
Quantum query complexity

Lecture 4
The adversary method

Materials: https://yassine-hamoudi.github.io/pcmi2023/ 



Focus of this lecture

• A lower bound method that is always optimal

   > We’ll show in lecture 5 how to turn it into an algorithm

   > Counterpart: often harder to use

• It shares some ideas with the hybrid method (lecture 1) and 
the recording method (lecture 3)


   (in fact: these can be seen as particular cases of it)

The (generalized) adversary method



Reminders

The states  and  can be distinguished with probability  
if an only if there are “sufficiently orthogonal” 
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The purification viewpoint (lecture 3)

The distinguishing lemma (lecture 1)

We can set a distribution  on the input by adding a purification register(px)x
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Quantum adversary
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First step: replace  with complex numbers  s.t. (px)x (ax)x ∑x
|ax |2 = 1
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Second step: consider the Gram matrix:
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Third step: place some weights  on the “hard” pairs of inputsΓx,y
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Γx,y = Γy,x(symmetric)

if  then f(x) = f(y) Γx,y = 0(consistent)

First step: replace  with complex numbers  s.t. (px)x (ax)x ∑x
|ax |2 = 1



Lemma 1: Δ0 = ∥Γ∥ (initial condition)

Lemma 2:  if the algorithm succeeds wpΔT < 0.95∥Γ∥ ≥ 2/3 (final condition)

Lemma 3: Δt+1 ≥ Δt−2 max
1≤i≤n

∥Γi∥ (evolution)

Adversary matrix:   symmetric and  Γ ∈ ℝ2n×2n f(x) = f(y) ⇒ Γx,y = 0

Δt = |⟨ψ t | (Γ ⊗ Id) |ψ t⟩ | = ∑
x,y

Γx,ya*x ay⟨ψ t
x |ψ t

y⟩Progress measure:

  such that  Γi ∈ ℝ2n×2n (Γi)x,y = Γx,y ⋅ 1xi≠yi“Punctured” matrices:

  principal (unit) eigenvector of a ∈ ℂ2n ΓAdversary distribution:



Theorem: Q( f ) ≥ max
Γ

∥Γ∥
40 ⋅ max1≤i≤n ∥Γi∥

• Positive-weight adversary: ∀x, y, Γx,y ≥ 0
- Has a nice combinatorial interpretation (see problem session)

- Sub-optimal (the “certificate” and “property testing” barriers)

• Negative-weight adversary: ∀x, y, Γx,y ∈ ℝ

- Optimal! (see next lecture) Q( f ) = Θ(max
Γ

∥Γ∥
max1≤i≤n ∥Γi∥ )



Applications



OR function:   if and only if f(x) = 0 x = (0,0,…,0)

We (again) only focus on the  “hardest” inputs denoted by:n + 1

0⃗ = (0,0,…,0) 1⃗ = (1,0,…,0) 2⃗ = (0,1,0,…,0) ⃗n = (0,0,…,1)…
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∥Γi∥ = 1∥Γ∥ = n ⇒ Q(OR) ≥ n /40


