Quantum Query Complexity

PCMI Graduate Summer School 2023
Instructor: Yassine Hamoudi. Teaching assistant: Angelos Pelecanos.
Course page: https://yassine-hamoudi.github.io/pcmi2023/

Problem Session 4

The adversary method and its dual

Problem 1 (Simplifying the dual adversary)

Recall the dual formulation of the adversary method:

$$
\begin{aligned}
\operatorname{Adv}(f)=\min _{\left\{w^{(x, i)}\right\}} & \max _{x} \sum_{i}\left\|w^{(x, i)}\right\|^{2} \\
\text { s.t. } & \sum_{i: x_{i} \neq y_{i}}\left\langle w^{(x, i)} \mid w^{(y, i)}\right\rangle=\mathbf{1}_{f(x) \neq f(y)} \quad \forall x, y
\end{aligned}
$$

The goal of this problem is to show that the above program is equivalent to the next one (which may come in handy in Problems 3 and 4):

$$
\begin{aligned}
\operatorname{Adv}^{\star}(f)=\min _{\left\{w^{(x, i)}\right\}} & \sqrt{C_{0} C_{1}} \\
\text { s.t. } & C_{0}=\max _{x: f(x)=0} \sum_{i}\left\|w^{(x, i)}\right\|^{2} \\
& C_{1}=\max _{x: f(x)=1} \sum_{i}\left\|w^{(x, i)}\right\|^{2} \\
& \sum_{i: x_{i} \neq y_{i}}\left\langle w^{(x, i)} \mid w^{(y, i)}\right\rangle=1 \quad \forall x, y, f(x) \neq f(y)
\end{aligned}
$$

Question 1. Show that $\operatorname{Adv}^{\star}(f) \leq \operatorname{Adv}(f)$.
Question 2. Let $\left\{w^{(x, i)}\right\}$ be a feasible solution to the first program. Define $C_{0}=\max _{x: f(x)=0} \sum_{i}\left\|w^{(x, i)}\right\|^{2}$ and $C_{1}=\max _{x: f(x)=1} \sum_{i}\left\|w^{(x, i)}\right\|^{2}$ (the solution has value $\max \left\{C_{0}, C_{1}\right\}$). Show that there exists another feasible solution to the same program of value $\sqrt{C_{0} C_{1}}$.
Question 3. Let $\left\{w^{(x, i)}\right\}$ be a feasible solution to the second program. Define $\left|v^{(x, i)}\right\rangle=$ $\left|w^{(x, i)}\right\rangle\left|x_{i} \oplus f(x)\right\rangle$. Show that it satisfies $\sum_{i: x_{i} \neq y_{i}}\left\langle v^{(x, i)} \mid v^{(y, i)}\right\rangle=\mathbf{1}_{f(x) \neq f(y)}$ for all x, y.

Question 4. Conclude that $\operatorname{Adv}^{\star}(f)=\operatorname{Adv}(f)$.

Problem 2 (Connectivity)

Consider the function Connectivity : $\{0,1\}\binom{n}{2} \rightarrow\{0,1\}$ whose quantum query complexity was shown to be $\Omega\left(n^{3 / 2}\right)$ in the last problem session. The goal of this problem is to give a matching upper bound by constructing a feasible solution to the dual adversary program.

We start with the easier-to-analyze $s t$-Connectivity problem where the goal is to decide if there exists a path between two given vertices s and t. Without loss of generality, we fix $s=1$ and $t \in\{2, \ldots, n\}$.

Let $V_{x}(v) \subseteq\{1, \ldots, n\}$ denote the set of vertices that belong to the same connected component as vertex $v \in\{1, \ldots, n\}$ in graph $x \in\{0,1\} \begin{gathered}\binom{n}{2}\end{gathered}$. The st-Connectivity problem asks to decide if $t \in V_{x}(s)$. Define \mathcal{G}_{0} as the set of graphs that are not st-connected, and \mathcal{G}_{1} as the graphs that are st-connected. For each edge query $\{i, j\} \in\binom{n}{2}$, a vector $\left|w^{(x,\{i, j\})}\right\rangle \in \operatorname{span}\{|k\rangle: 1 \leq k \leq n\}$ for the dual adversary program is chosen as follows.
If $x \in \mathcal{G}_{0}$ then:

$$
\left|w^{(x,\{i, j\})}\right\rangle= \begin{cases}|i\rangle-|j\rangle & \text { if } i \in V_{x}(1) \text { and } j \notin V_{x}(1) \\ 0 & \text { otherwise }\end{cases}
$$

If $x \in \mathcal{G}_{1}$ then fix any shortest length $s t$-path in x and define:

$$
\left|w^{(x,\{i, j\})}\right\rangle= \begin{cases}0 & \text { if }\{i, j\} \text { is not an edge on that path } \\ |i\rangle & \text { if }\{i, j\} \text { is an edge on the path and } i \text { is visited first (coming from } s \text {) }\end{cases}
$$

Question 1. Show that for all $x \in \mathcal{G}_{0}, y \in \mathcal{G}_{1}$ we have $\sum_{\{i, j\}: x_{\{i, j\}} \neq y_{\{i, j\}}}\left\langle w^{(x,\{i, j\})} \mid w^{(y,\{i, j\})}\right\rangle=1$.
Question 2. Modify the above construction to show that Q (Connectivity) $=O\left(n^{3 / 2}\right)$. As a hint, observe that a graph is connected if and only if it is st-connected for $s=1$ and all $t \in\{2, \ldots, n\}$.
(1) The above algorithm uses only $O(\log n)$ qubits of memory ${ }^{1}$. This is in contrast to an older quantum algorithm ${ }^{2}$ that required $O(n \log n)$ space.

Problem 3 (Composition)

Given two functions $f:\{0,1\}^{n} \rightarrow\{0,1\}$ and $g:\{0,1\}^{m} \rightarrow\{0,1\}$, define their composition $f \bullet g:\{0,1\}^{n \times m} \rightarrow\{0,1\}$ as $f \bullet g(X)=f\left(g\left(X_{1,1}, \ldots, X_{1, m}\right), \ldots, g\left(X_{n, 1}, \ldots, X_{n, m}\right)\right)$. A striking property of the adversary method is that $\operatorname{Adv}(f \bullet g)=\operatorname{Adv}(f) \operatorname{Adv}(g)$. This problem studies some parts of the proof of this result.

Question 1. Show that $\operatorname{Adv}(f \bullet g) \leq \operatorname{Adv}(f) \operatorname{Adv}(g)$.
Hint: Take any dual adversary solutions $\left\{w_{f}^{(x, i)}\right\}$ and $\left\{w_{g}^{(x, j)}\right\}$ for f and g respectively, and consider $\left|w_{f \bullet g}^{(X,(i, j)}\right\rangle=\left|w_{f}^{\left(\left(\left(g\left(X_{1}\right), \ldots, g\left(X_{n}\right)\right), i\right)\right.}\right\rangle\left|w_{g}^{\left(X_{i}, j\right)}\right\rangle$.
Question 2. Suppose that f is the OR function. Show that $\operatorname{Adv}(f \bullet g) \geq \sqrt{n} \cdot \operatorname{Adv}(g)$.
Hint: Start from a primal adversary solution Γ for g and construct a primal adversary solution for $f \bullet g$.

[^0]
[^0]: 1 "Span Programs and Quantum Algorithms for st-Connectivity and Claw Detection". A. Belovs and B. Reichardt. Proc. of ESA, 2012. "Span-Program-Based Quantum Algorithms for Graph Bipartiteness and Connectivity". A. Āriņš. Proc. of MEMICS, 2015.

 2 "Quantum Query Complexity of Some Graph Problems". C. Dürr, M. Heiligman, P. Høyer, M. Mhalla. SICOMP, 2006.

