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Problem Session 1

Basics of query complexity & The hybrid method

Problem 1 (Miscellaneous)

Question 1. Define Rϵ(f) (resp. Qϵ(f)) to be the smallest number of queries that a randomized

(resp. quantum) algorithm has to do to be correct with probability at least 1− ϵ on all inputs.

Show that Rϵ(f) ≤ O(R(f) log(1/ϵ)) and Qϵ(f) ≤ O(Q(f) log(1/ϵ)).

Question 2. Propose a way of extending the quantum query model to inputs x ∈ {0, . . . ,m−1}n

over a larger alphabet of size m > 2.

Problem 2 (Parity)

This problem studies the quantum query complexity of the Parity function. One may use the

Hadamard transform H defined as H|b⟩ = |0⟩+(−1)b|1⟩√
2

for b ∈ {0, 1}.

Question 1. Define the phase query operator as the unitaryO±
x such thatO±

x |i, b⟩ = (−1)b·xi |i, b⟩
for all 1 ≤ i ≤ n and b ∈ {0, 1}. Let Q±(f) denote the corresponding query complexity of a

function f , where Ox has been replaced with O±
x in the model. Show that Q±(f) = Q(f).

Question 2. Construct a quantum algorithm that compute the 2-bit function f(x1, x2) = x1⊕x2
with 1 query. Conclude that Q(Parity) ≤ n/2.

We will see later in the course that Q(Parity) = Ω(n). Currently, the hybrid method would

only give Q(Parity) = Ω(
√
n).
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Problem 3 (Block sensitivity)

The block sensitivity bs(f) of a function f : {0, 1}n → {0, 1} is the largest number k such

that there exists an input x ∈ {0, 1}n and k disjoint subsets B1, . . . , Bk ⊆ {1, . . . , n} satisfying
f(xBj ) ̸= f(x) for all 1 ≤ j ≤ n, where xBj ∈ {0, 1}n is defined by x

Bj

i = 1 − xi when i ∈ Bj

and x
Bj

i = xi otherwise.

Question 1. Compute bs(f) for the OR, AND, Parity and Majority functions.

Question 2. Show the lower bound R(f) = Ω(bs(f)) on the randomized query complexity.

Question 3. Use the hybrid method to show that Q(f) = Ω(
√

bs(f)).
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The goal of the next questions is to upper bound the deterministic query complexity D(f) in

terms of the block sensitivity.

Question 4.1. We say that B ⊆ {1, . . . , n} is a minimal sensitive block for x ∈ {0, 1}n if

f(xB) ̸= f(x) and f(xB
′
) = f(x) for all proper subsets B′ ⊊ B. Show that any minimal sensitive

block B for x must satisfy f(xB) ̸= f(xB\{i}) for all i ∈ B and conclude that |B| ≤ bs(f).

Question 4.2. We say that C ⊆ {1, . . . , n} is a certificate for x ∈ {0, 1}n if for all y ∈ {0, 1}n

that agrees with x on C (i.e. xi = yi for all i ∈ C) we have f(x) = f(y). Show that for each x

there exists some certificate Cx of size at most |Cx| ≤ bs(f)2.

Question 4.3. Let C(0) = {Cy : y ∈ {0, 1}n, f(y) = 0} and C(1) = {Cy : y ∈ {0, 1}n, f(y) = 1}.
Consider the following algorithm:

repeat until C(0) = ∅ or C(1) = ∅:
choose any Cy ← C(0)

query xi for all i ∈ Cy

remove from C(0) and C(1) all the sets Cz where zi ̸= xi for some i ∈ Cy

if C(0) = ∅ then output 1 else output 0

Show that the algorithm outputs f(x) and terminates after at most bs(f)2 repetitions.

Question 4.4. Conclude thatD(f) = O(bs(f)4) and Q(f) ≤ D(f) = O(Q(f)8) for any function

f : {0, 1}n → {0, 1}.

One can improve the above arguments to show that1,2 D(f) = O(bs(f)3) and D(f) =

O(Q(f)4). It is a major open problem to show whether D(f) = O(bs(f)2).

These results do not hold for partial functions f : D → {0, 1} whose domain is a proper

subset D ⊊ {0, 1}n . In that case, the gap between D(f) and Q(f) can be exponential3.
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