
Quantum query complexity

Lecture 1
Introduction & The hybrid method

Materials: https://yassine-hamoudi.github.io/pcmi2023/ 



Focus of this course

A lower bound statement:

Proving that quantum algorithms cannot be too fast

“Any quantum algorithm that solves problem  must run in time at least  ”X T

1/ Formalizing the model of computation Quantum query model

Challenges:

2/ Finding methods for proving lower bounds



Why should we care about lower bounds?

• Understand the limits of quantum algorithms

➡  For which problems is it hopeless to find efficient algorithms?


• Design security proofs in cryptography

➡  Which protocols take a long time to break, even by quantum adversaries?


• Can give insights into new algorithms   (cf Lecture 5)

Focus of this course



The quantum query model



We only count the number of queries to the input 

(the internal computation of the algorithm is “for free”).

Input

(a.k.a. decision tree complexity)
Classical query complexity

x1 x2 xnx3 …

Algorithm

queries



x1 < x2?

We can model the computation by a decision tree:

yes no

x2 < x3?
yes no

(1,2,3) x1 < x3?

x3 < x1?

yes no

(1,3,2) (3,1,2)

yes no

(2,1,3)x2 < x3?
yes no

(2,3,1) (3,2,1)

Height = 

query complexity 

of that algorithm 

(a.k.a. decision tree complexity)
Classical query complexity

Sorting 3 numbers using comparison queries



Example: Any classical sorting algorithm must do  comparison queries.Ω(n log n)

• This is often the “right model” to capture the difficulty of a problem

(a.k.a. decision tree complexity)
Classical query complexity

• The queries give us a grasp on what the algorithm has learnt about the input



For (most of) the course we will focus on computing boolean functions

f : {0,1}n → {0,1}
with Boolean evaluation queries

i ↦ xi

on -bit inputs .n x ∈ {0,1}n

Examples:
OR:   if and only if f(x) = 0 x = (0,0,…,0)
PARITY:  f(x) = x1 ⊕ … ⊕ xn

MAJORITY:   if and only if f(x) = 1 x1 + … + xn ≥ n/2

j ?
xj = 1

f(x)

…

i ?

xj = 0

xi = 1 xi = 0

… …



(a.k.a. decision tree complexity)
Classical query complexity

Deterministic query complexity

• We say that a decision tree computes   if for all  
its evaluation path ends at a leaf labeled by  .

f : {0,1}n → {0,1} x ∈ {0,1}n

f(x)

• The deterministic query complexity  of   is the smallest 
height over the decision trees computing  .

D( f ) f : {0,1}n → {0,1}
f

Fact: D( f ) ≤ n



(a.k.a. decision tree complexity)
Classical query complexity

Randomized query complexity

The algorithm has access to randomness and is allowed for a small error probability.

Definition 1

Decision tree + coin nodes

… …
Proba. 1/2 Proba. 1/2

Definition 2

Fix all the randomness “in advance”

= 1/ Fix a (deterministic) decision tree  for 

each random seed 

Dr

r ∈ {0,1}*
2/ On input , sample  and run 

the corresponding decision tree 
x r ∼ {0,1}*

Dr



(a.k.a. decision tree complexity)
Classical query complexity

Randomized query complexity

• We say that a randomized decision tree computes    if for all  its evaluation path 
ends at a leaf labeled by   with probability at least .

f x
f(x) 2/3

• The randomized query complexity  of   is the smallest height over the 
randomized decision trees computing  .

R( f ) f
f

Fact: R( f ) ≤ D( f ) ≤ n



We use the circuit model instead of the decision tree formalism.

Quantum query complexity

Ox
| i⟩
|0⟩

| i⟩
|xi⟩

OxU0 OxU1 Ox UT Output
|0⟩
|0⟩

  are arbitrary unitary operators that don’t depend on the input U0, …, UT x

 is the oracle gate:Ox Ox
| i⟩
|1⟩

| i⟩
|1 ⊕ xi⟩

Ox | i, b⟩ = | i, b ⊕ xi⟩



Technically,  could act on a larger Hilbert space:U0, …, UT

Quantum query complexity

Ox Ox Ox
|0⟩
|0⟩

We omit this aspect of the model in the lectures (easy to handle)

Extra 

workspace

|0⟩
|0⟩

|0⟩
⋮

U0 U1 UT

Output

(In fact, finding lower bounds that are sensitive to the workspace size is a major research problem)



Quantum query complexity

• We say that a quantum circuit computes    if for all  it outputs   with 
probability at least .

f x f(x)
2/3

• The quantum query complexity  of    is the smallest number of oracle 
gates over the quantum circuits computing  .

Q( f ) f
f

Fact: Q( f ) ≤ R( f ) ≤ D( f ) ≤ n



Adversary methodsPolynomial methods

Hybrid

Positive

Negative

Multiplicative
Laurent polynomials

Symmetrization

Recording

Two main families of quantum lower bounds

Dual polynomials Spectral

… …

Lecture 1

Lecture 2

Lecture 3

Lectures 4-5

Completely bounded forms



The hybrid method



Ox
| i⟩
|b⟩

| i⟩
|b ⊕ xi⟩

|ψ t
x⟩ = UtOxUt−1Ox…U0 |0,0⟩

Fix  and denote the state of the algorithm after  queries to  :x ∈ {0,1}n t x

|ψ0
x ⟩ |ψ1

x ⟩ |ψT
x ⟩

Intuition 1: if   then  should be far from f(x) ≠ f(y) |ψT
x ⟩ |ψT

y ⟩

Intuition 2: distinguishing  from  requires querying some indices where x y xi ≠ yi

OxU0 OxU1 Ox UT Output
|0⟩
|0⟩



qt
i = ∥( | i⟩⟨i | ⊗ Id) |ψ t

0⃗
⟩ |∥2

We define the query weight on index  at time  to be:i t

In the proof, we only focus on the  “hardest” inputs denoted by:n + 1

OR function:   if and only if f(x) = 0 x = (0,0,…,0)

0⃗ = (0,0,…,0) 1⃗ = (1,0,…,0) 2⃗ = (0,1,0,…,0) ⃗n = (0,0,…,1)…

|ψ t
x⟩ = UtOxUt−1Ox…U0 |0,0⟩

Ox
| i⟩
|b⟩

| i⟩
|b ⊕ xi⟩

OxU0 OxU1 Ox UT Output
|0⟩
|0⟩



qt
i = ∥( | i⟩⟨i | ⊗ Id) |ψ t

0⃗
⟩ |∥2

Lemma 1: ∥|ψ0
0⃗
⟩ − |ψ0

⃗i
⟩∥ = 0 (initial condition)

Lemma 2:  if the algorithm succeeds wp∥|ψT
0⃗
⟩ − |ψT

⃗i
⟩∥ ≥ 1/3 ≥ 2/3 (final condition)

Lemma 3: ∥|ψ t+1
0⃗

⟩ − |ψ t+1
⃗i

⟩∥ ≤ ∥|ψ t
0⃗
⟩ − |ψ t

⃗i
⟩∥ + qt

i
(evolution)

For all :i ≠ 0

Theorem: Q(OR) ≥ n /3

|ψ t
x⟩ = UtOxUt−1Ox…U0 |0,0⟩

Ox
| i⟩
|b⟩

| i⟩
|b ⊕ xi⟩

OxU0 OxU1 Ox UT Output
|0⟩
|0⟩


