Quantum Query Complexity

PCMI Graduate Summer School 2023
Instructor: Yassine Hamoudi. Teaching assistant: Angelos Pelecanos.
Course page: https://yassine-hamoudi.github.io/pcmi2023/

Problem Session 1

Basics of query complexity \& The hybrid method

Problem 1 (Miscellaneous)

Question 1. Define $R_{\epsilon}(f)$ (resp. $Q_{\epsilon}(f)$) to be the smallest number of queries that a randomized (resp. quantum) algorithm has to do to be correct with probability at least $1-\epsilon$ on all inputs. Show that $R_{\epsilon}(f) \leq O(R(f) \log (1 / \epsilon))$ and $Q_{\epsilon}(f) \leq O(Q(f) \log (1 / \epsilon))$.

Question 2. Propose a way of extending the quantum query model to inputs $x \in\{0, \ldots, m-1\}^{n}$ over a larger alphabet of size $m>2$.

Problem 2 (Parity)

This problem studies the quantum query complexity of the Parity function. One may use the Hadamard transform H defined as $H|b\rangle=\frac{|0\rangle+(-1)^{b}|1\rangle}{\sqrt{2}}$ for $b \in\{0,1\}$.
Question 1. Define the phase query operator as the unitary $O_{x}^{ \pm}$such that $O_{x}^{ \pm}|i, b\rangle=(-1)^{b \cdot x_{i}}|i, b\rangle$ for all $1 \leq i \leq n$ and $b \in\{0,1\}$. Let $Q^{ \pm}(f)$ denote the corresponding query complexity of a function f, where O_{x} has been replaced with $O_{x}^{ \pm}$in the model. Show that $Q^{ \pm}(f)=Q(f)$.

Question 2. Construct a quantum algorithm that compute the 2-bit function $f\left(x_{1}, x_{2}\right)=x_{1} \oplus x_{2}$ with 1 query. Conclude that Q (Parity) $\leq n / 2$.

We will see later in the course that Q (Parity) $=\Omega(n)$. Currently, the hybrid method would only give Q (Parity) $=\Omega(\sqrt{n})$.

Problem 3 (Block sensitivity)

The block sensitivity $\operatorname{bs}(f)$ of a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is the largest number k such that there exists an input $x \in\{0,1\}^{n}$ and k disjoint subsets $B_{1}, \ldots, B_{k} \subseteq\{1, \ldots, n\}$ satisfying $f\left(x^{B_{j}}\right) \neq f(x)$ for all $1 \leq j \leq n$, where $x^{B_{j}} \in\{0,1\}^{n}$ is defined by $x_{i}^{B_{j}}=1-x_{i}$ when $i \in B_{j}$ and $x_{i}^{B_{j}}=x_{i}$ otherwise.

Question 1. Compute bs (f) for the OR, AND, Parity and Majority functions.
Question 2. Show the lower bound $R(f)=\Omega(\mathrm{bs}(f))$ on the randomized query complexity.
Question 3. Use the hybrid method to show that $Q(f)=\Omega(\sqrt{\mathrm{bs}(f)})$.

The goal of the next questions is to upper bound the deterministic query complexity $D(f)$ in terms of the block sensitivity.

Question 4.1. We say that $B \subseteq\{1, \ldots, n\}$ is a minimal sensitive block for $x \in\{0,1\}^{n}$ if $f\left(x^{B}\right) \neq f(x)$ and $f\left(x^{B^{\prime}}\right)=f(x)$ for all proper subsets $B^{\prime} \subsetneq B$. Show that any minimal sensitive block B for x must satisfy $f\left(x^{B}\right) \neq f\left(x^{B \backslash\{i\}}\right)$ for all $i \in B$ and conclude that $|B| \leq \operatorname{bs}(f)$.

Question 4.2. We say that $C \subseteq\{1, \ldots, n\}$ is a certificate for $x \in\{0,1\}^{n}$ if for all $y \in\{0,1\}^{n}$ that agrees with x on C (i.e. $x_{i}=y_{i}$ for all $i \in C$) we have $f(x)=f(y)$. Show that for each x there exists some certificate C_{x} of size at most $\left|C_{x}\right| \leq \operatorname{bs}(f)^{2}$.
Question 4.3. Let $C^{(0)}=\left\{C_{y}: y \in\{0,1\}^{n}, f(y)=0\right\}$ and $C^{(1)}=\left\{C_{y}: y \in\{0,1\}^{n}, f(y)=1\right\}$. Consider the following algorithm:

```
repeat until \(C^{(0)}=\varnothing\) or \(C^{(1)}=\varnothing\) :
    choose any \(C_{y} \leftarrow C^{(0)}\)
    query \(x_{i}\) for all \(i \in C_{y}\)
    remove from \(C^{(0)}\) and \(C^{(1)}\) all the sets \(C_{z}\) where \(z_{i} \neq x_{i}\) for some \(i \in C_{y}\)
if \(C^{(0)}=\varnothing\) then output 1 else output 0
```

Show that the algorithm outputs $f(x)$ and terminates after at most $\mathrm{bs}(f)^{2}$ repetitions.
Question 4.4. Conclude that $D(f)=O\left(\operatorname{bs}(f)^{4}\right)$ and $Q(f) \leq D(f)=O\left(Q(f)^{8}\right)$ for any function $f:\{0,1\}^{n} \rightarrow\{0,1\}$.

One can improve the above arguments to show that ${ }^{1,2} D(f)=O\left(\operatorname{bs}(f)^{3}\right)$ and $D(f)=$ $O\left(Q(f)^{4}\right)$. It is a major open problem to show whether $D(f)=O\left(\operatorname{bs}(f)^{2}\right)$.

These results do not hold for partial functions $f: D \rightarrow\{0,1\}$ whose domain is a proper subset $D \subsetneq\{0,1\}^{n}$. In that case, the gap between $D(f)$ and $Q(f)$ can be exponential ${ }^{3}$.

[^0]
[^0]: ${ }^{1}$ "Quantum Lower Bounds by Polynomials". R. Beals, H. Buhrman, R. Cleve, M. Mosca, R. de Wolf. J. ACM, 2001.

 2 "Degree vs. Approximate Degree and Quantum Implications of Huang's Sensitivity Theorem". S. Aaronson, S. Ben-David, R. Kothari, S. Rao, A. Tal. Proc. of STOC, 2021.
 ${ }^{3}$ "Forrelation: A Problem that Optimally Separates Quantum from Classical Computing". S. Aaronson, A. Ambainis. SICOMP, 2018.

