Quantum Query Complexity Problem Session 1

Instructor: Yassine Hamoudi
Teaching Assistant: Angelos Pelecanos

Problem 1

Question 1

We will show the first statement: $R_{\epsilon}(f) \leq O(R(f) \log (1 / \epsilon))$. The second statement follows using the same argument.

First note that the definition of $R(f)$ that we have seen in lecture corresponds to $R_{1 / 3}(f)$.

To prove the statement, consider a randomized algorithm \mathcal{A} that makes $R(f)$ queries and is incorrect with probability at most $\frac{1}{3}$ for every input x. We will construct a randomized algorithm \mathcal{B} that makes $O(R(f) \log (1 / \epsilon))$ queries and makes an error with probability at most ϵ.

Our algorithm \mathcal{B} is quite simple: Run \mathcal{A} for k times independently, obtaining k binary values y_{1}, \ldots, y_{k}. Then output the majority of these values.

What is the probability that \mathcal{B} makes an error? We know that

$$
\operatorname{Pr}\left[y_{i} \neq f(x)\right]=p \leq \frac{1}{3}
$$

Thus for \mathcal{B} to make an error, we want at least $\frac{k}{2}$ of the y_{i} 's to be incorrect. This happens with probability at most

$$
p^{k / 2}(1-p)^{k / 2} \cdot\binom{k}{k / 2} \leq \frac{1}{3^{k / 2}} \cdot \frac{2^{k / 2}}{3^{k / 2}} \cdot 2^{k}=\left(\frac{8}{9}\right)^{k / 2}
$$

Thus choosing $k=O(\log 1 / \epsilon)$ makes the probability that \mathcal{B} makes an error at most ϵ. Since \mathcal{B} runs $\mathcal{A} O(\log 1 / \epsilon)$ times, the total number of queries is at most $O(R(f) \log 1 / \epsilon)$.

Question 2

Everything from the quantum query model transitions seamlessly to inputs $x \in$ $\{0,1, \ldots, m-1\}^{n}$ if we use qudits. In particular, we will need to modify the oracle gate to

$$
\mathcal{O}_{x}|i, b\rangle=|i, \underbrace{b+x_{i} \bmod m}_{\{0, \ldots, m-1\}}\rangle
$$

where $b \in\{0, \ldots, m-1\}$.

Problem 2

Question 1

We will show how to simulate the phase query operator using the query operator and Hadamard transforms as follows:

$$
\mathcal{O}_{x}^{ \pm}=(I \otimes H) \mathcal{O}_{x}(I \otimes H)
$$

Recall that

$$
\begin{aligned}
\mathcal{O}_{x}|i, b\rangle= & \left|i, b \oplus x_{i}\right\rangle, \quad \mathcal{O}_{x}^{ \pm}|i, b\rangle=(-1)^{b \cdot x_{i}}|i, b\rangle \\
(I \otimes H) \mathcal{O}_{x}(I \otimes H)|i, b\rangle & =(I \otimes H) \mathcal{O}_{x} \frac{|i, 0\rangle+(-1)^{b}|i, 1\rangle}{\sqrt{2}} \\
& =(I \otimes H) \frac{\left|i, x_{i}\right\rangle+(-1)^{b}\left|i, x_{i} \oplus 1\right\rangle}{\sqrt{2}} \\
& =\frac{|i, 0\rangle+(-1)^{x_{i}}|i, 1\rangle}{2}+(-1)^{b} \frac{|i, 0\rangle+(-1)^{x_{i} \oplus 1}|i, 1\rangle}{2} \\
& =\frac{1+(-1)^{b}}{2}|i, 0\rangle+\frac{(-1)^{x_{i}}\left(1+(-1)^{b \oplus 1}\right)}{2}|i, 1\rangle .
\end{aligned}
$$

It is now easy to verify that

$$
(I \otimes H) \mathcal{O}_{x}(I \otimes H)|i, b\rangle=\left\{\begin{array}{ll}
|i, 0\rangle & b=0 \\
(-1)^{x_{i}}|i, 1\rangle & b=1
\end{array}=\mathcal{O}_{x}^{ \pm}|i, b\rangle\right.
$$

Question 2

For ease of notation, we will denote the two inputs as x_{0}, x_{1}. Since we are only allowed one query, we will need to query both indices in superposition. Thus it makes sense to prepare the following state

$$
\mathcal{O}_{x}^{ \pm} \frac{|0,1\rangle+|1,1\rangle}{\sqrt{2}}=\frac{(-1)^{x_{0}}|0,1\rangle+(-1)^{x_{1}}|1,1\rangle}{\sqrt{2}} .
$$

Now we want somehow the amplitudes to interfere, thus we will apply the Hadamard transform on the first register:

$$
\begin{aligned}
& (H \otimes I) \frac{(-1)^{x_{0}}|0,1\rangle+(-1)^{x_{1}}|1,1\rangle}{\sqrt{2}} \\
= & \frac{(-1)^{x_{0}}|0,1\rangle+(-1)^{x_{0}}|1,1\rangle}{2}+\frac{(-1)^{x_{1}}|0,1\rangle-(-1)^{x_{1}}|1,1\rangle}{2} \\
= & \frac{(-1)^{x_{0}}+(-1)^{x_{1}}}{2}|0,1\rangle+\frac{(-1)^{x_{0}}-(-1)^{x_{1}}}{2}|1,1\rangle \\
= & \begin{cases}(-1)^{x_{0}}|0,1\rangle \text { if } x_{0} \oplus x_{1}=0 \\
(-1)^{x_{0}}|1,1\rangle \text { if } x_{0} \oplus x_{1}=1\end{cases}
\end{aligned}
$$

Thus we measure the first register, and the value we observe equals the value of $x_{0} \oplus x_{1}$.

This algorithm trivially implies a $\frac{n}{2}$-query quantum algorithm to solve Parity: Split the input into $\frac{n}{2}$ pairs and use the 1-query quantum algorithm on each pair. The Parity is equal to the boolean sum of the parities of each pair.

Problem 3

Question 1

- $b s(\mathrm{OR})=n$. Choose subset $B_{j}=\{j\}$ for all $j \in[n]$. Then for $x=0^{n}$, it holds that

$$
\operatorname{OR}\left(x^{B_{j}}\right) \neq \operatorname{OR}(x)
$$

- $b s(\mathrm{AND})=n$. Similar to the previous case, we choose subset $B_{j}=\{j\}$ for all $j \in[n]$. Then for $x=1^{n}$, it holds that

$$
\operatorname{AND}\left(x^{B_{j}}\right) \neq \operatorname{AND}(x)
$$

- $b s($ Parity $)=n$. Again, choose each subset $B_{j}=\{j\}$ for all $j \in[n]$. Then for any $x \in\{0,1\}^{n}$, it holds that

$$
\operatorname{Parity}\left(x^{B_{j}}\right) \neq \operatorname{Parity}(x),
$$

since flipping any bit changes the parity of the input.

- $b s$ (Majority) $=\left\lceil\frac{n}{2}\right\rceil$, for odd n. Consider $x=0^{\lfloor n / 2\rfloor} 1^{\lceil n / 2\rceil}$. Choose each subset $B_{j}=\{j\}$ for all $j \in\{\lfloor n / 2\rfloor, \ldots, n-1\}$. Then, it holds that

$$
\operatorname{MAJORITY}\left(x^{B_{j}}\right) \neq \operatorname{MAJORITY}(x) .
$$

It is easy to see that this is the largest number of disjoint subsets. If we choose an input with $2 d+1>1$ 1's than 0's, then each B_{j} must satisfy $\left|B_{j}\right| \geq d+1$, which means that we will have at most $\frac{n}{d+1} \leq \frac{n}{2}$ such subsets.

Question 2

For simplicity, let $k=b s(f)$, let x be an input on which f attains its block sensitivity, and consider the respective disjoint subsets B_{1}, \ldots, B_{k}. For any randomized classical algorithm that makes $o(k)$ queries, there exists at least one subset B_{j} that has not been queried on any $i \in B_{j}$.

Thus the classical algorithm will not be able to distinguish x from $x^{B_{j}}$.

Question 3

In this question, we will generalize from the previous classical case. Note that the argument in the classical case is that a classical algorithm must query at least one coordinate in block B to be able to distinguish x from x^{B}. A quantum algorithm can query many coordinates in superposition, thus we first need to understand what it means for a quantum algorithm to 'query' a coordinate in a block.

Turns out that the right way to formalize the above intuition is by defining

$$
m_{i}^{t}=\operatorname{Pr}\left[\text { measuring } t^{t h} \text { query register outputs coordinate } i\right] .
$$

For example, if the $t^{\text {th }}$ query is over a superposition over all n coordinates, then $m_{i}^{t}=\frac{1}{n}$ for all i. A classical query at position i will satisfy $m_{i}^{t}=1$. We will define $m_{i}=\sum_{t} m_{i}^{t}$, which can be interpreted as the expected number of times that coordinate i is queried by the quantum algorithm.

Then for a T-query quantum algorithm to distinguish between x from x^{B} with constant probability, the expected number of times that the algorithm queries a coordinate in block B must be at least $\Omega\left(\frac{1}{T}\right)$. Formally,

Claim. If \mathcal{A} is a T-query quantum algorithm that distinguishes between inputs $x \in\{0,1\}^{n}$ and x^{B} with probability $\geq \frac{2}{3}$ (outputs 0 on x w.p. $\geq 2 / 3$ and 1 on x^{B} w.p. $\geq 2 / 3)$, then

$$
\sum_{i \in B} m_{i} \geq \Omega\left(\frac{1}{T}\right)
$$

The claim then implies the desired result. Consider an input x that achieves the maximum number of disjoint sensitive blocks $k=b s(f)$. Then we know that for each such block B_{j}, it must hold that

$$
\sum_{i \in B_{j}} m_{i} \geq \Omega\left(\frac{1}{T}\right)
$$

Summing over all blocks gives

$$
\sum_{j=1}^{k} \sum_{i \in B_{j}} m_{i} \geq \Omega\left(\frac{k}{T}\right)
$$

Since the algorithm makes T queries, the total sum of all m_{i} is equal to T, and because the sensitive blocks are disjoint, this is an upper bound for the LHS. Thus

$$
T \geq \Omega(k / T) \Longrightarrow T^{2} \geq \Omega(k) \Longrightarrow T=\Omega(\sqrt{b s(f)})
$$

We now proceed with proving the claim.
Proof. [Proof of Claim] We will define Π_{i} to be the operator that projects the query register to the subspace where the index is equal to i. Then the definition of m_{i}^{t} is equivalent to

$$
m_{i}^{t}=\| \Pi_{i}\left|\psi_{x}^{t}\right\rangle \|^{2} .
$$

We have seen from Lemma 1.2 of the lecture that for a T-query quantum algorithm to succeed with probability $\geq \frac{2}{3}$, it must hold that $\|\left|\psi_{x}^{T}\right\rangle-\left|\psi_{x^{B}}^{T}\right\rangle \| \geq \frac{1}{3}$.

We will upper bound $\|\left|\psi_{x}^{T}\right\rangle-\left|\psi_{x^{B}}^{T}\right\rangle \|$ by expressing it as a telescopic sum series

$$
\begin{aligned}
\|\left|\psi_{x}^{T}\right\rangle-\left|\psi_{x^{B}}^{T}\right\rangle \| & =\sum_{t=1}^{T-1} \|\left|\psi_{x}^{t+1}\right\rangle-\left|\psi_{x^{B}}^{t+1}\right\rangle\|-\|\left|\psi_{x}^{t}\right\rangle-\left|\psi_{x^{B}}^{t}\right\rangle \| \\
& =\sum_{t=1}^{T-1} \| U_{t+1} O_{x}\left|\psi_{x}^{t}\right\rangle-U_{t+1} O_{x^{B}}\left|\psi_{x^{B}}^{t}\right\rangle\|-\|\left|\psi_{x}^{t}\right\rangle-\left|\psi_{x^{B}}^{t}\right\rangle \| \\
& =\sum_{t=1}^{T-1} \| O_{x^{B}}^{\dagger} O_{x}\left|\psi_{x}^{t}\right\rangle-\left|\psi_{x^{B}}^{t}\right\rangle\|-\|\left|\psi_{x}^{t}\right\rangle-\left|\psi_{x^{B}}^{t}\right\rangle \| \\
& \leq \sum_{t=1}^{T-1} \| O_{x^{B}}^{\dagger} O_{x}\left|\psi_{x}^{t}\right\rangle-\left|\psi_{x^{B}}^{t}\right\rangle-\left|\psi_{x}^{t}\right\rangle+\left|\psi_{x^{B}}^{t}\right\rangle \| \\
& =\sum_{t=1}^{T-1} \| O_{x^{B}}^{\dagger} O_{x}\left|\psi_{x}^{t}\right\rangle-\left|\psi_{x}^{t}\right\rangle \| \\
& =\sum_{t=1}^{T-1} \|\left(O_{x}-O_{x^{B}}\right)\left|\psi_{x}^{t}\right\rangle \|
\end{aligned}
$$

Where we used the triangle inequality at the fourth line and the fact that unitary matrices preserve the 2-norm in multiple lines. Now we observe that $\left|\psi_{x}^{t}\right\rangle=\sum_{i} \Pi_{i}\left|\psi_{x}^{t}\right\rangle$. Additionally, since x and x^{B} are equal for any index $i \notin B$, it holds that $O_{x}-O_{x^{B}}$
map any vector with $i \notin B$ in the index register to 0 . Now we proceed with

$$
\begin{aligned}
& =\sum_{t=1}^{T-1} \|\left(O_{x}-O_{x^{B}}\right) \sum_{i} \Pi_{i}\left|\psi_{x}^{t}\right\rangle \| \\
& =\sum_{t=1}^{T-1} \| \sum_{i}\left(O_{x}-O_{x^{B}}\right) \Pi_{i}\left|\psi_{x}^{t}\right\rangle \| \\
& =\sum_{t=1}^{T-1} \| \sum_{i \in B}\left(O_{x}-O_{x^{B}}\right) \Pi_{i}\left|\psi_{x}^{t}\right\rangle \| \\
& =\sum_{t=1}^{T-1} \sqrt{\sum_{i \in B} \|\left(O_{x}-O_{x^{B}}\right) \Pi_{i}\left|\psi_{x}^{t}\right\rangle \|^{2}} \\
& \leq \sum_{t=1}^{T-1} \sqrt{\sum_{i \in B}\left(2 \| \Pi_{i}\left|\psi_{x}^{t}\right\rangle \|\right)^{2}} \\
& \leq \sqrt{T \sum_{t=1}^{T-1} \sum_{i \in B} 4 m_{i}^{t}} \\
& =\sqrt{4 T \sum_{i \in B} m_{i}}
\end{aligned}
$$

Where the fourth line follows from the fact that the $\left(O_{x}-O_{x^{B}}\right) \Pi_{i}\left|\psi_{x}^{t}\right\rangle$ are orthogonal for different i.

We conclude that

$$
\sqrt{4 T \sum_{i \in B} m_{i}} \geq \frac{1}{3} \Longrightarrow \sum_{i \in B} m_{i} \geq \Omega\left(\frac{1}{T}\right)
$$

Question 4.1

We are given that $f\left(x^{B^{\prime}}\right)=f(x)$ for all proper subsets $B^{\prime} \subset B$. Consider the proper subsets of the form $B \backslash\{i\}$ for all $i \in B$. Then it holds that $1-f(x)=f\left(x^{B}\right) \neq$ $f\left(x^{B \backslash\{i\}}\right)=f(x)$ for all $i \in B$.

Thus, for input x^{B}, there exist $|B|$ disjoint subsets $\{i\}_{i \in B}$ that change the value of f when we flip their respective bits. Thus the block sensitivity of f is at least $|B|$.

Question 4.2

Fix some $x \in\{0,1\}^{n}$ consider any maximal set of $k \leq b s(f)$ disjoint block sensitivity subsets B_{1}, \ldots, B_{k}.

WLOG, we can assume that each B_{j} is minimal. Otherwise, if there exists $i \in B_{j}$ such that $f\left(x^{B_{j}}\right)=f\left(x^{\left.B_{j} \backslash i i\right\}}\right) \neq f(x)$, then we can remove i from B_{j} without changing the number of subsets k.

Now we will show that $B_{1} \cup \ldots \cup B_{k}$ is a certificate for x. Note that we have $k \leq b s(f)$ subsets, each of size at most $b s(f)$. Thus the certificate above has size $b s(f)^{2}$, as desired.

Claim. $\quad B_{1} \cup \ldots \cup B_{k}$ is a certificate for x.
Proof. By contradiction. Assume that $B_{1} \cup \ldots \cup B_{k}$ is not a certificate for x. This means that there exists some $y \in\{0,1\}^{n}$ that agrees with x on $B_{1} \cup \ldots \cup B_{k}$, but $f(x) \neq f(y)$. Write $y=x^{D}$, i.e. D is the subset of the bits that x and y differ. Then D is disjoint from $B_{1} \cup \ldots \cup B_{k}$, and thus it could be added to the block sensitive subsets to get a larger set!

Question 4.3

Consider the first $k=b s(f)^{2}$ iterations of the algorithm, where the algorithm chose the certificates $C_{y_{1}}, \ldots, C_{y_{k}}$. If after these $b s(f)^{2}$ iterations $C^{(1)}$ is empty, the algorithm terminates as desired. Thus, let's consider the case when $C^{(1)}$ is not empty. In particular, let $C_{z}, f(z)=1$ be a 1-certificate still in $C^{(1)}$.

Observation. All $C_{y_{i}} \in C^{(0)}$ and $C_{z} \in C^{(1)}$ must intersect in at least one index. Otherwise, one may fix the indices in $C_{y_{i}}$ according to y_{i} and the indices of C_{z} according to z and obtain an input that maps to both 0 and 1 .

We can strengthen the above observation by noting that $C_{y_{i}}$ and C_{z} must intersect in at least one index that was not queried during the previous $i-1$ iterations. Again, this is because one can fix the indices that were queried before and then fix the indices of the 0 - and 1-certificates and obtain the same contradiction.

Thus what it means is that every iteration intersects with C_{z} in at least one new index. However, the length of C_{z} is at most $b s(f)^{2}$, and thus after $b s(f)^{2}$ iterations, if C_{z} is still in the set, it means that we have found the entire 1-certificate, which means that $C^{(0)}=\emptyset$ and the algorithm returns $f(x)=1$. Otherwise, the set of 1 -certificates is empty, and the algorithm returns $f(x)=0$.

Question 4.4

We have showed that the algorithm terminates after at most $b s(f)^{2}$ repetitions. Each repetition queries the entirety of a certificate C_{y}, whose size is at mot $b s(f)^{2}$. Thus the total number of queries of the above deterministic algorithm is $D(f)=b s(f)^{4}$.

The second expression follows because any quantum algorithm can simulate a deterministic algorithm trivially, thus $Q(f) \leq D(f)$. We have also showed that $Q(f)=\Omega(\sqrt{b s(f)}) \Longrightarrow b s(f)=O\left(Q(f)^{2}\right)$. Combining this with the paragraph above we get that $D(f) \leq O\left(Q(f)^{8}\right)$.

