
Extracting RDF triples using the Stanford Parser

Yassine Hamoudi
Ecole Normale Supérieure de Lyon

France
yassine.hamoudi@ens-lyon.fr

Tom Cornebize
Ecole Normale Supérieure de Lyon

France
tom.cornebize@ens-lyon.fr

Abstract

One of the most important tasks in Natural
Language Processing (NLP) theory con-
sists of simplifying sentences in order to
extract their structure and the most rele-
vant information they contain. This paper
presents a method to obtain RDF triples
(subject-predicate-object) from questions
using the Stanford Parser. Our approach is
mainly based on a careful analysis of the
dependency tree produced by the Stanford
Parser. We will also make use of some ex-
tra tools (named-entity recognizer, part-of-
speech tagger, etc). Our algorithms have
been implemented and are part of a query
answering tool1.

1 Introduction

The most common way to find answers on the In-
ternet is to enter keywords in a web search engine
(Google, Baidu, Yahoo!, etc) and to browse the re-
turned results. However, in some cases the user is
looking for a short and precise answer (e.g. “cap-
ital of France”, “birth date of Obama”). Instead
of having to navigate through many web pages, he
could hope to directly obtain the answer whenever
it is possible.

Question Answering over Linked Data theory
tries to tackle this problem. It consists in all the
techniques and algorithms used to automatically
answer questions asked in natural language (e.g.
“What is the capital of France?”). The core of
the process is to map the questions asked by the
users into normal forms that can be easily han-
dled by databases-querying tools. The Resource
Description Framework (RDF) provides a natu-
ral normal form that consists in sets of subject-
predicate-object triples. For instance, the sentence

1http://projetpp.github.io/

“Paris is the capital of France.” can be repre-
sented by the triple: (France, capital, Paris).

Triples with holes stand for the missing infor-
mation required by the question. Thus, the ex-
pected normal form of “What is the capital of
France?” is: (France, capital, ?).

A natural way to map questions into normal
forms is to analyse the grammatical structure of
the sentence. Some algorithms use the concrete
syntax tree (or parse tree) representation to per-
form this task (Rusu et al., 2007; Defazio, 2009).
Another popular representation is the dependency
tree. This structure describes grammatical rela-
tionships between the words of the sentence. Al-
though the dependency tree is often used in Ques-
tion Answering (Zouaq et al., 2006; Zouaq et al.,
2007), algorithms to produce RDF triples from it
are pretty rare and poorly described.

The aim of this paper is to provide a full algo-
rithm that maps questions into RDF triples, mainly
using the dependency tree representation output
by the Stanford Parser (de Marneffe and Manning,
2013). We will focus on factoid wh-questions.
This work was carried out in collaboration with
Projet Pensées Profondes (Deep Thought Project),
a project conducted by seven students that aims
to propose a natural language question answering
framework1 (a demo is available online).

2 Methods

The normal form is obtained by applying some
operations on the dependency tree output by the
Stanford Parser. We detail throughout this section
the different steps of our algorithm and we apply
them on the example:

Where was the president of the United States
born?

http://projetpp.github.io/

ROOT-0

born-9

president-4 Where-1 was-2

the-3 States-8

the-6 United-7

root

nsubjpass advmod auxpass

det prep_of

det nn

Figure 1: Dependency tree of Where was the pres-
ident of the United States born?

2.1 Stanford dependency tree
The Stanford Parser2 is a natural language parser
developed by the Stanford Natural Language Pro-
cessing Group. It is well-documented and consid-
ered as a “state of the art” program. The Stan-
ford Parser provides classical tools of NLP theory
(part-of-speech tagger, named-entity recognizer,
constituency parser, etc.) but also a very power-
ful dependency parser.

A dependency tree reflects the grammatical re-
lationships between words in a sentence. Figure 1
provides an overview of such a tree in our exam-
ple. For instance, the edge:

president
det−−→ the

means that the is a determiner for president.
The Stanford typed dependencies manual (de

Marneffe and Manning, 2013) details the full list
and description of possible grammatical depen-
dencies.

2.2 Normal form
Our representation of questions into normal form
is based on the RDF format. Each sentence is rep-
resented by a tree composed of subject-predicate-
object triples and operators (union, intersection,
conjunction, etc). An exhaustive presentation of
our data model is available online3. We expose
succinctly its main points below.

2http://nlp.stanford.edu/software/
corenlp.shtml

3https://github.com/ProjetPP/
Documentation/blob/master/data-model.md

Leaves of the trees are values among:

• resource: represents an entity in the universe.
It may be a person, a location, a date, etc.

• list: an ordered collection of resources with-
out duplicates. A list with only one ele-
ment can be represented by the element itself
([Foo] may be written Foo).

• missing, denoted ?: an unknown value that
needs to be found to answer the question.

Internal nodes are operators among:

• triple, denoted (a, b, c) or Triple(a, b, c)
(where a,b, and c are lists): represents a rela-
tion between a, b and c, where a is the subject,
b the predicate and c the object. Each triple
has exactly one missing. For instance, the
triple (George Washington, birth date, ?) as-
sociates to George Washington and birth date
the list of resources that satisfy the relation.

• union and intersection, denoted ∪ and ∩:
takes two lists as input and outputs the union,
or intersection, of them.

• sort, denoted Sort: Sort(l, a) sorts the list
l in increasing order according to the predi-
cate a.

• first and last, denoted First and Last:
takes one list as input and outputs the first,
or last, element of it.

Our data model actually includes other values
and operators (especially boolean) that are not
fully supported yet in the following algorithms.

Figures 2, 3 and 4 provide some examples of
normal forms that we expect to produce for differ-
ent factoid wh-questions.

Triple

China capital ?

obj.su
bj. pred.

Linear representation:

(China, capital, ?)

Figure 2: Possible normal form for What is the
capital of China?

http://nlp.stanford.edu/software/corenlp.shtml
http://nlp.stanford.edu/software/corenlp.shtml
https://github.com/ProjetPP/Documentation/blob/master/data-model.md
https://github.com/ProjetPP/Documentation/blob/master/data-model.md

Last

Sort

sizeTriple

South America country ?

pred.lis
t

subj. pred.

obj.

Linear representation:

Last(Sort((South America, country, ?), size))

Figure 3: Possible normal form for What is the
biggest country in South America?

∩

Triple

Animal Farm author ?

Triple

1984 author ?

su
bj. pred.

obj. su
bj. pred.

obj.

Linear representation:

(Animal Farm, author, ?) ∩ (1984, author, ?)

Figure 4: Possible normal form for Who is the au-
thor of “Animal Farm” and “1984”?

A possible normal form for Where was the pres-
ident of the United States born? is presented in fig-
ure 5. Its linear representation is: ((United States,
president, ?), birth date, ?).

Triple

birth place ?Triple

United States president ?

pred.

obj.subj.

subj. pred.

obj.

Figure 5: Possible normal form for Where was the
president of the United States born?

2.3 Dependency tree simplification

The simplification of the dependency tree consists
of several operations applied on the tree to change

its shape and prepare the production of the nor-
mal form. At the end of the simplification, all the
dependency tags (the Stanford Parser uses more
than 50 grammatical dependency tags) have been
replaced by a small subset of eight (new) tags.

Preprocessing
First of all, we perform multiword expressions
recognition in order to merge all the nodes of
the tree that belong to a same expression. We
merge especially neighbour nodes with a same
named-entity tag (for instance, United and States
are tagged LOCATION and therefore merged into
United States). Other kinds of merging are per-
formed in part 2.3, using the grammatical depen-
dencies.

Then, the question word (Who, Where, How
tall, etc.) is identified and removed from the de-
pendency tree (it will be used later to build and
improve the normal form). This operation is per-
formed using a list of about 30 question words and
looking at the two first words of the sentence (they
are supposed to contain the question word).

Finally, lemmatization is applied on nouns (e.g.
presidents is mapped to president) and nounifica-
tion on verbs (e.g. born is mapped to birth).

Preprocessing is illustrated in figure 6.

ROOT

birth

identity president

the United States [LOCATION]

the

root

auxpass nsubjpass

det prep_of

det

Figure 6: Preprocessed dependency tree of Where
was the president of the United States born?

Global transformations
Two kinds of transformations modify the global
shape of the tree. These operations are applied for
amod dependencies if the output node of the de-
pendency edge is an ordinal or a superlative (we
look at its named-entity and part-of-speech tags).

They are also applied for conj dependencies.
Global transformations add a new node and re-

balance the tree. Figure 7 illustrates the trans-
formation applied for conjunction dependencies
(conj_or, conj_and, etc.). Figure 8 gives the
transformation for an amod dependency (the part-
of-speech tag of highest is JJS).

N1

N2

T2

T3

conj_or

becomes:
or

N1N2

T2 T3T3

Figure 7: Remove conj_or dependencies

N1

N2

highest

am
od

becomes:

N1

N2

highest

Figure 8: Remove amod dependencies

Local transformations
Finally, all remaining edges are analysed locally.
We apply one of the following rule to each of
them, depending on their dependency tags:

• Merge the two endpoints of the edge. It is a
new step of multiword expressions merging.
This rule is applied, among others, for nn or
remaining amod dependencies. For example:

birth
nn−→ date becomes:

birth date

• Remove the sub tree pointed out by the edge.
This rule is applied for det dependencies for

example:

president
det−−→ the becomes:

president

• Replace the dependency tag by a triple pro-
duction tag. We have currently defined
eight different types of triple production tags:
R0, · · · , R5, Rspl, Rconj . These tags are used
to produce the final result. We attribute the
same tag to dependency relationships that
must produce the same type of nodes or con-
nectors in the normal form. For instance, we
replace prep and poss dependencies by the
tag R5: president prep_of−−−−−→ France be-
comes president R5−−→ France.

Finally, depending on the question word we add
some information in certain nodes (for instance,
if the question word is where we try to add the
word place into the child of the root of the tree).
This extra transformation is supported actually for
about 30 question words.

Figure 9 illustrates the dependency tree simpli-
fication applied on our example.

ROOT

birth place

president

United States

R0

R5

R5

Figure 9: Simplified dependency tree of Where
was the president of the United States born?

2.4 Construction of the normal form
The final step of the algorithm maps the tree ob-
tained at the end of part 2.3 to a normal form
that follows the data model presented in part
2.2. The transformation is a recursive function
Normalize that takes a tree T as input and out-
puts the normal form. We give the main rules
applied to obtain Normalize(T). Trees are de-
noted by T... and nodes by N.... For a tree T (resp.
a node N), T (resp. N) represents the words con-
tained in the root of T (resp. in N).

First of all, if N is a leaf then
Normalize(N) = N (value node).

Then, rules R0 to R5 are used to produce
the different types of possible triples. Table
1 gives Normalize(N

Ri−→ T) when T is
the only child of N and Ri ∈ {R0, · · · , R5}.
For instance, Normalize(N

R3−−→ T) is
Triple(?, N,Normalize(T)).

Rule R Normalize(N
R−→ T)

R0 Normalize(T)

R1 T

R2 Triple(T ,N, ?) if T is a leaf

Normalize(T) otherwise

R3 Triple(?, N,Normalize(T))

R4 Triple(?,Normalize(T), N)

R5 Triple(Normalize(T), N, ?)

Table 1: Normalization rules for R0, · · · , R5

When the root N has more than one child, all
linked by a rule in {R0, · · · , R5}, we split the tree
to use table 1. This transformation is depicted in
figure 10.

Normalize


N

Ti1 · · · Tin

R i 1
R
in

 =

Normalize(N
Ri1−−→ Ti1) ∩ · · ·

· · · ∩ Normalize(N Rin−−→ Tin)

Figure 10: Normalization rule for R0, · · · , R5

(Ri1 , · · · , Rin ∈ {R0, · · · , R5})

Rules Rspl and Rconj are produced by the
global transformations performed in part 2.3.
When rule Rspl occurs, the root node contains
a superlative or an ordinal and it has only one
child. Depending on the superlative/ordinal (we
have listed the most common ones), Normalize
outputs the relevant connector nodes. A general
example is presented in figure 11. Rule Rconj is
used for conjunction. A general example is pre-
sented in figure 12.

Normalize
(

biggest
Rspl−−−→ T

)
=

Last

Sort

sizeNormalize(T)

resourcelis
t

Figure 11: Normalization rule for Rspl

Normalize

 and

T1 T2

Rco
nj

R
conj

 =

∩

Normalize(T1) Normalize(T2)

Figure 12: Normalization rule for Rconj

All the rules we use are available in our imple-
mentation4. After applying all of our transforma-
tions we obtain for our example the normal form
that was predicted in figure 5.

3 Results

The previous algorithm has been implemented
in Python 3. We use the collapsed dependency
tree output by the CoreNLP parser with the flag
-makeCopulaHead. We access CoreNLP us-
ing a Python wrapper5 we have patched to support
Python 3. The code is available online4. It in-
cludes a documentation and demo files that allow
the user to quickly test the algorithm. Moreover, a
query answering tool using our algorithm is in de-
velopment6. When the user enters a question, he
can get the answer and visualize the normal form
by clicking on the Show internal results
button.

We have displayed in appendix A four normal
forms produced by our algorithm on questions

4https://github.com/ProjetPP/
PPP-QuestionParsing-Grammatical

5https://bitbucket.org/ProgVal/
corenlp-python/overview

6http://askplatyp.us/

https://github.com/ProjetPP/PPP-QuestionParsing-Grammatical
https://github.com/ProjetPP/PPP-QuestionParsing-Grammatical
https://bitbucket.org/ProgVal/corenlp-python/overview
https://bitbucket.org/ProgVal/corenlp-python/overview
http://askplatyp.us/

used in TREC-8 contest. These results are quite
representative of what our tool can do.

4 Discussion

Our goal was to extract subject-predicate-object
triples from questions using the grammatical de-
pendency tree output by the Stanford Parser. The
results we obtain are close to the expected normal
forms. Moreover, we have noticed that our algo-
rithm also supports some nominal sentences such
as “capital of England”. These results prove the
relevance of studying the dependency tree for ex-
tracting RDF triples. Indeed, it can be seen that the
structure of the dependency tree is very close to the
structure of the normal form we build. The con-
stituency tree (as in (Rusu et al., 2007; Defazio,
2009)) does not allow to handle as complex sen-
tences as we do.

As we mentioned earlier, our algorithm is used
into a question answering framework available
online6. The normal form we produced is handled
by a module performing queries on Wikidata. Fur-
thermore, our normal form could also be mapped
to SPARQL queries. Naturally, questions with
complex grammatical structures are more likely
to be misparsed. We also do not currently sup-
port all kinds of questions (Yes/No questions for
instance).

Future work will consist in improving the differ-
ent parts of the algorithm (multiword expressions
recognition, better analysis of grammatical depen-
dencies). We also plan to train the Stanford Parser
on our own annotated data set. Moreover, our ap-
proach can be easily transposed to languages using
similar grammatical dependencies than English.
Finally, the extraction of RDF triples is useful into
many fields of NLP theory, other than Question
Answering. For instance, simplifying a sentence
into a structured normal form is an important task
of automatic text summarization or speech pro-
cessing.

Acknowledgements

This paper was made possible thanks to the help
and work from members of the Projet Pensées
Profondes: Marc Chevalier, Quentin Cormier,
Raphaël Charrondière, Thomas Pellissier Tanon,
Tom Cornebize, Valentin Lorentz and Eddy Caron
(adviser).

References

Marie-Catherine de Marneffe and Christopher D.
Manning, 2013. Stanford typed dependen-
cies manual. http://nlp.stanford.edu/
software/dependencies_manual.pdf.

Aaron Defazio. 2009. Natural language question
answering over triple knowledge bases. http:
//users.cecs.anu.edu.au/~adefazio/
TripleQuestionAnswering-adefazio.
pdf.

Delia Rusu, Lorand Dali, Blaž Fortuna, Marko Gro-
belnik, and Dunja Mladenić. 2007. Triplet extrac-
tion from sentences. http://ailab.ijs.si/
delia_rusu/Papers/is_2007.pdf.

Amal Zouaq, Roger Nkambou, and Claude Frasson.
2006. The knowledge puzzle: An integrated ap-
proach of intelligent tutoring systems and knowl-
edge management. In Proceedings of the 18th IEEE
International Conference on Tools with Artificial In-
telligence, ICTAI ’06, pages 575–582, Washington,
DC, USA. IEEE Computer Society.

Amal Zouaq, Roger Nkambou, and Claude Frasson.
2007. Building domain ontologies from text for
educational purposes. In Proceedings of the Sec-
ond European Conference on Technology Enhanced
Learning: Creating New Learning Experiences on
a Global Scale, EC-TEL’07, pages 393–407, Berlin,
Heidelberg. Springer-Verlag.

Appendices

A Example of normal forms produced by
the algorithm

Who was Darth Vader’s son?

Triple

Darth Vader Son ?

su
bj. pred.

obj.

http://nlp.stanford.edu/software/dependencies_manual.pdf
http://nlp.stanford.edu/software/dependencies_manual.pdf
http://users.cecs.anu.edu.au/~adefazio/TripleQuestionAnswering-adefazio.pdf
http://users.cecs.anu.edu.au/~adefazio/TripleQuestionAnswering-adefazio.pdf
http://users.cecs.anu.edu.au/~adefazio/TripleQuestionAnswering-adefazio.pdf
http://users.cecs.anu.edu.au/~adefazio/TripleQuestionAnswering-adefazio.pdf
http://ailab.ijs.si/delia_rusu/Papers/is_2007.pdf
http://ailab.ijs.si/delia_rusu/Papers/is_2007.pdf

What is the largest city in Germany?

Last

Sort

widthTriple

Germany City ?

lis
t

pred.

su
bj. pred.

obj.

What was the monetary value of the Nobel
Peace Prize in 1989?

Triple

monetary value ?Triple

1989 Nobel Peace Prize ?
pred.

obj.subj.

subj. pred.

obj.

What is the continent of Fiji and Guam?
∩

Triple

Fiji continent ?

Triple

Guam Continent ?

su
bj. pred.

obj. su
bj. pred.

obj.

	Introduction
	Methods
	Stanford dependency tree
	Normal form
	Dependency tree simplification
	Construction of the normal form

	Results
	Discussion
	Appendices
	Example of normal forms produced by the algorithm

