
and Hadamard transforms as follows:

O±
x = (I ⊗H)Ox(I ⊗H).

Recall that
Ox |i, b⟩ = |i, b⊕ xi⟩ , O±

x |i, b⟩ = (−1)b·xi |i, b⟩ .

(I ⊗H)Ox(I ⊗H) |i, b⟩ = (I ⊗H)Ox
|i, 0⟩+ (−1)b |i, 1⟩√

2

= (I ⊗H)
|i, xi⟩+ (−1)b |i, xi ⊕ 1⟩√

2

=
|i, 0⟩+ (−1)xi |i, 1⟩

2
+ (−1)b

|i, 0⟩+ (−1)xi⊕1 |i, 1⟩
2

=
1 + (−1)b

2
|i, 0⟩+ (−1)xi(1 + (−1)b⊕1)

2
|i, 1⟩ .

It is now easy to verify that

(I ⊗H)Ox(I ⊗H) |i, b⟩ =
{

|i, 0⟩ b = 0
(−1)xi |i, 1⟩ b = 1

= O±
x |i, b⟩

Question 2

For ease of notation, we will denote the two inputs as x0, x1. Since we are only
allowed one query, we will need to query both indices in superposition. Thus it
makes sense to prepare the following state

O±
x

|0, 1⟩+ |1, 1⟩√
2

=
(−1)x0 |0, 1⟩+ (−1)x1 |1, 1⟩√

2
.
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Now we want somehow the amplitudes to interfere, thus we will apply the Hadamard
transform on the first register:

(H ⊗ I)
(−1)x0 |0, 1⟩+ (−1)x1 |1, 1⟩√

2

=
(−1)x0 |0, 1⟩+ (−1)x0 |1, 1⟩

2
+

(−1)x1 |0, 1⟩ − (−1)x1 |1, 1⟩
2

=
(−1)x0 + (−1)x1

2
|0, 1⟩+ (−1)x0 − (−1)x1

2
|1, 1⟩

=

{
(−1)x0 |0, 1⟩ if x0 ⊕ x1 = 0
(−1)x0 |1, 1⟩ if x0 ⊕ x1 = 1

Thus we measure the first register, and the value we observe equals the value of
x0 ⊕ x1.

This algorithm trivially implies a n
2
-query quantum algorithm to solve Parity: Split

the input into n
2
pairs and use the 1-query quantum algorithm on each pair. The

Parity is equal to the boolean sum of the parities of each pair.
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Problem 3

Question 1

• bs(OR) = n. Choose subset Bj = {j} for all j ∈ [n]. Then for x = 0n, it holds
that

OR(xBj) ̸= OR(x).

• bs(AND) = n. Similar to the previous case, we choose subset Bj = {j} for all
j ∈ [n]. Then for x = 1n, it holds that

AND(xBj) ̸= AND(x).

• bs(Parity) = n. Again, choose each subset Bj = {j} for all j ∈ [n]. Then for
any x ∈ {0, 1}n, it holds that

Parity(xBj) ̸= Parity(x),

since flipping any bit changes the parity of the input.

• bs(Majority) =
⌈
n
2

⌉
, for odd n. Consider x = 0⌊n/2⌋1⌈n/2⌉. Choose each

subset Bj = {j} for all j ∈ {⌊n/2⌋, . . . , n− 1}. Then, it holds that

Majority(xBj) ̸= Majority(x).

It is easy to see that this is the largest number of disjoint subsets. If we choose
an input with 2d + 1 > 1 1’s than 0’s, then each Bj must satisfy |Bj|≥ d + 1,
which means that we will have at most n

d+1
≤ n

2
such subsets.

Question 2

For simplicity, let k = bs(f), let x be an input on which f attains its block sensitivity,
and consider the respective disjoint subsets B1, . . . , Bk. For any randomized classical
algorithm that makes o(k) queries, there exists at least one subset Bj that has not
been queried on any i ∈ Bj.

Thus the classical algorithm will not be able to distinguish x from xBj .
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Question 3

In this question, we will generalize from the previous classical case. Note that the
argument in the classical case is that a classical algorithm must query at least one
coordinate in block B to be able to distinguish x from xB. A quantum algorithm
can query many coordinates in superposition, thus we first need to understand what
it means for a quantum algorithm to ‘query’ a coordinate in a block.

Turns out that the right way to formalize the above intuition is by defining

mt
i = Pr[measuring tth query register outputs coordinate i].

For example, if the tth query is over a superposition over all n coordinates, then
mt

i = 1
n

for all i. A classical query at position i will satisfy mt
i = 1. We will

define mi =
∑

tm
t
i, which can be interpreted as the expected number of times that

coordinate i is queried by the quantum algorithm.

Then for a T -query quantum algorithm to distinguish between x from xB with con-
stant probability, the expected number of times that the algorithm queries a coordi-
nate in block B must be at least Ω

(
1
T

)
. Formally,

Claim. If A is a T -query quantum algorithm that distinguishes between inputs
x ∈ {0, 1}n and xB with probability ≥ 2

3
(outputs 0 on x w.p. ≥ 2/3 and 1 on xB

w.p. ≥ 2/3), then ∑
i∈B

mi ≥ Ω

(
1

T

)
.

The claim then implies the desired result. Consider an input x that achieves the
maximum number of disjoint sensitive blocks k = bs(f). Then we know that for
each such block Bj, it must hold that∑

i∈Bj

mi ≥ Ω

(
1

T

)
.

Summing over all blocks gives

k∑
j=1

∑
i∈Bj

mi ≥ Ω

(
k

T

)
.
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Since the algorithm makes T queries, the total sum of all mi is equal to T , and
because the sensitive blocks are disjoint, this is an upper bound for the LHS. Thus

T ≥ Ω(k/T ) =⇒ T 2 ≥ Ω(k) =⇒ T = Ω(
√
bs(f)).

We now proceed with proving the claim.

Proof. [Proof of Claim] We will define Πi to be the operator that projects the query
register to the subspace where the index is equal to i. Then the definition of mt

i is
equivalent to

mt
i = ∥Πi

∣∣ψt
x

〉
∥2.

We have seen from Lemma 1.2 of the lecture that for a T -query quantum algorithm
to succeed with probability ≥ 2

3
, it must hold that ∥

∣∣ψT
x

〉
−
∣∣ψT

xB

〉
∥ ≥ 1

3
.

We will upper bound ∥
∣∣ψT

x

〉
−

∣∣ψT
xB

〉
∥ by expressing it as a telescopic sum series

∥∥∣∣ψT
x

〉
−

∣∣ψT
xB

〉∥∥ =
T−1∑
t=1

∥∥∣∣ψt+1
x

〉
−
∣∣ψt+1

xB

〉∥∥−
∥∥∣∣ψt

x

〉
−
∣∣ψt

xB

〉∥∥
=

T−1∑
t=1

∥∥Ut+1Ox

∣∣ψt
x

〉
− Ut+1OxB

∣∣ψt
xB

〉∥∥−
∥∥∣∣ψt

x

〉
−
∣∣ψt

xB

〉∥∥
=

T−1∑
t=1

∥∥∥O†
xBOx

∣∣ψt
x

〉
−
∣∣ψt

xB

〉∥∥∥−
∥∥∣∣ψt

x

〉
−
∣∣ψt

xB

〉∥∥
≤

T−1∑
t=1

∥∥∥O†
xBOx

∣∣ψt
x

〉
−
∣∣ψt

xB

〉
−
∣∣ψt

x

〉
+
∣∣ψt

xB

〉∥∥∥
=

T−1∑
t=1

∥∥∥O†
xBOx

∣∣ψt
x

〉
−
∣∣ψt

x

〉∥∥∥
=

T−1∑
t=1

∥∥(Ox −OxB)
∣∣ψt

x

〉∥∥
Where we used the triangle inequality at the fourth line and the fact that unitary ma-
trices preserve the 2-norm in multiple lines. Now we observe that |ψt

x⟩ =
∑

i Πi |ψt
x⟩.

Additionally, since x and xB are equal for any index i ̸∈ B, it holds that Ox − OxB
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map any vector with i ̸∈ B in the index register to 0. Now we proceed with

=
T−1∑
t=1

∥∥∥∥∥(Ox −OxB)
∑
i

Πi

∣∣ψt
x

〉∥∥∥∥∥
=

T−1∑
t=1

∥∥∥∥∥∑
i

(Ox −OxB)Πi

∣∣ψt
x

〉∥∥∥∥∥
=

T−1∑
t=1

∥∥∥∥∥∑
i∈B

(Ox −OxB)Πi

∣∣ψt
x

〉∥∥∥∥∥
=

T−1∑
t=1

√∑
i∈B

∥(Ox −OxB)Πi |ψt
x⟩∥

2

≤
T−1∑
t=1

√∑
i∈B

(2 ∥Πi |ψt
x⟩∥)2

≤

√√√√T
T−1∑
t=1

∑
i∈B

4mt
i

=

√
4T

∑
i∈B

mi

Where the fourth line follows from the fact that the (Ox−OxB)Πi |ψt
x⟩ are orthogonal

for different i.

We conclude that √
4T

∑
i∈B

mi ≥
1

3
=⇒

∑
i∈B

mi ≥ Ω

(
1

T

)
.

Question 4.1

We are given that f(xB
′
) = f(x) for all proper subsets B′ ⊂ B. Consider the proper

subsets of the form B \ {i} for all i ∈ B. Then it holds that 1 − f(x) = f(xB) ̸=
f(xB\{i}) = f(x) for all i ∈ B.
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Thus, for input xB, there exist |B| disjoint subsets {i}i∈B that change the value of
f when we flip their respective bits. Thus the block sensitivity of f is at least |B|.

Question 4.2

Fix some x ∈ {0, 1}n consider any maximal set of k ≤ bs(f) disjoint block sensitivity
subsets B1, . . . , Bk.

WLOG, we can assume that each Bj is minimal. Otherwise, if there exists i ∈ Bj such
that f(xBj) = f(xBj\{i}) ̸= f(x), then we can remove i from Bj without changing
the number of subsets k.

Now we will show that B1∪. . .∪Bk is a certificate for x. Note that we have k ≤ bs(f)
subsets, each of size at most bs(f). Thus the certificate above has size bs(f)2, as
desired.

Claim. B1 ∪ . . . ∪Bk is a certificate for x.

Proof. By contradiction. Assume that B1 ∪ . . .∪Bk is not a certificate for x. This
means that there exists some y ∈ {0, 1}n that agrees with x on B1 ∪ . . . ∪ Bk, but
f(x) ̸= f(y). Write y = xD, i.e. D is the subset of the bits that x and y differ. Then
D is disjoint from B1 ∪ . . . ∪ Bk, and thus it could be added to the block sensitive
subsets to get a larger set!

Question 4.3

Consider the first k = bs(f)2 iterations of the algorithm, where the algorithm chose
the certificates Cy1 , . . . , Cyk . If after these bs(f)2 iterations C(1) is empty, the algo-
rithm terminates as desired. Thus, let’s consider the case when C(1) is not empty.
In particular, let Cz, f(z) = 1 be a 1-certificate still in C(1).

Observation. All Cyi ∈ C(0) and Cz ∈ C(1) must intersect in at least one index.
Otherwise, one may fix the indices in Cyi according to yi and the indices of Cz

according to z and obtain an input that maps to both 0 and 1.

9



Yassine Hamoudi, Angelos Pelecanos Problem Session 1

We can strengthen the above observation by noting that Cyi and Cz must intersect in
at least one index that was not queried during the previous i− 1 iterations. Again,
this is because one can fix the indices that were queried before and then fix the
indices of the 0- and 1-certificates and obtain the same contradiction.

Thus what it means is that every iteration intersects with Cz in at least one new
index. However, the length of Cz is at most bs(f)2, and thus after bs(f)2 iterations,
if Cz is still in the set, it means that we have found the entire 1-certificate, which
means that C(0) = ∅ and the algorithm returns f(x) = 1. Otherwise, the set of
1-certificates is empty, and the algorithm returns f(x) = 0.

Question 4.4

We have showed that the algorithm terminates after at most bs(f)2 repetitions. Each
repetition queries the entirety of a certificate Cy, whose size is at mot bs(f)2. Thus
the total number of queries of the above deterministic algorithm is D(f) = bs(f)4.

The second expression follows because any quantum algorithm can simulate a de-
terministic algorithm trivially, thus Q(f) ≤ D(f). We have also showed that
Q(f) = Ω(

√
bs(f)) =⇒ bs(f) = O(Q(f)2). Combining this with the paragraph

above we get that D(f) ≤ O(Q(f)8).
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