Quantum query complexity

Lecture 4

The adversary method

Materials: https://yassine-hamoudi.github.io/pcmi2023/

Focus of this lecture

The (generalized) adversary method

- A lower bound method that is always optimal
> We'll show in lecture 5 how to turn it into an algorithm
> Counterpart: often harder to use
- It shares some ideas with the hybrid method (lecture 1) and the recording method (lecture 3)
(in fact: these can be seen as particular cases of it)

Reminders

The distinguishing lemma (lecture 1)
The states $\left|\psi_{x}^{T}\right\rangle$ and $\left|\psi_{y}^{T}\right\rangle$ can be distinguished with probability $\geq 2 / 3$ if an only if there are "sufficiently orthogonal" $\left|\left\langle\psi_{x}^{T} \mid \psi_{y}^{T}\right\rangle\right| \leq 2 \sqrt{2} / 3$

The purification viewpoint (lecture 3)

We can set a distribution $\left(p_{x}\right)_{x}$ on the input by adding a purification register

Quantum adversary

First step: replace $\left(p_{x}\right)_{x}$ with complex numbers $\left(a_{x}\right)_{x}$ s.t. $\sum_{x}\left|a_{x}\right|^{2}=1$

$$
\left|\psi^{\prime}\right\rangle=\sum_{x} a_{x}|x\rangle \otimes\left|\psi_{x}^{t}\right\rangle
$$

First step: replace $\left(p_{x}\right)_{x}$ with complex numbers $\left(a_{x}\right)_{x}$ s.t. $\sum_{x}\left|a_{x}\right|^{2}=1$

$$
\left|\psi^{f}\right\rangle=\sum_{x} a_{x}|x\rangle \otimes\left|\psi_{x}^{t}\right\rangle
$$

Second step: consider the Gram matrix:

$$
\sum_{x, y} a_{x}^{*} a_{y}\left\langle\left\langle\psi_{x}^{t} \mid \psi_{y}^{t}\right\rangle \mid x\right\rangle\langle y|
$$

Third step: place some weights $\Gamma_{x, y}$ on the "hard" pairs of inputs

$$
\text { (symmetric) } \quad \Gamma_{x, y}=\Gamma_{y, x}
$$

(consistent) if $f(x)=f(y)$ then $\Gamma_{x, y}=0$

Adversary matrix: $\quad \Gamma \in \mathbb{R}^{2^{n} \times 2^{n}}$ symmetric and $f(x)=f(y) \Rightarrow \Gamma_{x, y}=0$
Adversary distribution: $a \in \mathbb{C}^{2^{n}}$ principal (unit) eigenvector of Γ
"Punctured" matrices: $\quad \Gamma_{i} \in \mathbb{R}^{2^{n} \times 2^{n}}$ such that $\left(\Gamma_{i}\right)_{x, y}=\Gamma_{x, y} \cdot \mathbf{1}_{x_{i} \neq y_{i}}$
Progress measure: $\left.\quad \Delta_{t}=\left|\left\langle\psi^{t}\right|(\Gamma \otimes \mathrm{Id})\right| \psi^{t}\right\rangle\left|=\left|\sum_{x, y} \Gamma_{x, y} a_{x}^{*} a_{y}\left\langle\psi_{x}^{t} \mid \psi_{y}^{t}\right\rangle\right|\right.$
Lemma 1: $\Delta_{0}=\|\Gamma\|$
(initial condition)
Lemma 2: $\Delta_{T}<0.95\|\Gamma\|$ if the algorithm succeeds wp $\geq 2 / 3$
(final condition)
Lemma 3: $\Delta_{t+1} \geq \Delta_{t}-2 \max _{1<i<n}\left\|\Gamma_{i}\right\|$
(evolution)

Theorem: $Q(f) \geq \max _{\Gamma} \frac{\|\Gamma\|}{40 \cdot \max _{1 \leq i \leq n}\left\|\Gamma_{i}\right\|}$

- Positive-weight adversary: $\forall x, y, \Gamma_{x, y} \geq 0$
- Has a nice combinatorial interpretation (see problem session)
- Sub-optimal (the "certificate" and "property testing" barriers)
- Negative-weight adversary: $\forall x, y, \Gamma_{x, y} \in \mathbb{R}$
- Optimal! (see next lecture) $Q(f)=\Theta\left(\max _{\Gamma} \frac{\|\Gamma\|}{\max _{1 \leq i \leq n}\left\|\Gamma_{i}\right\|}\right)$

Applications

OR function: $f(x)=0$ if and only if $x=(0,0, \ldots, 0)$
We (again) only focus on the $n+1$ "hardest" inputs denoted by:

$$
\begin{aligned}
& \overrightarrow{0}=(0,0, \ldots, 0) \quad \overrightarrow{1}=(1,0, \ldots, 0) \quad \overrightarrow{2}=(0,1,0, \ldots, 0) \quad \ldots \quad \vec{n}=(0,0, \ldots, 1) \\
& \Gamma=\left(\begin{array}{cccc}
\overrightarrow{0} & \overrightarrow{1} & \ldots & \vec{n} \\
0 & 1 & \ldots & 1 \\
1 & 0 & \ldots & 0 \\
\vdots & \vdots & & \vdots \\
1 & 0 & \ldots & 0
\end{array}\right) \overrightarrow{0} \vec{n} \\
& \Gamma_{i}=\left(\begin{array}{cccccccc}
0 & \ldots & \vec{i} & & & \\
0 & \ldots & 0 & 1 & 0 & \ldots & 0 \\
0 & 0 & \ldots & \ldots & \cdots & \ldots & 0 \\
1 & 1 & & & & \vdots \\
0 & & & & & \vdots \\
\vdots & \vdots & & & & \vdots \\
0 & 0 & \ldots & \ldots . & \ldots & \ldots & 0
\end{array}\right) \vec{i} \\
& \text { (omitting the other } 0 \text {-entries) } \\
& \|\Gamma\|=\sqrt{n} \\
& \left\|\Gamma_{i}\right\|=1 \quad \Rightarrow Q(\mathrm{OR}) \geq \sqrt{n} / 40
\end{aligned}
$$

