Quantum Query Complexity

PCMI Graduate Summer School 2023 Instructor: Yassine Hamoudi. Teaching assistant: Angelos Pelecanos. Course page: https://yassine-hamoudi.github.io/pcmi2023/

Problem Session 1

Basics of query complexity & The hybrid method

Problem 1 (Miscellaneous)

Question 1. Define $R_{\epsilon}(f)$ (resp. $Q_{\epsilon}(f)$) to be the smallest number of queries that a randomized (resp. quantum) algorithm has to do to be correct with probability at least $1 - \epsilon$ on all inputs. Show that $R_{\epsilon}(f) \leq O(R(f)\log(1/\epsilon))$ and $Q_{\epsilon}(f) \leq O(Q(f)\log(1/\epsilon))$.

Question 2. Propose a way of extending the quantum query model to inputs $x \in \{0, \ldots, m-1\}^n$ over a larger alphabet of size m > 2.

Problem 2 (Parity)

This problem studies the quantum query complexity of the PARITY function. One may use the Hadamard transform H defined as $H|b\rangle = \frac{|0\rangle + (-1)^b|1\rangle}{\sqrt{2}}$ for $b \in \{0, 1\}$.

Question 1. Define the *phase query* operator as the unitary O_x^{\pm} such that $O_x^{\pm}|i,b\rangle = (-1)^{b \cdot x_i}|i,b\rangle$ for all $1 \leq i \leq n$ and $b \in \{0,1\}$. Let $Q^{\pm}(f)$ denote the corresponding query complexity of a function f, where O_x has been replaced with O_x^{\pm} in the model. Show that $Q^{\pm}(f) = Q(f)$.

Question 2. Construct a quantum algorithm that compute the 2-bit function $f(x_1, x_2) = x_1 \oplus x_2$ with 1 query. Conclude that $Q(\text{PARITY}) \leq n/2$.

We will see later in the course that $Q(\text{PARITY}) = \Omega(n)$. Currently, the hybrid method would only give $Q(\text{PARITY}) = \Omega(\sqrt{n})$.

Problem 3 (Block sensitivity)

The block sensitivity bs(f) of a function $f : \{0,1\}^n \to \{0,1\}$ is the largest number k such that there exists an input $x \in \{0,1\}^n$ and k disjoint subsets $B_1, \ldots, B_k \subseteq \{1,\ldots,n\}$ satisfying $f(x^{B_j}) \neq f(x)$ for all $1 \leq j \leq n$, where $x^{B_j} \in \{0,1\}^n$ is defined by $x_i^{B_j} = 1 - x_i$ when $i \in B_j$ and $x_i^{B_j} = x_i$ otherwise.

Question 1. Compute bs(f) for the OR, AND, PARITY and MAJORITY functions.

Question 2. Show the lower bound $R(f) = \Omega(bs(f))$ on the randomized query complexity.

Question 3. Use the hybrid method to show that $Q(f) = \Omega(\sqrt{\operatorname{bs}(f)})$.

The goal of the next questions is to upper bound the deterministic query complexity D(f) in terms of the block sensitivity.

Question 4.1. We say that $B \subseteq \{1, ..., n\}$ is a minimal sensitive block for $x \in \{0, 1\}^n$ if $f(x^B) \neq f(x)$ and $f(x^{B'}) = f(x)$ for all proper subsets $B' \subsetneq B$. Show that any minimal sensitive block B for x must satisfy $f(x^B) \neq f(x^{B \setminus \{i\}})$ for all $i \in B$ and conclude that $|B| \leq bs(f)$.

Question 4.2. We say that $C \subseteq \{1, ..., n\}$ is a *certificate* for $x \in \{0, 1\}^n$ if for all $y \in \{0, 1\}^n$ that agrees with x on C (i.e. $x_i = y_i$ for all $i \in C$) we have f(x) = f(y). Show that for each x there exists some certificate C_x of size at most $|C_x| \leq bs(f)^2$.

Question 4.3. Let $C^{(0)} = \{C_y : y \in \{0,1\}^n, f(y) = 0\}$ and $C^{(1)} = \{C_y : y \in \{0,1\}^n, f(y) = 1\}$. Consider the following algorithm:

repeat until $C^{(0)} = \emptyset$ or $C^{(1)} = \emptyset$: choose any $C_y \leftarrow C^{(0)}$ query x_i for all $i \in C_y$ remove from $C^{(0)}$ and $C^{(1)}$ all the sets C_z where $z_i \neq x_i$ for some $i \in C_y$ if $C^{(0)} = \emptyset$ then output 1 else output 0

Show that the algorithm outputs f(x) and terminates after at most $bs(f)^2$ repetitions.

Question 4.4. Conclude that $D(f) = O(bs(f)^4)$ and $Q(f) \le D(f) = O(Q(f)^8)$ for any function $f : \{0, 1\}^n \to \{0, 1\}.$

0

One can improve the above arguments to show that $^{1,2} D(f) = O(bs(f)^3)$ and $D(f) = O(Q(f)^4)$. It is a major open problem to show whether $D(f) = O(bs(f)^2)$.

These results do not hold for *partial* functions $f : D \to \{0, 1\}$ whose domain is a proper subset $D \subsetneq \{0, 1\}^n$. In that case, the gap between D(f) and Q(f) can be exponential³.

¹ "Quantum Lower Bounds by Polynomials". R. Beals, H. Buhrman, R. Cleve, M. Mosca, R. de Wolf. J. ACM, 2001.

² "Degree vs. Approximate Degree and Quantum Implications of Huang's Sensitivity Theorem". S. Aaronson, S. Ben-David, R. Kothari, S. Rao, A. Tal. *Proc. of STOC*, 2021.

³ "Forrelation: A Problem that Optimally Separates Quantum from Classical Computing". S. Aaronson, A. Ambainis. *SICOMP*, 2018.