Quantum query complexity

Lecture 1
 Introduction \& The hybrid method

Materials: https://yassine-hamoudi.github.io/pcmi2023/

Focus of this course

Proving that quantum algorithms cannot be too fast

A lower bound statement:
"Any quantum algorithm that solves problem X must run in time at least T "

Challenges:
1/ Formalizing the model of computation
\longleftarrow Quantum query model
2/ Finding methods for proving lower bounds

Focus of this course

Why should we care about lower bounds?

- Understand the limits of quantum algorithms
\Rightarrow For which problems is it hopeless to find efficient algorithms?
- Design security proofs in cryptography
\Rightarrow Which protocols take a long time to break, even by quantum adversaries?
- Can give insights into new algorithms (cf Lecture 5)

The quantum query model

Classical query complexity

(a.k.a. decision tree complexity)

We only count the number of queries to the input (the internal computation of the algorithm is "for free").

Classical query complexity

(a.k.a. decision tree complexity)

We can model the computation by a decision tree:

Sorting 3 numbers using comparison queries

Classical query complexity

(a.k.a. decision tree complexity)

- This is often the "right model" to capture the difficulty of a problem

Example: Any classical sorting algorithm must do $\Omega(n \log n)$ comparison queries.

- The queries give us a grasp on what the algorithm has learnt about the input

For (most of) the course we will focus on computing boolean functions

$$
f:\{0,1\}^{n} \rightarrow\{0,1\}
$$

with Boolean evaluation queries

$$
i \mapsto x_{i}
$$

on n-bit inputs $x \in\{0,1\}^{n}$.

Examples:

OR: $f(x)=0$ if and only if $x=(0,0, \ldots, 0)$
PARITY: $f(x)=x_{1} \oplus \ldots \oplus x_{n}$
MAJORITY: $f(x)=1$ if and only if $x_{1}+\ldots+x_{n} \geq n / 2$

Classical query complexity

(a.k.a. decision tree complexity)

Deterministic query complexity

- We say that a decision tree computes $f:\{0,1\}^{n} \rightarrow\{0,1\}$ if for all $x \in\{0,1\}^{n}$ its evaluation path ends at a leaf labeled by $f(x)$.
- The deterministic query complexity $D(f)$ of $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is the smallest height over the decision trees computing f.

Fact: $D(f) \leq n$

Classical query complexity

(a.k.a. decision tree complexity)

Randomized query complexity

The algorithm has access to randomness and is allowed for a small error probability.

Definition 1

Decision tree + coin nodes

Definition 2

Fix all the randomness "in advance"

1/ Fix a (deterministic) decision tree D_{r} for each random seed $r \in\{0,1\}^{*}$

2/ On input x, sample $r \sim\{0,1\}^{*}$ and run the corresponding decision tree D_{r}

Classical query complexity

(a.k.a. decision tree complexity)

Randomized query complexity

- We say that a randomized decision tree computes f if for all x its evaluation path ends at a leaf labeled by $f(x)$ with probability at least $2 / 3$.
- The randomized query complexity $R(f)$ of f is the smallest height over the randomized decision trees computing f.

$$
\text { Fact: } R(f) \leq D(f) \leq n
$$

Quantum query complexity

We use the circuit model instead of the decision tree formalism.

U_{0}, \ldots, U_{T} are arbitrary unitary operators that don't depend on the input x
O_{x} is the oracle gate:

$$
O_{x}|i, b\rangle=\left|i, b \oplus x_{i}\right\rangle
$$

$|i\rangle-\quad O_{x}-|i\rangle$
$|0\rangle-\left|x_{i}\right\rangle$
$|i\rangle$
$|1\rangle-$
$-O_{x}-|i\rangle$
$-\left|1 \oplus x_{i}\right\rangle$

Quantum query complexity

Technically, U_{0}, \ldots, U_{T} could act on a larger Hilbert space:

We omit this aspect of the model in the lectures (easy to handle)
(In fact, finding lower bounds that are sensitive to the workspace size is a major research problem)

Quantum query complexity

- We say that a quantum circuit computes f if for all x it outputs $f(x)$ with probability at least $2 / 3$.
- The quantum query complexity $Q(f)$ of f is the smallest number of oracle gates over the quantum circuits computing f.

Fact: $Q(f) \leq R(f) \leq D(f) \leq n$

Two main families of quantum lower bounds

Polynomial methods

Symmetrization	Lecture 2
Dual polynomials	

Completely bounded forms

Laurent polynomials

Adversary methods

Hybrid	Lecture 1
Positive	
Spectral	Lectures 4-5
Negative	

Multiplicative
Recording | Lecture 3

The hybrid method

Fix $x \in\{0,1\}^{n}$ and denote the state of the algorithm after t queries to x :

$$
\left|\psi_{x}^{t}\right\rangle=U_{t} O_{x} U_{t-1} O_{x} \ldots U_{0}|0,0\rangle
$$

Intuition 1: if $f(x) \neq f(y)$ then $\left|\psi_{x}^{T}\right\rangle$ should be far from $\left|\psi_{y}^{T}\right\rangle$
Intuition 2: distinguishing x from y requires querying some indices where $x_{i} \neq y_{i}$
${ }^{|0\rangle}-U_{0}-O_{x}-U_{1}-O_{x}-\cdots-O_{x}-U_{T}-\searrow$ Output
$|i\rangle$
$|b\rangle-O_{x}-|i\rangle$
$-\left|b \oplus x_{i}\right\rangle$

$$
\left|\psi_{x}^{t}\right\rangle=U_{t} O_{x} U_{t-1} O_{x} \ldots U_{0}|0,0\rangle
$$

OR function: $f(x)=0$ if and only if $x=(0,0, \ldots, 0)$
In the proof, we only focus on the $n+1$ "hardest" inputs denoted by:

$$
\overrightarrow{0}=(0,0, \ldots, 0) \quad \overrightarrow{1}=(1,0, \ldots, 0) \quad \overrightarrow{2}=(0,1,0, \ldots, 0) \quad \ldots \quad \vec{n}=(0,0, \ldots, 1)
$$

We define the query weight on index i at time t to be:

$$
q_{i}^{t}=\|(|i\rangle\langle i| \otimes \mathrm{Id})\left|\psi_{\overrightarrow{0}}^{t}\right\rangle \mid \|^{2}
$$

$$
\left|\psi_{x}^{t}\right\rangle=U_{t} O_{x} U_{t-1} O_{x} \ldots U_{0}|0,0\rangle \quad q_{i}^{t}=\|(|i\rangle\langle i| \otimes \mathrm{Id})\left|\psi_{\overrightarrow{0}}^{t}\right\rangle \mid \|^{2}
$$

For all $i \neq 0$:
Lemma 1: $\|\left|\psi_{\overrightarrow{0}}^{0}\right\rangle-\left|\psi_{\vec{i}}^{0}\right\rangle \|=0$
(initial condition)
Lemma 2: $\|\left|\psi_{\overrightarrow{0}}^{T}\right\rangle-\left|\psi_{\vec{i}}^{T}\right\rangle \| \geq 1 / 3$ if the algorithm succeeds wp $\geq 2 / 3$ (final condition)
Lemma 3: $\left.\|\left|\psi_{\overrightarrow{0}}^{t+1}\right\rangle-\left|\psi_{\vec{i}}^{t+1}\right\rangle\|\leq\|| | \psi_{\overrightarrow{0}}^{t}\right\rangle-\left|\psi_{\vec{i}}^{t}\right\rangle \|+\sqrt{q_{i}^{t}}$
(evolution)
Theorem: $Q(\mathrm{OR}) \geq \sqrt{n} / 3$

