
École Doctorale 386
Sciences Mathématiques de Paris Centre

Université de Paris

Thèse de doctorat en Informatique

Quantum Algorithms for the
Monte Carlo Method

Yassine Hamoudi

Présentée et soutenue publiquement le 7 juillet 2021.

Directeur de thèse : Frédéric Magniez Directeur de recherche (Université de Paris, CNRS)

Co-directeur de thèse : Miklos Santha Directeur de recherche (Université de Paris, CNRS)

Rapporteurs : Ashley Montanaro Professeur (University of Bristol)

Michele Mosca Professeur (University of Waterloo)

Examinateurs : Omar Fawzi Directeur de recherche (ENS de Lyon, Inria)

Stacey Jeffery Docteure (Centrum Wiskunde & Informatica)

Présidente du jury : María Naya-Plasencia Directrice de recherche (Inria de Paris)

Abstract

The Monte Carlo method is a central paradigm of algorithm design that consists of
using statistical analysis and random sampling to solve problems that have a probabilistic
interpretation. This thesis explores the advantages offered by a quantum computer to
speed up this method.

The first part of our work concerns the problem of estimating average values in a time-
efficient way. We develop new quantum algorithms for estimating the mean of a real-valued
random variable obtained as the output of a quantum computation. Our estimators achieve
a near-optimal quadratic speedup over the number of classical samples required to get a
sub-Gaussian error rate or an (ϵ, δ)-approximation guarantee. Furthermore, we describe a
framework that provides a notion of “stopping time” for a quantum process generating
a random variable. We show that the mean estimation problem can be further sped up
when the average stopping time of the underlying process is small. These techniques are
applied to the construction of a near-optimal quantum query algorithm for approximately
counting the number of triangles in a graph.

In the second part, we study the task of importance sampling and its applications to
stochastic optimization. We construct a quantum algorithm for sampling multiple elements
from a finite distribution specified as a probability vector. Our approach solves the more
general problem of preparing multiple copies of a quantum state whose amplitudes are
given by a query oracle. We illustrate the use of this result by constructing two hybrid
quantum-classical algorithms based on the multiplicative weight update and stochastic
gradient descent methods. Our two applications address the problems of online prediction
with expert advice and minimizing a submodular set function.

In the third part, we consider quantum algorithms that operate with limited memory.
We first study the problem of approximating the frequency moments in the data stream
model with multiple passes over the input. We construct a quantum algorithm that uses
less memory than the best possible classical streaming algorithms. Our method combines
the above-mentioned quantum mean estimators with reversible simulation techniques.
Then, we examine the limitations of space-bounded algorithms in the quantum query
model. We develop a new approach for proving time-space tradeoff lower bounds in this
setting, based on a recent technique for recording quantum queries. As an application,
we consider the task of finding multiple collision pairs in a random function. We show
that the quantum query complexity of this problem increases when the available space
decreases.

Keywords: quantum computing, algorithms, Monte Carlo method, mean estimators,
importance sampling, stochastic optimization, space-bounded computation, streaming
algorithms, query complexity.

Résumé

La méthode de Monte Carlo est un paradigme central de l’algorithmique basée sur l’ana-
lyse statistique et sur les techniques d’échantillonnage aléatoire appliquées aux problèmes
ayant une interprétation probabiliste. Cette thèse explore les avantages qu’offrirait un
ordinateur quantique pour augmenter l’efficacité de cette méthode.

Nous étudions dans un premier temps le problème d’estimation de valeurs moyennes
par des techniques à temps de calcul minimal. Nous développons de nouveaux algorithmes
quantiques pour estimer l’espérance d’une variable aléatoire réelle produite en sortie d’un
processus quantique. Les estimateurs que nous construisons procurent une accélération
quadratique par rapport au nombre d’échantillons classiques nécessaires pour obtenir une
borne d’erreur sous-gaussienne ou une (ϵ, δ)-approximation. Nous décrivons également un
cadre théorique fournissant une notion de «temps d’arrêt» pour un processus quantique
générant une variable aléatoire. Nous démontrons que le problème d’estimation de la
moyenne peut être résolu plus efficacement lorsque le temps d’arrêt moyen du processus
sous-jacent est court. Ces résultats sont appliqués au développement d’un algorithme de
requête quantique quasi-optimal pour approximer le nombre de triangles dans un graphe.

Dans un second temps, nous étudions le problème d’échantillonnage préférentiel et ses
applications en optimisation stochastique. Nous construisons un algorithme quantique
pour échantillonner plusieurs éléments d’une distribution finie spécifiée par un vecteur
de probabilité. Notre approche résout le problème plus général consistant à préparer
plusieurs copies d’un état quantique dont les amplitudes sont accessibles via un oracle.
L’utilité de ce résultat est illustrée à travers le développement de deux algorithmes hybrides
quantiques-classiques basés sur la méthode des poids multiplicatifs et sur l’algorithme du
gradient stochastique. Ces deux applications concernent la prédiction en ligne avec conseil
d’experts, et la minimisation des fonctions sous-modulaires.

La dernière partie de cette thèse est consacrée à l’étude des algorithmes quantiques à
mémoire limitée. Nous étudions tout d’abord le problème d’approximation des moments
de fréquence dans le modèle de flots de données à passes multiples. Nous construisons un
algorithme quantique qui nécessite une quantité de mémoire moindre que les meilleurs
algorithmes de streaming classiques possible. Notre méthode repose sur les estimateurs
quantiques de moyenne susmentionnés et sur des techniques de simulation de calcul
reversible. Nous explorons ensuite certaines limites des algorithmes à mémoire restreinte
dans le modèle de requête quantique. Nous développons une nouvelle approche pour obtenir
des bornes inférieures temps-mémoire, basée sur une technique récente d’enregistrement
des requêtes quantiques. Ce résultat est appliqué au problème de la recherche de paires
de collisions dans une fonction aléatoire. Nous démontrons que la complexité en requête
quantique de cette tâche augmente lorsque la quantité de mémoire disponible diminue.

Mots clés : calcul quantique, algorithmes, méthode de Monte Carlo, estimateurs de
moyenne, échantillonnage préférentiel, optimisation stochastique, calcul à mémoire res-
treinte, algorithmes de streaming, complexité en requête.

Acknowledgments

First and foremost, I want to express my deepest gratitude to my supervisors, Frédéric
Magniez and Miklos Santha, for their kindness, trust and support throughout my PhD.
I had the privilege to work in two extraordinary places, the Institut de Recherche en
Informatique Fondamentale in Paris and the Centre for Quantum Technologies in Singapore,
where they always made me feel welcome and valued. I want to thank them especially for
the time they spent sharing their experience and knowledge with me, which helped me
grow as a researcher and as a person.

I am thankful to Anil Ada, Olivier Bournez, Hartmut Klauck, Sophie Laplante and
Roberto Mantaci for hosting me as an intern during my bachelor’s and master’s studies.
They guided my first steps into research and made me feel confident enough to engage in
a PhD. I owe a special thanks to Omar Fawzi, who introduced me to quantum computing
as a teacher, and helped me find my path in the quantum community.

I am grateful to Stacey Jeffery, Patrick Rebentrost, Ansis Rosmanis, Thomas Vidick
and Ronald de Wolf for the enlightening discussions and collaborations we had together. I
would like to thank Ashley Montanaro and Ashwin Nayak for inviting me to present my
work at the Institute for Quantum Computing and the University of Bristol. I also want
to express my gratitude to Omar Fawzi, Stacey Jeffery, Ashley Montanaro, Michele Mosca
and María Naya-Plasencia for being on my thesis committee.

My PhD experience wouldn’t have been complete without colleagues to play board
games, drink coffee and travel with. For that, I want to thank Alessandro, Alex, Alexandre,
Amaury, Anupa, Arjan, Daniel, Etienne, Jonas, Maharshi, Mickaël, Olivier, Sander, Sidi
Mohamed, Simon, Simona, Xavier, Yixin, Zhouningxin, and my other fellow students. I
hope our paths cross again!

Finally, I want to thank my family and friends for their invaluable contributions to
this work. I’d like to give special thanks to Louisa, Amine, Nabil and Zakia for their
hospitality during my stay in Paris, Sarah for sharing her daily stories and ever-growing
cooking skills with me, Marwan and Driss for our too-rare hiking and biking trips, and
Bassem and Thomas for their long-lasting friendship. I dedicate this thesis to my parents,
may it be a blessing to them.

Contents

1 Introduction 1
1.1 Preliminaries: algorithmic model . 2
1.2 Quantum algorithms for estimating average values 3
1.3 Quantum algorithms for optimization with importance sampling 4
1.4 Quantum algorithms with limited memory 6

I Preliminaries 9

2 Mathematical Preliminaries 11
2.1 Linear algebra and notations . 11
2.2 Concentration inequalities . 12

3 Algorithmic Preliminaries 15
3.1 Quantum circuit model . 15
3.2 Amplitude amplification . 18
3.3 Amplitude estimation . 20

II Quantum Algorithms for Estimating Average Values 23

4 Mean Estimation Problem 25
4.1 Introduction . 25

4.1.1 Related work . 26
4.1.2 Contributions and organization 27
4.1.3 Proof overview . 28

4.2 Model of input . 30
4.3 Quantile estimation . 31
4.4 Sub-Gaussian estimator . 34
4.5 (ϵ, δ)-Estimators . 37

4.5.1 Parameter-free estimators . 37
4.5.2 Parametrization by the coefficient of variation 38

4.6 Lower bounds . 41
4.6.1 Sub-Gaussian estimation . 41
4.6.2 (ϵ, δ)-Estimation . 42
4.6.3 State-based estimation . 42

4.7 Discussion . 43

5 Variable-Time Mean Estimation 45
5.1 Introduction . 45

5.1.1 Related work . 46
5.1.2 Contributions and organization 46
5.1.3 Proof overview . 47

vii

Contents

5.2 Model of input . 48
5.3 Variable-time amplitude estimation . 50

5.3.1 Notations . 50
5.3.2 State generation algorithms . 51
5.3.3 Main algorithm . 53

5.4 Variable-time mean estimator . 55
5.4.1 Variable-time Bernoulli estimator 55
5.4.2 Variable-time (ϵ, δ)-estimator . 57

5.5 Discussion . 60

6 Estimation of Graph Parameters 61
6.1 Introduction . 61

6.1.1 Related work . 62
6.1.2 Contributions and organization 62
6.1.3 Proof overview . 63

6.2 Preliminaries . 67
6.3 Edge counting . 68
6.4 Triangle counting . 69

6.4.1 Assumptions . 69
6.4.2 Main concepts . 71
6.4.3 Triangle degree estimator . 73
6.4.4 Weighted triangle degree estimator 75
6.4.5 Final algorithm . 80

6.5 Lower bounds . 81
6.6 Discussion . 83

III Quantum Algorithms for Optimization with Importance Sampling 85

7 Quantum State Preparation and Importance Sampling 87
7.1 Introduction . 87

7.1.1 Related work . 88
7.1.2 Contributions and organization 89
7.1.3 Proof overview . 89

7.2 Model of input . 90
7.3 Preliminaries . 90
7.4 Preparing K copies of a quantum state 91
7.5 Preparing K samples from a discrete distribution 93
7.6 Discussion . 95

8 Applications to Stochastic Optimization 97
8.1 Introduction . 97

8.1.1 Related work . 98
8.2 Hedge algorithm . 99

8.2.1 Classical Hedge algorithm . 99
8.2.2 Quantum Hedge algorithm . 100

8.3 Submodular function minimization . 102
8.3.1 Proof overview . 103
8.3.2 Preliminaries . 103
8.3.3 Data structures and c-covers . 105

viii

Contents

8.3.4 Importance sampling for gradient computation 107
8.3.5 Final algorithm . 109

8.4 Discussion . 112

IV Quantum Algorithms with Limited Memory 113

9 Frequency Moments and Linear Sketches in the Data Stream Model 115
9.1 Introduction . 115

9.1.1 Related work . 116
9.1.2 Contributions and organization 117
9.1.3 Proof overview . 117

9.2 Data stream model . 118
9.3 Quantum simulation of classical streaming algorithms 119

9.3.1 Reversible streaming algorithms 119
9.3.2 Linear sketch algorithms . 121

9.4 Estimation of the frequency moments 123
9.5 Discussion . 124

10 Time-Space Tradeoffs by Recording Queries 127
10.1 Introduction . 127

10.1.1 Related work . 128
10.1.2 Contributions and organization 129
10.1.3 Proof overview . 130

10.2 Models of computation . 132
10.2.1 Query model . 132
10.2.2 Space-bounded model . 133

10.3 Recording model . 133
10.4 Time lower bound for Collision Pairs Finding 135

10.4.1 Recording query operator . 135
10.4.2 Analysis of the recording progress 136
10.4.3 From the recording progress to the success probability 137

10.5 Time lower bound for K-Search . 139
10.5.1 Recording query operator . 139
10.5.2 Analysis of the recording progress 140
10.5.3 From the recording progress to the success probability 141

10.6 Time-space tradeoffs . 142
10.6.1 Time-space tradeoff for Collision Pairs Finding 142
10.6.2 Time-space tradeoff for Sorting 146

10.7 Discussion . 146

Bibliography 147

ix

1
Introduction

The development of the Monte Carlo method went hand in hand with the construction of
the first electronic digital computers in the late 1940s. Ulam and von Neumann rapidly
saw the potential applications of these machines to the field of nuclear physics. This
new computational power, coupled with statistical sampling techniques, was soon used
to study the motions and interactions of neutrons. In a pioneering letter (see [And86;
Met87; Eck87] for a brief history of the Monte Carlo method), von Neumann outlined a
computer program that simulates nuclear chain reactions based on computer-generated
random numbers and statistical analysis. Nowadays, the Monte Carlo method refers to
a broad class of algorithms that use randomness, statistics and approximation methods
to solve computational problems. Its scope of application has expanded from statistical
physics to mathematical finance, operational research, Bayesian statistics, and other
areas (see [KBTB14] for an account of its importance in modern sciences, finance and
engineering). The Monte Carlo method revolves around two fundamental ideas, which
occupy a central place in this thesis. The first one is to use approximation techniques to
estimate a numerical parameter whose exact computation is difficult. The objective here
is to trade off accuracy against efficiency in an optimal way. The second idea is to let an
algorithm be guided by random choices with the goal that it outperforms deterministic
strategies. This requires the design of random processes that can sample from specific
probability distributions. A toy example that illustrates the Monte Carlo method is the
following random experiment for estimating the Euler number e. Sample a sequence of
uniform random numbers x1, x2, . . . in the interval [0, 1] until the first time T when the
sum

∑T
i=1 xi is larger than 1. One can show [Rus91] that the value of T is an unbiased

estimate of e.
About 30 years after the emergence of the Monte Carlo method, in a study of the

Closest Pair of Points problem, Rabin [Rab76] formulated what is often considered one
of the first randomized algorithms. Randomness became a useful resource not only to
simulate physical processes but also to solve purely algorithmic problems. It shaped our
modern conception of algorithm designs, and it is now a central topic in computer science
with a plethora of applications [MR95; MU17]. Another revolution occurred in the 1980s,
driven by the ambition of simulating quantum physics problems. Feynman [Fey82; Fey86]
observed that such simulations tend to require a prohibitive amount of resources when
run on a conventional computer. Together with other physicists, he envisioned a new
model of computation, the quantum computer, that would exploit the laws of quantum
mechanics to surpass these barriers. This hypothetical machine operates on a new unit
of information, the quantum bit (or qubit), and it leverages the principles of quantum
mechanics (superposition, entanglement, etc.) to perform the computation. The theoretical
basis of this model was laid by Deutsch [Deu85; Deu89], who formalized the notions of
quantum Turing machines and quantum circuits. The early quantum algorithms discovered

1

Chapter 1 Introduction

by Deutsch and Jozsa [DJ92], Simon [Sim97], and Bernstein and Vazirani [BV97] opened a
new path for quantum speedups over classical algorithms. The groundbreaking algorithm
of Shor [Sho97] for integer factorization was the spark that triggered the rapid growth of
this field of research. It was followed by another important algorithm from Grover [Gro96a]
for searching an item in an unordered list. Nowadays, quantum algorithm design has
evolved into a mature topic with applications in linear algebra, Hamiltonian simulation,
optimization, machine learning, etc. In particular, the techniques and motivations behind
the Monte Carlo method are now revisited through the lens of quantum mechanics with
the goal of finding new applications and more efficient algorithms. In this thesis, we
contribute to this line of research by studying the power and limitations of this approach.

1.1 Preliminaries: algorithmic model

Before diving into the description of our contributions, we describe the general features of
the quantum algorithms studied in this thesis. We present the main algorithmic paradigm
employed in our results, and we highlight the general input-output model.

Quantum algorithmic paradigm. There are a few numbers of quantum subroutines
(Quantum Fourier Transform, Phase Estimation, Grover’s Search, etc.) that are part of
most quantum algorithms. In this thesis, our approach is rooted in the use of the Grover
operator described in the seminal work of Grover on quantum search [Gro96a]. The Grover
operator is a unitary transformation that rotates the state vector of a quantum system
in a certain two-dimensional space, and that can be efficiently simulated on a quantum
computer in specific scenarios. In the present work, the Grover operator is embedded
into hybrid quantum-classical algorithms. This approach follows an active line of research
that consists of combining advanced classical algorithms with quantum subroutines to go
beyond the “off-the-shelf” applications of the latter. These methods offer a speedup that
is often polynomial over the best possible randomized algorithms, as is the case in this
thesis.

Input. We work in the black-box model, where the input to a problem is provided by an
oracle whose inner workings are not accessible to the algorithm. An oracle is represented
as a unitary operator that returns a piece of information about the input whenever it is
applied to a state vector. A canonical example is to encode an input Boolean function
f : {0, 1}n → {0, 1} as a bijective function oracle mapping (x, y) 7→ (x, y ⊕ f(x)). The
way this transformation is implemented is left unspecified (it may be given to us as a
Boolean circuit, for instance). The black-box model is a convenient tool when one wants
to abstract the role of a subroutine (the oracle) and focus only on the number of times
it is invoked (or queried). Most of the known quantum algorithms can be seen as acting
in this setting. For instance, Grover’s search uses O(2n/2) queries to a function oracle to
find a value x such that f(x) = 1. In this thesis, we consider both function oracles and
more general oracles selected from a predefined set of unitaries. We make an exception in
Chapter 9, where we use a non-black-box input model (the data stream model).

Output. Our quantum algorithms return classical results, except in Chapter 7 where we
produce a quantum state. We often look for approximate solutions that do not deviate
significantly from the best possible output. We also allow the algorithms to be incorrect
with a small probability.

2

1.2 Quantum algorithms for estimating average values

1.2 Quantum algorithms for estimating average values

The problem of finding efficient algorithms to estimate statistics lies at the core of the
Monte Carlo method. A standard approach is to express a parameter of interest as the
expectation of a random variable X (ideally with low variance) and to gather sufficient
samples from X to construct an estimate of E[X]. The challenge here is twofold. First, the
experiment that generates the samples must be efficiently computable. Secondly, one needs
a mean estimator to process the samples and return a high-accuracy estimate of E[X].
This approach is often known as approximate counting in computer science. It is a method
of choice to estimate parameters whose exact computation is #P-hard, such as the number
of satisfying assignments to a DNF [KL83; KLM89], the volume of convex bodies [DFK91;
DF91] or the permanent [JSV04]. More generally, it is used when exact counting is
intractable—for example, in high-dimensional integration, in Bayesian inference, or for
estimating partition functions in statistical physics. In parallel to these works, approximate
counting has been studied in the scenario where the amount of available computational
resources (time, space, etc.) is sublinear in the input size of the problem. In a seminal work,
Feige [Fei06] showed, for instance, that the average degree in a graph can be estimated
with a number of degree queries that is sublinear in the number of vertices. This result
prompted the study of sublinear-time algorithms for subgraph counting problems. In
another pioneering use of this method, Alon, Matias and Szegedy [AMS99] designed an
algorithm to estimate statistics of a stream of data by using an amount of memory that is
sublinear in the stream length. This result popularized the field of streaming algorithms
(we return to the data stream model in Section 1.4).

The first quantum algorithms for estimating statistics were found in the wake of Grover’s
search. Several quantum speedups were obtained to compute the minimum [DH96], the
median [Gro96b; Gro98; NW99] or the k-th smallest element [NW99; DHHM06] of a list
of N numbers. The task of quantum counting was introduced by Brassard, Høyer and
Tapp in [BHT98a], with the goal of (approximately) counting the number of ones in a list
of N Boolean values. This result has evolved into more advanced algorithms for numerical
integration [AW99; Nov01; Hei02; TW02] and estimating partition functions [WCNA09;
PW09; Mon15; HW20]. Nevertheless, the power of quantum computing for solving
approximate counting problems is much less understood than that of classical computing.
This is due in part to the fact that standard mean estimators (such as the empirical mean
or the median-of-means) and concentration inequalities (such as Chebyshev’s inequality)
have no clear equivalent when given “quantum access” to a random variable. There do exist
quantum estimators for estimating the mean of N real numbers [Gro98; Ter99; BDGT11;
Mon15]. However, they are outperformed by classical estimators if the distribution is
heavy tailed, or they require additional information on the input (e.g. the variance).

Our contributions. Part II of this thesis is devoted to estimating average values in a
sample and time-efficient way.

In Chapter 4, we consider the general problem of estimating the mean µ of a real-valued
random variable X. We suppose that X is obtained as the output of a separate quantum
computation, and we introduce the concept of quantum experiment to model the task of
getting one sample of information from X. We seek to minimize the number of quantum
experiments needed to estimate µ with some prescribed accuracy, under the assumption
that X has a bounded variance σ2. In the classical setting, the optimal deviation bound
is achieved by the so-called sub-Gaussian estimators that return an estimate µ̃ such that
|µ̃− µ| ≤ O

(
σ
√

log(1/δ)/t
)

with probability at least 1− δ, where t denotes the number of

3

Chapter 1 Introduction

i.i.d. samples available to the estimator. We present a quantum estimator that achieves
the bound |µ̃− µ| ≤ Õ

(
σ log(1/δ)/t

)
while performing only t quantum experiments. This

represents a near-quadratic and optimal speedup over the classical sub-Gaussian estimators.
As an application, we obtain new quantum algorithms for the (ϵ, δ)-approximation problem
where the goal is to satisfy |µ̃− µ| ≤ ϵ|µ| with probability at least 1− δ.

In Chapter 5, we refine the definition of a quantum experiment to introduce the notion
of stopping time. The stopping time T is a random variable distributed according to the
“variable time” spent by an experiment to perform its computation. The variable time of
a quantum algorithm is a concept introduced by Ambainis [Amb12] in the design of the
variable-time amplitude amplification algorithm. The existing quantum mean estimators
use on the order of N ×max(T) operations to perform N quantum experiments. This
contrasts with the classical setting, where N samples are obtained in expected time N×E[T].
This difference is explained by the fact that a quantum experiment prepares a coherent
encoding of X, which could be destroyed if a measurement is applied before the completion
time max(T). We manage to overcome this obstacle by giving a quantum estimator for the
(ϵ, δ)-approximation problem that uses on the order of V ×

√
E[T 2] operations, where V

is quadratically smaller than the number of samples needed classically. Our technique is
rooted in the development of a new variable-time amplitude estimation algorithm.

In Chapter 6, we use the techniques developed in the two previous chapters to study the
problem of approximating the number of edges and triangles in a graph in sublinear time.
We consider the general graph model where neighbor and vertex-pair quantum queries
are permitted. Given a graph with n vertices, m edges and t triangles, our algorithms
return an edge estimate m̃ such |m̃−m| ≤ ϵm after Õ(

√
n/m1/4) queries (omitting the

dependence on the relative error ϵ), and a triangle estimate t̃ such that |t̃− t| ≤ ϵt after
Õ(
√
n/t1/6 +m3/4/

√
t) queries. This is better than the best possible classical algorithms.

Our algorithms consist of estimating the expectations of carefully chosen random variables.
The latter are generated by using local graph exploration techniques adapted from the
recent classical triangle counting algorithm of Eden, Levi, Ron and Seshadhri [ELRS17].

1.3 Quantum algorithms for optimization with importance
sampling

The Monte Carlo method offers a large variety of techniques for sampling from a so-
phisticated distribution [RC04]. Two paramount examples are rejection sampling and
importance sampling, which resort to proxy distributions. The rejection sampling method
(also called acceptance-rejection sampling) can be found in the work of von Neumann on
random number generations [Neu51]. It simulates a target distribution p(i) by sampling
from another distribution q(i) and keeping the result with probability p(i)

mq(i) (where m is
a constant that maintains the ratio below 1). The importance sampling method can be
traced back to the papers of Kahn [Kah50a; Kah50b] on radiation shielding. It consists of
modifying a distribution such that the most important events become more likely to occur.
The canonical example (used in numerical integration, for instance) is to reweight the
expectation Ep[f(i)] of a function f under a distribution p into the expectation Eq

[
f(i)p(i)

q(i)
]

under a new importance distribution q. The choice of q is made so that it is easy to sample
from it, while lowering the variance. Ideally, q(i) ought to be proportional to the weight
|f(i)|p(i). A major alternative to rejection and importance sampling, which is well suited
for high-dimensional distributions, is the class of Markov Chain Monte Carlo methods,
which have started with the Metropolis—Hastings algorithm [MRR+53; Has70].

4

1.3 Quantum algorithms for optimization with importance sampling

The problem of sampling from a distribution is generalized in the quantum model to the
problem of preparing a q-sample. A q-sample is a quantum state that encodes the target
distribution as a coherent superposition over the sample space. There are a few techniques
based on the Monte Carlo method for preparing a q-sample (see [HW20] and references
therein). One of the first algorithms was given by Grover [Gro00b], who adapted the
rejection sampling method to transform the amplitudes of a uniform superposition into
that of a target state

∑
i

√
p(i)|i⟩. Ozols, Roetteler and Roland [ORR13] generalized this

method to start with any prior state
∑

i

√
q(i)|i⟩. The theory of quantum walks [Sze04]

has also led to quantum speedups for certain Markov Chain Monte Carlo methods, such
as simulated annealing [SBBK08; WA08; OBD18; HW20]. Understanding the power
and limitations of q-samples is still a largely open question. On one hand, Bshouty and
Jackson [BJ99] and Aharonov and Ta-Shma [AT07] obtained quantum speedups over the
best existing classical algorithms for learning a DNF under the uniform distribution or
solving the problems in the complexity class SZK (such as graph isomorphism). On the
other hand, Arunachalam and de Wolf [AW18] proved that learning a function in the
general PAC model requires as many q-samples as classical samples. This latter result
encourages one to search for quantum speedups at a different stage of the computation
(e.g. when preparing the q-samples that are fed to a quantum learner).

Another use of q-samples is to classically sample from a distribution by preparing
and measuring the relevant quantum state. This approach is particularly well suited
for stochastic optimization, where sampling-based Monte Carlo methods are ubiquitous.
There, the goal is to minimize an objective function minθ f(θ) guided by a random process.
Homem-de-Mello and Bayraksan [HB14] provided an extensive review of the use of Monte
Carlo sampling-based methods in this setting. Among other advantages, it can reduce
the computational time or help to escape a local optimum. These methods also apply to
deterministic problems for which there is a probabilistic interpretation. A major example
is to rephrase a sum of loss functions f(θ) =

∑N
i=1 fi(θ) as a stochastic objective function

f(θ) = EU
[
Nfi(θ)

]
under the uniform distribution and to estimate it by importance

sampling. This idea is nicely illustrated by the randomized Kaczmarz algorithm of
Strohmer and Vershynin [SV09] for solving linear systems. It raises the question of how to
balance the effort between sampling from the chosen importance distribution and iterating
toward a minimum.

Our contributions. Part III of this thesis is devoted to the use of quantum state prepa-
ration for importance sampling and stochastic optimization.

In Chapter 7, we study the problem of obtaining multiple i.i.d. samples from an
importance distribution. We consider the case where the input is specified by an arbitrary
weight vector (w1, . . . , wN) that can be queried in superposition. The goal is to sample from
the distribution that returns i ∈ [N] with probability |wi|/W , where W is the (unknown)
normalization factor. This setting represents the case where no prior information is known
about the chosen importance distribution. Grover [Gro00b] constructed an algorithm
that samples a single element from that distribution in time O(

√
N). In fact, he solved

the more general problem of preparing the q-sample |w⟩ :=
∑

i

√
|wi|/W |i⟩. In practice,

it is reasonable to assume that several samples or copies of |w⟩ are needed for further
use (such a case occurs in Chapter 8). Thus, a natural question is whether the average
preparation cost per state can be made smaller than O(

√
N). We answer this question

positively by constructing an optimal algorithm that prepares the K-fold state |w⟩⊗K in
time O(

√
KN) for any K ≥ 1. Our technique uses a refinement of the quantum rejection

sampling method employed by Grover.

5

Chapter 1 Introduction

In Chapter 8, we use the quantum importance sampling algorithm to develop two
independent hybrid quantum-classical algorithms for stochastic optimization. Our first
algorithm addresses the problem of online prediction with expert advice. Consider a
game with T rounds where we play a mixture of N strategies in each round and observe
the loss incurred by this choice in the next round. The Hedge algorithm by Freund and
Schapire [FS97] guarantees an optimal regret bound by using a multiplicative weight update
method in total time O(TN). We present a quantum algorithm achieving a quantum
speedup in N while the overall regret remains close to that of the Hedge algorithm with high
probability. Our algorithm is a simple modification of the Hedge algorithm that consists of
choosing the strategy by quantum importance sampling. Our second application is more
involved and concerns the problem of minimizing a submodular set function. Submodular
functions are set functions mapping every subset of some ground set of size n into the real
numbers and satisfying the diminishing returns property. Submodular minimization is an
important field in discrete optimization theory due to its relevance to various branches
of mathematics, computer science and economics. In a recent paper, Chakrabarty et
al. [CLSW17] constructed the first subquadratic algorithm for finding an approximate
minimum with additive error ϵ in time Õ(n5/3/ϵ2). We present a quantum algorithm that
improves upon this result by running in time Õ(n5/4/ϵ5/2). Our technique consists of using
a stochastic subgradient descent method, where the subgradient directions are obtained
by quantum importance sampling.

1.4 Quantum algorithms with limited memory

The Monte Carlo method is often used to process massive datasets, such as those generated
by experiments in particle physics (e.g. the Large Hadron Collider) or by web traffic. In this
case, the amount of workspace available is much smaller than the size of the inputs, which
motivates the search for algorithms that can operate with limited memory. The study of
space-bounded computations has been carried out in a variety of models. For instance, in
a pioneering work, Munro and Paterson [MP78] studied the amount of working memory
needed by an algorithm that makes a limited number of passes over a one-way read-only
input tape. This was later formalized as the data stream model, where the input arrives as
a long stream of data that cannot fit entirely in memory. Here, the objective is to compute
some relevant statistics about the stream, such as the most frequent element or the median
value. The use of randomness and approximation methods is an essential ingredient to
decrease space usage. As an example, the randomized approximate counting algorithm of
Morris and Flajolet [Mor78; Fla85] can estimate the total number n of elements in a stream
by using only O(log logn) bits of memory. In cryptography, the statistical properties of
random mappings [FO89] play a central role in reduced memory attacks, such as Pollard’s
rho algorithm for integer factorization [Pol75] or Hellman’s time-memory tradeoff for
function inversion [Hel80]. In many cases, decreasing the memory size comes at the cost
of increasing the use of other computational resources (e.g. the running time, the number
of passes over a stream, etc.). Understanding the inherent tradeoffs between space and
other complexity measures is a far-reaching problem in complexity theory. To name one
recent example, Raz [Raz18] proved that for some learning problems, a small memory
must imply a long learning process.

The storage of information in quantum systems obeys fundamentally different principles
than the storage of information in classical ones (no-cloning, superposition, uncertainty,
etc.). Moreover, memory will be a critical resource in near-term quantum computers. Thus,
it is a major task to understand the properties of space-bounded quantum computations.

6

1.4 Quantum algorithms with limited memory

There are some examples where quantum mechanics help to use less memory. In the data
stream model, Le Gall [Gal09] described, for instance, an artificial problem for which a
quantum computer would provide exponential savings in memory over the best possible
classical algorithm. Ta-Shma [TS13] identified several tasks (such as matrix inversion) in
the quantum Turing machine model that can be solved in quantum logspace, whereas the
best known classical algorithms use quadratically more memory. Nevertheless, quantum
computation is a mixed blessing with regard to memory. For instance, reversibility is a
core property used in quantum algorithm design, but the standard techniques to make a
computation reversible (such as the deferred measurement principle [AKN98] or Bennett’s
reversible simulation [Ben73]) often require expanding the workspace. For certain problems,
the fastest known quantum algorithms [BHT98b; Amb07; LZ19a] use much more memory
than the classical ones. A central open question is whether a speedup both in terms of
time and space complexities is achievable for such problems.

Our contributions. Part IV of this thesis is devoted to the study of space-bounded
quantum computation in two different models of computation: the data stream model and
the quantum query model.

In Chapter 9, we consider the problem of estimating the frequency moments Fk of a
stream. The frequency moments are important statistics introduced by Alon, Matias and
Szegedy [AMS99] in a pioneering work on the data stream model. The space complexity
of approximating Fk is the object of rich literature that led to the development of major
streaming algorithms. It culminated in the proof that S = Θ̃(n1−2/k/P) is the optimal
memory size needed for estimating Fk on a length-n input with a classical algorithm
making P passes over a stream [MW10; AKO10; WZ12]. We demonstrate that the use of a
quantum computer can decrease the memory size to S = Õ(n1−2/k/P 2) while keeping the
number of passes to P . There are very few quantum speedups known in the data stream
model due to the sequential and uncontrolled access to the input. Our results contribute
to giving new quantum algorithmic methods in this model. In particular, we describe a
general reversible simulation technique that applies to a broad class of classical streaming
algorithms known as linear sketches. We combine this technique with the quantum mean
estimator developed in the early parts of this thesis to construct our algorithm.

In Chapter 10, we study time-space tradeoff results to investigate how much time T is
needed to solve a particular task when only S qubits of memory are available. We work in
the quantum circuit model with query access to the input. Our main contribution is a
new and simple approach for proving lower bounds in this setting, based on the recent
recording query technique of Zhandry [Zha19]. The very few existing quantum time-space
tradeoff lower bounds [KŠW07; AŠW09] require heavy use of the adversary or polynomial
methods. As the first application of our technique, we consider the problem of finding
multiple collision pairs in a random hash function. This question plays a central role in
cryptography, notably for meet-in-the-middle attacks. There is a long-standing conjecture
on the need for a large quantum memory to find one collision pair faster than with the
classical Pollard rho method. We prove that, for the related problem of finding K collision
pairs in a random function f : [N]→ [N], one has to perform at least T ≥ Ω(K(N/S)1/3)
quantum queries. On the other hand, we show that the optimal algorithm with unlimited
memory uses T = Θ̃(K2/3N1/3) queries. These results give the first evidence that limiting
the size S of the available quantum memory makes the problem of finding collisions harder
to solve. As a second application, we give a simpler proof of the time-space tradeoff
T 2S ≥ Ω(N3) for sorting N numbers on a quantum computer, which was first obtained
by Klauck, Špalek and de Wolf [KŠW07].

7

Part I

Preliminaries

9

2
Mathematical Preliminaries

2.1 Linear algebra and notations
Given the n-dimensional Hilbert space H = Cn, we let |ψ⟩ ∈ H denote a vector in H, and
we let ⟨ψ| denote the conjugate transpose of |ψ⟩. The inner product between two vectors
|ψ⟩, |ϕ⟩ ∈ H is represented as ⟨ψ |ϕ⟩ ∈ C and the outer product is |ψ⟩⟨ϕ| ∈ Cn×n. The
standard basis of H (also called the computational basis) is denoted by (|0⟩, |1⟩, . . . , |n−1⟩).
Thus, any vector |ψ⟩ ∈ H can be written as

|ψ⟩ =
n−1∑
i=0

αi|i⟩

where αi = ⟨i |ψ⟩ for i = 0, . . . , n − 1. The norm
√∑n−1

i=0 |αi|2 of |ψ⟩ is denoted by
∥|ψ⟩∥ or ∥ψ∥. The induced matrix norm is the spectral norm, written as ∥U∥ for a
linear operator U : H → H. We let H1 ⊗ H2, |ψ1⟩ ⊗ |ψ2⟩ and U1 ⊗ U2 denote the
tensor products of, respectively, two Hilbert spaces H1 = Cn,H2 = Cm, two vectors
|ψ1⟩ ∈ H1, |ψ2⟩ ∈ H2, and two linear operators U1 : H1 → H1, U2 : H2 → H2. Note that
(U1 ⊗ U2)(|ψ1⟩ ⊗ |ψ2⟩) = (U1|ψ1⟩) ⊗ (U2|ψ2⟩) ∈ H1 ⊗H2. The vector |ψ1⟩ ⊗ |ψ2⟩ is also
denoted by |ψ1⟩|ψ2⟩. The standard basis of H1 ⊗H2 is identified with (|i⟩|j⟩)0≤i<n,0≤j<m,
and we equivalently write |i, j⟩ or |ij⟩ for the basis states (the latter notation is often used
when i and j are expressed in base two).

Qubits. We use the standard formalism for describing pure quantum states. A one-qubit
state is represented as a vector |ψ⟩ ∈ C2 with unit norm ∥ψ∥ = 1. A system made of n
qubits is called an n-bit quantum register and it is described by an n-qubit state, that is
a vector |ψ⟩ ∈ C2n with unit norm ∥ψ∥ = 1. The qubit state |0⟩⊗n is also denoted by
|0n⟩ or |0⟩ when n is clear from the context. Given two qubit states |ψ⟩, |ϕ⟩ ∈ C2n , the
value of ⟨ϕ |ψ⟩ is the amplitude of the state |ϕ⟩ in |ψ⟩. Given a qubit state |ψ⟩ ∈ H1 ⊗H2
where H1,H2 are two Hilbert spaces, we say that |ψ⟩ is a product state if there exist
|ψ1⟩ ∈ H1, |ψ2⟩ ∈ H2 such that |ψ⟩ = |ψ1⟩ ⊗ |ψ2⟩, and otherwise we say that |ψ⟩ is an
entangled state.

Operators. The identity operator over the Hilbert space H = Cn is denoted by I or In.
A unitary operator U is a linear map U : H → H that satisfies U †U = UU † = I,
where U † is the conjugate transpose of U . Note that the inverse of a unitary operator
is U−1 = U †. An (orthogonal) projector Π : H → H is a linear operator that satisfies
Π2 = Π = Π†. A particular example is the projector |ψ⟩⟨ψ|, for |ψ⟩ ∈ H, that projects on
the one-dimensional subspace of H spanned by |ψ⟩. Two projectors Π1,Π2 acting on H are

11

Chapter 2 Mathematical Preliminaries

orthogonal if Π1Π2 = 0. Finally, a unitary operator U : H → H is a reflection if U2 = I.
One can check that I − 2Π is a reflection when Π is a projector.

General notations. Given an integer n ∈ N, we define [n] = {1, . . . , n}. The set of all non-
negative (resp. non-positive) real numbers is denoted by R≥0 (resp. R≤0). Given x ∈ R,
we define sgn(x) to be 1 if x ≥ 0, and −1 otherwise. We let 1P ∈ {0, 1} denote the Boolean
value that equals 1 if and only if the predicate P is true. Given two sets R and D we let RD
denote the set of all functions F : D → R. We use the asymptotic notation f(n) = Õ(g(n))
to indicate that f(n) = O(g(n) logk g(n)) for some (not necessarily positive) constant k
independent of n. We similarly define f(n) = Ω̃(g(n)) when f(n) = Ω(g(n) logk g(n)), and
f(n) = Θ̃(g(n)) when f(n) = Θ(g(n) logk g(n)).

Notations for real-valued vectors. We let ei ∈ Rn be the standard basis state with
a 1 at position i ∈ [n] and 0 elsewhere. Given a vector u = (u1, . . . , un) ∈ Rn and an
integer p ≥ 0, we let ∥u∥p = (

∑
i∈[n]|ui|p)1/p denote the ℓp-norm of u. The largest entry

in u (in absolute value) is denoted by ∥u∥∞ = maxi∈[n]|ui|. We say that u is k-sparse
if it contains at most k non-zero entries. We define the non-negative u≥0 ∈ Rn≥0 and
the non-positive u≤0 ∈ Rn≤0 parts of u as the vectors with disjoint supports satisfying
u = u≥0 + u≤0. Given a set S ⊆ [n], we define the vector uS = (ui)i∈S ∈ R|S|. The dot
product of two vectors u, v ∈ Rn is ⟨u, v⟩ =

∑
i∈[n] uivi ∈ R, and the element-wise product

is u · v = (u1v1, . . . , unvn) ∈ Rn. If u, v ∈ {0, 1}n are two Boolean vectors, then we define
the bitwise XOR of u and v as u⊕ v = (u1 ⊕ v1, . . . , un ⊕ vn) ∈ {0, 1}n. We consider the
(partial) pointwise order over Rn defined as u ≥ v if and only if ui ≥ vi for all i ∈ [n] (we
similarly define u ≤ v, u > v, etc.). Finally, given a real number β ̸= 0, we let βu denote
the vector (βu1 , . . . , βun).

2.2 Concentration inequalities

We describe several concentration inequalities for bounding the tail of a random variable X
in terms of its expectation E[X] and its variance Var[X]. We refer the reader to [BLM13]
for more details and references. First, we present the Markov inequality that gives an
upper bound on the probability that a random variable is larger than some number.

Theorem 2.2.1 (Markov’s inequality). Suppose X is a non-negative random variable.
Then for any a > 0,

Pr[X ≥ a] ≤ E[X]
a

.

The next four theorems quantify the deviation of a sum of random variables from its
mean.

Theorem 2.2.2 (Chebyshev’s inequality). Suppose X1, . . . , Xt are pairwise inde-
pendent random variables with finite variance. Let Mt = (X1 + · · ·+Xt)/t denote their
average value. Then for any δ ∈ (0, 1),

Pr
[
|Mt − µ| ≥

√
σ2

tδ

]
≤ δ

where µ = E[Mt] and σ2 = 1
t

∑t
i=1 Var[Xi].

12

2.2 Concentration inequalities

The Hoeffding inequality provides a better dependence on the failure probability δ, but
it does not depend on the variance. Note that the same inequality holds with µ −Mt

instead of Mt − µ by substituting Xi 7→ −Xi.

Theorem 2.2.3 (Hoeffding’s inequality). Suppose X1, . . . , Xt are independent ran-
dom variables such that a ≤ Xi ≤ b for all i. Let Mt = (X1 + · · · + Xt)/t denote their
average value. Then for any δ ∈ (0, 1),

Pr
[
Mt − µ ≥

√
(b− a)2 log(1/δ)

2t

]
≤ δ

where µ = E[Mt].

The next multiplicative Chernoff bound offers a better dependence on the mean for
binary random variables and relative error approximation.

Theorem 2.2.4 (Chernoff’s bound). Suppose X1, . . . , Xt are independent random
variables taking values in {0, 1}. Let Mt = (X1 + · · ·+Xt)/t denote their average value.
Then for any 0 < ϵ < 1,

(Multiplicative) Pr[Mt − µ ≤ −ϵµ] ≤ exp
(
− tµϵ2

2
)

and Pr[Mt − µ ≥ ϵµ] ≤ exp
(
− tµϵ2

3
)

(Additive) Pr[Mt − µ < −ϵ] ≤ exp
(
−2tϵ2

)
and Pr[Mt − µ > ϵ] ≤ exp

(
−2tϵ2

)
where µ = E[Mt].

The Chernoff bound is used in the “median trick” (also called the “powering lemma”
[JVV86]) to boost the success probability of an algorithm that outputs some correct real
value with probability µ > 1/2. The procedure consists of running several independent
copies of the algorithm and taking the median of the obtained results. If we let Xi denote
the binary random variable that equals 1 when the i-th run is correct, then the next result
gives an upper bound on the number of repetitions needed to achieve a success probability
of 1− δ for any δ ∈ (0, 1).

Corollary 2.2.5 (Median trick). Suppose X1, . . . , Xt are independent random variables
taking values in {0, 1} where E[Xi] ≥ 1/2 + ϵ for all i and some ϵ > 0. For any δ ∈ (0, 1),
if t ≥ log(1/δ)

2ϵ2 then median(X1, . . . , Xt) = 1 with probability at least 1− δ.

Finally, the Bernstein inequality is a refinement of Hoeffding’s inequality that introduces
a dependence on the variance.

Theorem 2.2.6 (Bernstein’s inequality). Suppose X1, . . . , Xt are independent random
variables such that |Xi| ≤ b for all i. Let Mt = (X1 + · · · + Xt)/t denote their average
value. Then for any t ≥ 0,

Pr
[
Mt − µ ≥

√
2σ2 log(1/δ)

t
+ 3b log(1/δ)

2t

]
≤ δ

where µ = E[Mt] and σ2 = 1
t

∑t
i=1 Var[Xi].

13

3
Algorithmic Preliminaries

3.1 Quantum circuit model

In this section, we present the standard model of computation used to describe a quantum
algorithm. We highlight the main properties of this model that are needed later in
the thesis. We refer the reader to the books [NC11; KLM07; LR14] and to the lecture
notes [Wol19; ODo15; Chi17] for a more general introduction to quantum computing.

A quantum circuit [Deu89; Yao93] is a sequence of elementary quantum operations (the
quantum gates), that operate in a predefined order on a collection of qubits (the quantum
memory) represented as a state vector |ψ⟩ ∈ H in some Hilbert space H. In the graphical
representation of a quantum circuit, each qubit is depicted as a wire that passes through
a series of gates, where the time axis is to be read from left to right. Each gate operates
on the wires that are incident to it according to some predefined rule. The initial state
of the memory is written on the left of the circuit. In most cases, each qubit starts in
the state |0⟩, or in a state |x⟩ where x ∈ {0, 1} encodes an input to the computation. An
example of a quantum circuit is given in Figure 3.1. The computation performed by this
circuit will become clear in the next paragraphs, where we describe the different types of
quantum gates that compose it.

b ∈ {0, 1}
|0⟩ H

Of
H

|1⟩ H

Figure 3.1: Deutsch’s algorithm that outputs b = 0 when f : {0, 1} → {0, 1} is constant.

Universal gate set. The postulates of quantum mechanics imply that the state vector of
a closed quantum system must undergo a unitary transformation. Accordingly, a quantum
gate is defined as a unitary transformation that operates on few qubits (one or two in
general), and that can be composed with other gates to construct more complicated unitary
transformations. As in the classical setting, where any computation can be performed
using AND, OR and NOT gates, some sets of quantum gates are universal in the sense
that they allow to represent any unitary transformation. One such example is the set
made of the controlled negation gate CNOT (acting on two qubits) and of all 1-qubit gates.
The CNOT gate is represented below, both in its graphical and matrix form (expressed
in the standard basis). It negates the value of the second qubit when the first one is

15

Chapter 3 Algorithmic Preliminaries

equal to |1⟩. The set of all 1-qubit gates includes for instance the Hadamard transform H
and the π/8 gate T (also represented below). For practical implementation purposes, the
Solovay-Kitaev theorem guarantees that any 1- or 2-qubits gate can be approximated up
to error ϵ (in spectral norm) by using only polylog(1/ϵ) gates from the set {CNOT, H, T}.

H T

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 H =
(1√

2
1√
2

1√
2 − 1√

2

)
T =

(
1 0
0 eiπ/4

)

In this thesis, we make use of a universal gate set together with some ad-hoc quantum
gates (such as the oracle gates defined in the next paragraph) depending on the problem
under consideration. In particular, given a gate U acting on m qubits, we often use the
controlled gate C(U) = |0⟩⟨0| ⊗ I + |1⟩⟨1| ⊗ U acting on m + 1 qubits that is described
below. The strike symbol is a shortcut for m wires.

m

|b⟩ |b⟩

|ϕ⟩ U

{
|ϕ⟩ if b = 0
U |ϕ⟩ if b = 1

C(U) =

 I2m 0

0 U


Oracle gate. In many quantum algorithms, the input to the computation is encoded as an
oracle gate that provides coherent access to the data. An oracle gate is a black-box whose
internal working is left unspecified. In practice, it may correspond to an auxiliary quantum
circuit generated by a separate process, or it may represent the access to an external
quantum memory. A first type of oracle gate is the query oracle, where given an input
function f : {0, 1}n → {0, 1}m the query gate Of (represented in the picture below) allows
one to evaluate f in a reversible manner. The action of this gate on a computational basis
state |x⟩|y⟩, where x ∈ {0, 1}n and y ∈ {0, 1}m, is defined as Of (|x⟩|y⟩) = |x⟩|y ⊕ f(x)⟩.
We assume that the controlled gate C(Of) is also available. This input model is extensively
used in Chapters 6–8, 10. It can easily be extended to functions that are defined on other
domains and ranges of values. We also give a variant of the query gate in Chapter 10,
where the result of a query is encoded into the phase rather than in a separate quantum
register.

n

m

|x⟩
Of

|x⟩

|y⟩ |y ⊕ f(x)⟩

A second type of oracle gate, that generalizes the above approach, consists of having
access to an unknown transformation U selected from a predefined set of unitaries. This
transformation needs not be a permutation of the computational basis states, as was the
case with the query gate Of defined before. In general, we assume that the inverse U−1

and the controlled versions C(U) and C(U−1) of U are also available as oracle gates. This
model is used in Chapters 4, 5 and in the amplitude amplification and amplitude estimation
algorithms presented in Sections 3.2, 3.3.

16

3.1 Quantum circuit model

Measurement. A measurement provides a way to extract classical information from
a closed quantum system. In this thesis, we use the notion of projective measurement,
described by a family Π1, . . . ,Πk of pairwise orthogonal projectors that sum to the identity.
The effect of performing such a measurement on a state vector |ψ⟩ is to observe the value
i ∈ [k] and to collapse the state vector to 1

∥Πi|ψ⟩∥Πi|ψ⟩ with probability ∥Πi|ψ⟩∥2 (this is
known as the Born rule). We augment the circuit model with a special gate, denoted by a
meter symbol, that represents the use of a projective measurement (see the picture below,
where the measurement outcome is written above the box). Unless otherwise stated, we
use the measurement in the computational basis defined by the family {|i⟩⟨i|}0≤i<k acting
on a k-qubit state. The measurement operation requires modifying the quantum circuit
formalism [AKN98] since it is not a unitary transformation. The state of the quantum
memory, at any time of the computation, is now represented as a probability distribution
over state vectors {pℓ, |ψℓ⟩}ℓ (also known as a mixed state), meaning that the system
is in the pure state |ψℓ⟩ with probability pℓ. The mixed state evolves into {pℓ, U |ψℓ⟩}ℓ
after applying a unitary transformation U , and into {pℓ∥Πi|ψℓ⟩∥2, 1

∥Πi|ψℓ⟩∥Πi|ψℓ⟩}ℓ,i after
performing a measurement {Πi}i.

i ∈ [k]
|ψ⟩

Deferred measurement principle. A circuit that performs no measurement is called
a unitary circuit. This property is often a prerequisite for the use of more advanced
quantum algorithms that must run the inverse of the original circuit (see Sections 3.2, 3.3
and Chapters 4, 5). It also allows the application of certain lower bound methods (such
as in Chapter 10) where the quantum memory is assumed to be represented as a single
pure state. The deferred measurement principle (described in [AKN98, Lemma 4] and
in [NC11, Section 4.4]), also called principle of safe storage, allows one to postpone all
the intermediate measurements to the end of a quantum circuit without changing the
outcome of the computation. The unitary part of the resulting circuit can then be used
separately. The process of removing an intermediate measurement is illustrated in the
figure below for the case of the single-qubit measurement {|0⟩⟨0|, |1⟩⟨1|}. The measured
qubit is entangled with a new qubit, that is left unchanged afterward, by using a CNOT
gate. The new qubit needs not be measured if its value is not part of the output. Each
operation that is classically controlled on the measurement outcome (such as the unitary U
in the left circuit below, which is applied if and only if b = 1) is replaced with a quantum
controlled operation. The box V represents any subsequent computation in the example.
In general, this technique requires increasing the memory size by one qubit each time a
binary measurement is postponed. Thus, it must be used carefully when the memory size
is a concern (as is the case in Part IV).

b ∈ {0, 1}
V

U

7−→

b ∈ {0, 1}

V

U

|0⟩

17

Chapter 3 Algorithmic Preliminaries

Simulation of classical computation. The simulation of a classical circuit by a quantum
one requires to make the original circuit reversible (such that it can be extended by
linearity to a unitary transformation). The canonical way of doing that is to replace each
classical gate g : {0, 1}a → {0, 1}b with the reversible gate Rg : {0, 1}a+b → {0, 1}a+b

defined as Rg(x, y) = (x, y ⊕ g(x)). This process often increases the memory size of the
circuit. Bennett [Ben73] showed that any classical circuit that uses T gates and S bits of
memory can be turned into a reversible circuit that uses O(T) gates and O(T + S) bits of
memory. There exist other simulation techniques [Ben89; LS90; LMT00] that can lower
the memory size of the resulting reversible circuit at the cost of using more gates. For
instance, Bennett [Ben89] described a different construction that uses O(T 2) gates and
only O(S log T) bits of memory.

Measures of complexity. There exist several ways of measuring the performances of a
quantum circuit. We mention three measures that are used throughout this thesis. The
gate complexity of a circuit is defined as its total number of elementary gates. The query
complexity counts only the query gates. These two measures are often used to characterize
the computation time of an algorithm. The space complexity is defined as the number of
qubits on which the circuit is operating.

Circuit notations. If C is a unitary circuit then we represent the corresponding unitary
transformation with the symbol C as well. In particular, C|ψ⟩ is the state vector obtained
by running C on an initial state vector |ψ⟩, and C−1 is the inverse unitary transformation.
The transformation C−1 can be implemented by running the original circuit C backward,
where each quantum gate is replaced with its inverse. Given two circuits C and C′ operating
on the same quantum register, we let C ∥ C′ denote the concatenated circuit that runs C
first and then C′.

3.2 Amplitude amplification

The amplitude amplification algorithm [BHMT02] is a generalization of Grover’s quantum
search [Gro96a] to the problem of boosting the success probability of a unitary quantum
algorithm, quadratically faster than it is possible classically. The main property of this
algorithm is given below. This result corresponds to Equation (8) in [BHMT02].

Theorem 3.2.1 (Amplitude amplification, [BHMT02]). Let U be a unitary quantum
algorithm and let Π be a projection operator. Consider the angle θ ∈ [0, π2] and two
unit states |ψ0⟩, |ψ1⟩ such that sin(θ)|ψ1⟩ = ΠU |0⟩ and U |0⟩ = cos(θ)|ψ0⟩ + sin(θ)|ψ1⟩.
Then, for any integer t ≥ 0, the amplitude amplification algorithm implements a unitary
transformation AAmp(U,Π, t) that satisfies

AAmp(U,Π, t)|0⟩ = cos((2t+ 1)θ)|ψ0⟩+ sin((2t+ 1)θ)|ψ1⟩.

The algorithm uses t+ 1 applications of U , t applications of U †, and t applications of the
reflection operator I − 2Π.

If we let √p = sin(θ) denote the amplitude of the state |ψ1⟩ in U |0⟩, then the amplitude
amplification algorithm requires roughly 1/√p iterations to increase the amplitude of |ψ1⟩
to a constant number (whereas Ω(1/√p) repetitions of the original algorithm would be
necessary classically). We have the following quantitative result (used in Proposition 5.3.2).

18

3.2 Amplitude amplification

Corollary 3.2.2 (Lemma 5.2 in [AA05]). Under the hypothesis and notations of The-
orem 3.2.1, let p = sin2(θ) and p′ = sin2((2t + 1)θ) denote the squared amplitude
of |ψ1⟩ in U |0⟩ and AAmp(U,Π, t)|0⟩ respectively. If t ≤ π

4 arcsin √
p −

1
2 then p′ satis-

fies p′ ≥
(

1− (2t+1)2

3 p
)

(2t+ 1)2p.

Next, we present a variant of the amplitude amplification algorithm that does not
use a pre-defined number of computation steps. We call it the “sequential amplitude
amplification” algorithm in reference to sequential analysis. The original version of this
algorithm was analyzed in Theorem 3 of [BBHT98; BHMT02], with a bound on the
expected running time E[T]. We complement this result with a lower tail bound on T .
In order to simplify the analysis, we propose a slightly different version of the algorithm,
where a parameter t is sampled in an interval [λℓ−1, λℓ − 1] instead of [0, λℓ − 1]. The next
theorem is used in Lemma 4.3.2 and Proposition 7.4.2.

1. Set ℓ = 0 and λ = 6/5.

2. Increase ℓ by 1 and choose an integer t ∈ [λℓ−1, λℓ − 1] uniformly at random.

3. Apply the amplitude amplification algorithm AAmp(U,Π, t) to |0⟩ and measure
the state by using the projective measurement {I −Π,Π}. If the outcome is “Π”
then stop and output the obtained state. Otherwise, go to step 2.

Algorithm 3.2: Sequential amplitude amplification, Seq-AAmp(U,Π).

Theorem 3.2.3 (Sequential amplitude amplification). Let U be a unitary quantum
algorithm and let Π be a projection operator. Consider the number p ∈ [0, 1] and two unit
states |ψ0⟩, |ψ1⟩ such that √p|ψ1⟩ = ΠU |0⟩ and U |0⟩ =

√
1− p|ψ0⟩ + √p|ψ1⟩. If p > 0

then the sequential amplitude amplification algorithm Seq-AAmp(U,Π) (Algorithm 3.2)
outputs the state |ψ1⟩ with probability 1. Moreover, if we let T denote the number of
applications of U , U † and I − 2Π used by the algorithm, then
(1) E[T] ≤ O(1/√p).

(2) There is a universal constant c such that Pr
[
T < c/

√
p
]
≤ 1/10.

Proof. Let 0 ≤ θ ≤ π/2 be the angle such that √p = sin θ. We show the theorem in the
case where θ < π/4 (the case θ ≥ π/4 is easy to handle separately). Let Pℓ denote the
probability of obtaining “Π” (i.e. the state |ψ1⟩ is returned) at step 3 of the ℓ-th iteration.

We first prove part (1). Let ℓ+ =
⌈
logλ

(
λ

(λ−1) sin(2θ)

)⌉
. If ℓ ≥ ℓ+ then we have

Pℓ = 1
(λ−1)λℓ−1

∑λℓ−1
t=λℓ−1 sin2((2t+ 1)θ) ≥ 1

2 −
1

4(λ−1)λℓ−1 sin(2θ) ≥
1
4 where the equality is by

Theorem 3.2.1, the first inequality uses the same trigonometric identities as in the proof
of [BBHT98, Lemma 2], and the second one uses that ℓ ≥ ℓ+. Moreover, the algorithm
has used at most

∑ℓ
t=1 λ

t ≤ 5λℓ+1 applications of U , U † and I − 2Π after ℓ iterations of
step 3. Consequently, E[T] ≤

∑
ℓ≥ℓ+ 5λℓ+1(3/4)ℓ−ℓ+ ≤ O(λℓ+) ≤ O(1/√p).

We prove part (2). Let ℓ− =
⌊
logλ

(1
12θ
)⌋

. If ℓ ≤ ℓ− then Pℓ ≤ sin2((2(λℓ − 1) + 1)θ) ≤
4λ2ℓθ2 ≤ 1

36λ
2(ℓ−ℓ−), where the first inequality is by Theorem 3.2.1, and the second one

uses that sin(x) ≤ x for all x ∈ [0, π/2]. Thus, the probability that the algorithm stops
before the ℓ−-th iteration is at most

∑ℓ−

ℓ=1
1
36λ

2(ℓ−ℓ−) ≤ 1/10. Moreover, the algorithm has
used at least λℓ−−1 ≥ Ω(1/√p) applications of U , U † and I − 2Π after ℓ− iterations.

19

Chapter 3 Algorithmic Preliminaries

3.3 Amplitude estimation
The amplitude estimation algorithm [BHMT02] is a generalization of quantum count-
ing [BBHT98] to the problem of estimating the success probability of an algorithm. The
next result corresponds to Theorems 11 and 12 in [BHMT02].

Theorem 3.3.1 (Amplitude estimation, [BHMT02]). Let U be a unitary quantum
algorithm and let Π be a projection operator. Define the number p ∈ [0, 1] such that p =
∥ΠU |0⟩∥2. Then, for any integer t ≥ 0, the amplitude estimation algorithm AEst(U,Π, t)
outputs an amplitude estimate p̃ such that,

Pr
[
|p̃− p| ≤

2π
√
p(1− p)
t

+ π2

t2

]
≥ 8/π2.

If we let θ ∈ [0, π/2] denote the angle such that √p = sin θ, then Pr[p̃ = 0] = sin2(tθ)
t2 sin2(θ) . The

algorithm uses t applications of U , U †, I − 2Π and O(log2(t)) other 2-qubit quantum gates.

The next corollary gives an upper bound for the probability that the estimate p̃ is of an
order larger than p. This is similar in some sense to Markov’s inequality.

Corollary 3.3.2. Under the hypothesis and notations of Theorem 3.3.1, the output p̃ of
the amplitude estimation algorithm satisfies p̃ ≤ (1 + 2π)2p with probability at least 8/π2.

Proof. If t ≥ 1/(2√p) then Theorem 3.2.1 implies that p̃ ≤ p+4πp+4π2p2 ≤ (1+2π)2p with
probability at least 8/π2. If t < 1/(2√p) then let θ ∈ [0, π/2] denote the angle such that√
p = sin θ. Observe that θ ≤ π

2
√
p ≤ π

4t (using the standard inequality 2
πθ ≤ sin(θ)) and

sin2(tθ)
t2 sin2(θ) ≥

sin2(tπ/(4t))
t2 sin2(π/(4t)) ≥

sin2(π/4)
t2(π/(4t))2 = 8/π2, since x 7→ sin2(tx)/(t2 sin2(x)) is decreasing

for 0 < x ≤ π/t. Thus, p̃ is equal to 0 with probability at least 8/π2 when t < 1/(2√p),
according to Theorem 3.2.1.

We present a sequential version of the amplitude estimation algorithm that does not
need a time parameter t as input. This result was first obtained by [BHMT02, Theorem
15]. We describe a variant with two main additional properties: a bound on the expected
value of the estimate and of its inverse (part (2)) and a high-probability bound on the
running time (part (4)). These results are used in Proposition 4.5.1 and Proposition 5.3.4.

Theorem 3.3.3 (Sequential amplitude estimation). Let U be a unitary quantum
algorithm and let Π be a projection operator. Define the number p ∈ [0, 1] such that
p = ∥ΠU |0⟩∥2. Fix two reals ϵ, δ ∈ (0, 1/2). Then, the sequential amplitude estimation
algorithm Seq-AEst(U,Π, ϵ, δ) (Algorithm 3.3) outputs an amplitude estimate p̃ and uses a
number T of applications of U , U †, I − 2Π such that,

(1) Pr[|p̃− p| > ϵp] ≤ δ.

(2) E[1/p̃] ≤ O(1/p) and E[
√
p̃] ≤ O(√p).

(3) E[T] ≤ O
(

log(1/δ)
ϵ
√
p

)
.

(4) There is a universal constant c such that Pr
[
T > c log(1/δ)

ϵ
√
p

]
≤ δ.

Moreover, it uses O(log2(T)) other 2-qubit quantum gates.

20

3.3 Amplitude estimation

1. Set ℓ = 0 and λ = 6/5.

2. Increase ℓ by 1.
a) For i = 1, . . . , 24⌈log(5/δ)⌉: choose an integer ti ∈ [λℓ−1, λℓ− 1] uniformly at

random, apply the amplitude amplification algorithm AAmp(U,Π, ti) to |0⟩
and measure the state by using the projective measurement {I −Π,Π}. If
the outcome is “Π” then set b(ℓ)

i = 1, else set b(ℓ)
i = 0.

b) Let b(ℓ) =
∑24⌈log(5/δ)⌉

i=1 b
(ℓ)
i

24⌈log(5/δ)⌉ . If b(ℓ) < 1/12 then go to step 2, else set q = λ−2ℓ.

3. For j = 1, . . . , 6⌈log(2/δ)⌉: compute an estimate p̃j by using the amplitude
estimation algorithm AEst

(
U,Π,

⌈ 400
ϵ
√
q

⌉)
. Set q′ = median(p̃1, . . . , p̃6⌈log(2/δ)⌉)

4. Output p̃ = median(2−12q, q′, 9q).

Algorithm 3.3: Sequential amplitude estimation, Seq-AEst(U,Π, ϵ, δ).

Proof. Let 0 ≤ θ ≤ π/2 be the angle such that √p = sin θ and define ℓ− =
⌊
logλ

(1
12θ
)⌋

and ℓ+ =
⌈
logλ

(
λ

(λ−1) sin(2θ)

)⌉
(assuming θ < π/4, the case θ ≥ π/4 is easy to handle

separately). Let Pℓ denote the probability of obtaining b
(ℓ)
i = 1 at step 2.a. We have

shown in the proof of Theorem 3.2.3 that Pr[b(ℓ)
i = 1] ≥ 1/4 when ℓ ≥ ℓ+, and Pr[b(ℓ)

i =
1] ≤ 1

36λ
2(ℓ−ℓ−) when ℓ ≤ ℓ−. We show that the average b(ℓ) computed at step 2.b satisfies

(i) Pr[b(ℓ) < 1/12] ≤ δ/5 if ℓ ≥ ℓ+, (ii) Pr[b(ℓ) ≥ 1/12] ≤ (δ/5)ℓ−−ℓ if ℓ ≤ ℓ−.

Part (i) is obtained by the additive Chernoff bound. Part (ii) is obtained by Pr[b(ℓ) ≥
1/12] ≤

(24⌈log(5/δ)⌉
2⌈log(5/δ)⌉

)
P

2⌈log(5/δ)⌉
ℓ ≤ (12e

36 λ
2(ℓ−ℓ−))2⌈log(5/δ)⌉ ≤ (δ/5)ℓ−−ℓ, where we used that(

n
k

)
≤ (en/k)k for all k ≤ n, and λ4 > 2.

We now prove that the estimate q obtained at step 2.b satisfies the three properties:

(a) Pr[p/6 ≤ q ≤ 211p] ≥ 1− δ/2, (b) E[1/q] ≤ O(1/p), (c) E[√q] ≤ O(√p).

The algorithm sets q = λ−2ℓ when b(ℓ) ≥ 1/12. Consequently, by (i) and (ii), we
have Pr[q > λ−2ℓ−] ≤

∑
ℓ<ℓ−(δ/5)ℓ−−ℓ ≤ δ/4 and Pr[q < λ−2ℓ+] ≤ δ/5. Moreover,

λ−2ℓ+ ≥ (λ−1)2

λ4 sin2(2θ) ≥ p/6, and λ−2ℓ− ≤ (12λθ)2 ≤ 211p since x ≤ (π/2) sin(x)
when x ∈ [0, π/2]. This proves part (a). Parts (b) and (c) are obtained by E[1/q] ≤∑

ℓ≥ℓ+ λ
2ℓ(δ/5)ℓ−ℓ+ ≤ O(λ2ℓ+) and E[√q] ≤

∑
ℓ≤ℓ− λ

−ℓ(δ/5)ℓ−−ℓ ≤ O(λ−ℓ−).
We finally prove the different parts of the theorem. If q ≤ 211p then Pr[|p̃j − p| ≤ ϵp] ≥

8/π2 for each j at step 3 according to Theorem 3.3.1. In this case, by the median trick,
we have Pr[|q′ − p| > ϵp] ≤ δ/2. Part (1) is deduced from Pr[|p̃− p| ≤ ϵp] ≥ Pr[|q′ − p| ≤
ϵp and 2−12q ≤ q′ ≤ 9q] ≥ Pr[|q′−p| ≤ ϵp and p/6 ≤ q ≤ 211p] ≥ 1− δ, where we used (a)
for the last inequality. Part (2) is deduced from (b), (c) and the fact that 2−12q ≤ p̃ ≤ 9q
(by definition of step 4). Finally, parts (3) and (4) are deduced from (a), (b) and the
fact that T = O

(
log(1/δ)
ϵ
√
q

)
.

21

Part II

Quantum Algorithms for
Estimating Average Values

23

4
Mean Estimation Problem

This chapter is based on the following papers:

[HM19] Y. Hamoudi and F. Magniez. “Quantum Chebyshev’s Inequality and Appli-
cations”. In: Proceedings of the 46th International Colloquium on Automata,
Languages, and Programming (ICALP). 2019, 69:1–69:16.

[Ham21] Y. Hamoudi. “Quantum Sub-Gaussian Mean Estimator”. In: Proceedings of
the 29th European Symposium on Algorithms (ESA). 2021.

4.1 Introduction
The problem of estimating the mean µ of a real-valued random variable X given i.i.d.
samples from it is one of the most basic tasks in statistics and in the Monte Carlo method.
The properties of the various classical mean estimators are well understood. The standard
non-asymptotic criterion used to assess the quality of an estimator is formulated as
the following high probability deviation bound: upon performing t random experiments
that return t samples from X, and given a failure probability δ ∈ (0, 1), what is the
smallest error ϵ(t, δ,X) such that the output µ̃ of the estimator satisfies |µ̃−µ| > ϵ(t, δ,X)
with probability at most δ? Under the standard assumption that the unknown random
variable X has a finite variance σ2, the best possible performances are obtained by the
so-called sub-Gaussian estimators [LM19] that achieve the following deviation bound

Pr
[
|µ̃− µ| > L

√
σ2 log(1/δ)

t

]
≤ δ (4.1)

for some constant L. The term “sub-Gaussian” reflects that these estimators have a
Gaussian tail even for non-Gaussian distributions. The most well-known sub-Gaussian
estimator is arguably the median-of-means [NY83; JVV86; AMS99], which consists of
partitioning the t samples into roughly log(1/δ) groups of equal size, computing the
empirical mean over each group, and returning the median of the obtained means.

The process of generating a random sample from X is generalized in the quantum
model by assuming the existence of a unitary operator U where U |0⟩ coherently encodes
the distribution of X. A quantum experiment is then defined as one application of this
operator or its inverse. The celebrated quantum amplitude estimation algorithm [BHMT02]
provides a way to estimate the mean of any Bernoulli random variable by performing fewer
experiments than with any classical estimator. Yet, for general distributions, the existing
quantum mean estimators either require additional information on the variance [Hei02;
Mon15; HM19] or are less performant than the classical sub-Gaussian estimators when
the distribution is heavy tailed [BHMT02; Ter99; BDGT11; Mon15]. These results leave

25

Chapter 4 Mean Estimation Problem

open the existence of a general quantum speedup for the mean estimation problem. We
address this question by introducing the concept of quantum sub-Gaussian estimators,
defined through the following deviation bound

Pr
[
|µ̃− µ| > L

σ log(1/δ)
t

]
≤ δ (4.2)

for some constant L. We give the first construction of a quantum estimator that achieves
this bound up to a logarithmic factor in t. Additionally, we prove that it is impossible to
go below that deviation level. This result provides a clear equivalent of the concept of
sub-Gaussian estimator in the quantum setting.

A second important family of mean estimators addresses the (ϵ, δ)-approximation prob-
lem, where given a fixed relative error ϵ ∈ (0, 1) and a failure probability δ ∈ (0, 1) the
goal is to output a mean estimate µ̃ such that

Pr[|µ̃− µ| > ϵ|µ|] ≤ δ. (4.3)

The aforementioned sub-Gaussian estimators do not quite answer this question since
the number of experiments they require (respectively t = Ω

(
(σϵµ)2 log(1/δ)

)
and t =

Ω̃
(
σ
ϵ|µ| log(1/δ)

)
) depends on the unknown quantities σ and µ. Sometimes a good upper

bound is known on the coefficient of variation |σ/µ| and can be used to parametrize
a sub-Gaussian estimator. Otherwise, the standard approach is based on sequential
analysis techniques, where the number of experiments is chosen adaptively depending
on the results of previous computations. Given a random variable distributed in [0, 1],
the optimal classical estimators perform Θ

(((
σ
ϵµ

)2 + 1
ϵµ

)
log(1/δ)

)
random experiments

in expectation [DKLR00] for computing an (ϵ, δ)-approximation of µ. We construct a
quantum estimator that reduces this number to Θ̃

((
σ
ϵµ + 1√

ϵµ

)
log(1/δ)

)
and we prove

that it is optimal. We also consider the situation where a non-increasing function f is
known such that f(µ) ≥ σ/µ. In that case, we present an estimator that performs roughly
Õ
(f(cµ)

ϵ log(1/δ)
)

quantum experiments with high probability for some constant c.

4.1.1 Related work

There is an extensive literature on classical sub-Gaussian estimators and we refer the
reader to [LM19; Cat12; BCL13; DLLO16; LV20] for an overview of the main results
and recent improvements. We point out that the empirical mean estimator is not sub-
Gaussian, although it is optimal for Gaussian random variables [SV05; Cat12]. The
non-asymptotic performances of the empirical mean estimator are captured by several
standard concentration bounds such as those presented in Section 2.2.

There is a series of quantum mean estimators [Gro98; AW99; BDGT11] that get close
to the bound Pr

[
|µ̃− µ| > L log(1/δ)

t

]
≤ δ for any random variable distributed in [0, 1] and

some constant L. Similar results hold for numerical integration problems [AW99; Nov01;
Hei02; TW02; Hei03]. The amplitude estimation algorithm [BHMT02; Ter99] leads to a
sharper bound of Pr

[
|µ̃− µ| > L

(√
µ(1−µ) log(1/δ)

t + log(1/δ)2

t2

)]
≤ δ (see Proposition 4.4.1)

when X is distributed in [0, 1]. Nevertheless, the quantity µ(1−µ) is always larger than or
equal to the variance σ2. The question of improving the dependence on σ2 was considered
in [Hei02; Mon15; HM19]. The estimators of [Hei02; Mon15] require us to know an upper
bound Σ on the standard deviation σ, whereas [HM19] uses an upper bound V on the
coefficient of variation σ/µ (for non-negative random variables). The performances of

26

4.1 Introduction

these estimators are captured (up to logarithmic factors) by the deviation bound given in
Equation (4.2) with σ replaced by Σ and µV respectively.

The (ϵ, δ)-approximation problem has been addressed by several classical works such as
[DKLR00; MSA08; GNP13; Hub19]. In the quantum setting, there is a variant [BHMT02,
Theorem 15] of the amplitude estimation algorithm that performs O(log(1/δ)/(ϵ√µ))
experiments in expectation and computes an (ϵ, δ)-approximate of the mean of any random
variables distributed in [0, 1] (see Theorem 3.3.3 and Proposition 4.5.1). However, the
complexity of this estimator does not scale with σ. Given an upper bound V on σ/µ,
the estimator of [HM19] can be used to compute an (ϵ, δ)-approximate with roughly
Õ(V log(1/δ)/ϵ) quantum experiments.

We note that the related problem of estimating the mean with additive error ϵ, that is
Pr[|µ̃− µ| > ϵ] ≤ δ, has also been considered by several authors. The optimal number of
experiments is Θ(log(1/δ)/ϵ2) classically [CEG95] and Θ(1/ϵ) quantumly [NW99] (with
failure probability δ = 1/3). These bounds do not depend on unknown parameters (as
opposed to the relative error case), thus sequential analysis techniques are unnecessary here.
Montanaro [Mon15] also described an estimator that performs Õ(Σ log(1/δ)/ϵ) quantum
experiments given an upper bound Σ on the standard deviation σ.

4.1.2 Contributions and organization
We first formally define the input model in Section 4.2. We introduce the concept of
“q-random variable” (Definition 4.2.3) to describe a random variable that corresponds to
the output of a quantum computation. We measure the complexity of an algorithm by
counting the number of quantum experiments (Definition 4.2.4) it performs with respect
to a q-random variable.

We construct a quantum algorithm for estimating the quantiles of a q-random variable
in Section 4.3, and we use it in Section 4.4 to design the following quantum sub-Gaussian
estimator.

Theorem 4.4.2 (Restated). There exists a quantum algorithm with the following proper-
ties. Let X be a q-random variable with mean µ and variance σ2, and set as input a time
parameter t and a real δ ∈ (0, 1) such that t ≥ log(1/δ). Then, the algorithm outputs a mean
estimate µ̃ such that, Pr

[
|µ̃− µ| > σ log(1/δ)

t

]
≤ δ, and it performs O(t log3/2(t) log log(t))

quantum experiments. Moreover, if X is non-negative then Pr[µ̃ ≤ (2 + 2π)2µ] ≥ 1− δ.

We prove in Section 4.6.1 that the above estimator is nearly optimal (Theorem 4.6.2).
Then we turn our attention to the (ϵ, δ)-approximation problem in Section 4.5. We first
construct an estimator that requires no prior information about the input random variable,
except that it is distributed in [0, 1]. The number of experiments performed by this
estimator is chosen adaptively, and the bound we get is stated in expectation.

Theorem 4.5.2 (Restated). There exists a quantum algorithm with the following proper-
ties. Let X be a q-random variable distributed in [0, 1] with mean µ and variance σ2, and
set as input two reals ϵ, δ ∈ (0, 1). Then, the algorithm outputs a mean estimate µ̃ such
that Pr[|µ̃− µ| > ϵµ] ≤ δ, and it performs Õ

((
σ
ϵµ + 1√

ϵµ

)
log(1/δ)

)
quantum experiments

in expectation.

We prove a nearly matching lower bound in Proposition 4.6.4. We also consider the
(ϵ, δ)-approximation problem when some information is available on the coefficient of
variation |σ/µ|. The objective is to remove the above dependency on 1/√ϵµ. We use our
sub-Gaussian estimator to simplify two results previously shown in [HM19]. First, we

27

Chapter 4 Mean Estimation Problem

assume the knowledge of an upper bound V on |σ/µ| and we obtain the next result that
follows directly from Theorem 4.4.2.

Corollary 4.5.3 (Restated). There exists a quantum algorithm with the following proper-
ties. Let X be a q-random variable with mean µ and variance σ2, and set as input a value
V ≥ |σ/µ| and two reals ϵ, δ ∈ (0, 1). Then, the algorithm outputs a mean estimate µ̃ such
that Pr[|µ̃− µ| > ϵ|µ|] ≤ δ, and it performs Õ

(V
ϵ log(1/δ)

)
quantum experiments.

Then, we assume the knowledge of a non-increasing function f such that f(µ) ≥ σ/µ.
Although f(µ) is unknown a priori, we present an algorithm to approximate it with high
success probability (Theorem 4.5.5). As a result, we obtain a variant of the above corollary
where V is replaced with a term on the order of f(µ) (Corollary 4.5.6).

Finally, we prove several lower bounds for the mean estimation problem in Section 4.6.
In particular, we consider the weaker input model where one is given copies of a quantum
state encoding the distribution of X. We prove that no quantum speedup is achievable in
this setting (Theorem 4.6.6).

4.1.3 Proof overview

Sub-Gaussian estimator. Our approach (Theorem 4.4.2) combines several ideas used
in previous classical and quantum mean estimators. In this section, we simplify the
exposition by assuming that the random variable X is non-negative and by replacing the
variance σ2 with the second moment E[X2]. We also take the failure probability δ to be a
small constant. Our starting point is a variant of the truncated mean estimators [Bic65;
BCL13; LM19]. Truncation is a process that consists of replacing the samples larger
than some threshold value with a smaller number. This has the effect of reducing the
tail of the distribution, but also of changing its expectation. Here we study the effect
of replacing the values larger than some threshold b with 0, which corresponds to the
new random variable Y = X1X≤b. We consider the following classical sub-Gaussian
estimator that we were not able to find in the literature: set b =

√
tE[X2] and compute

the empirical mean of t samples from Y . By a simple calculation, one can prove that the
expectation of the removed part is at most E[X − Y] ≤ E[X2]/b =

√
E[X2]/t. Moreover,

using Bernstein’s inequality and the boundedness of Y , the error between the output
estimate and E[Y] is on the order of

√
E[X2]/t. These two facts together imply that the

overall error for estimating E[X] is indeed of a sub-Gaussian type. This approach can be
carried out in the quantum model by performing the truncation in superposition. This
is similar to what is done in previous quantum mean estimators [Hei02; Mon15; HM19].
In order to obtain a quantum speedup, one must balance the truncation level differently
by taking b = t

√
E[X2]. Then, by a clever use of amplitude estimation discovered by

Heinrich [Hei02], the expectation of Y can be estimated with an error on the order of√
E[X2]/t. The main drawback of this estimator is that it requires the knowledge of E[X2]

to perform the truncation. In previous work [Hei02; Mon15; HM19], the authors made
further assumptions on the variance to be able to approximate b. Here, we overcome
this issue by choosing the truncation level b differently. Borrowing ideas from classical
estimators [LM19], we define b as the quantile value that satisfies Pr[X ≥ b] = 1/t2. This
quantile is always smaller than the previous threshold value t

√
E[X2]. Moreover, it can be

shown that the removed part E[X − Y] is still on the order of
√
E[X2]/t. We give a new

quantum algorithm for approximating this quantile with roughly t quantum experiments
(Theorem 4.3.4), whereas it would require t2 random experiments classically. Our quantile
estimation algorithm builds upon the quantum minimum finding algorithm of Dürr and

28

4.1 Introduction

Høyer [DH96; AGGW20b] and the kth-smallest element finding algorithm of Nayak and
Wu [NW99]. Importantly, it does not require any knowledge about E[X2].

(ϵ, δ)-Approximation without side information. We follow an approach similar to that
of a classical estimator described in [DKLR00]. Our algorithm (Theorem 4.5.2) uses
the quantum sub-Gaussian estimator and the quantum sequential Bernoulli estimator
described in Proposition 4.5.1. The latter estimator can estimate the mean µ of a
random variable X distributed in [0, 1] with constant relative error by performing O(1/√µ)
quantum experiments in expectation. The first step of the (ϵ, δ)-approximation algorithm
is to compute a rough estimate m of µ with the sequential Bernoulli estimator. Then,
the variance σ2 of X is estimated by using again the sequential Bernoulli estimator on
the random variable (X − X ′)/2 (where X ′ is an independent copy of X). The latter
estimation is stopped if it uses more than O(1/

√
ϵm) quantum experiments. We show

that if σ2 ≥ Ω(ϵµ) then the computation is not stopped and the resulting estimate σ̃2

is close to σ2 with high probability. Otherwise, it is stopped with high probability and
we set σ̃ = 0. Finally, the quantum sub-Gaussian estimator is used with the parameter
t ≈ max

(
σ̃
ϵm ,

1√
ϵm

)
to obtain a refined estimate µ̃ of µ. The choice of the first (resp.

second) term in the maximum value implies that |µ̃− µ| ≤ ϵµ with high probability when
the variance σ2 is larger (resp. smaller) than ϵµ. In order to upper bound the expected
number of experiments performed by this estimator, we show in Proposition 4.5.1 that the
estimates m and σ̃ obtained with the sequential Bernoulli estimator satisfy the expectation
bounds E[1/m] ≤ 1/µ, E[σ̃] ≤ σ and E[1/

√
m] ≤ 1/√µ.

(ϵ, δ)-Approximation with information on the coefficient of variation. We explain how
the knowledge of a non-increasing function f such that f(µ) ≥ σ/µ can help to solve the
(ϵ, δ)-approximation problem (Theorem 4.5.5). If f(µ) were known, it would suffice to
run the quantum sub-Gaussian estimator with t = f(µ)/ϵ · log(1/δ). We cannot find f(µ)
exactly, but we show how to compute a value V such that f(µ) ≤ V ≤ f(cµ) for some
constant c with high probability. Our approach is again based on sequential analysis. We
instantiate the quantum sub-Gaussian estimator with t = f(2−ℓ) log(2ℓ/δ) to obtain an
estimate µ̃ℓ of µ for increasing values of ℓ. We stop this process when we observe a value µ̃ℓ
that is larger than 2−ℓ, and we take V ≈ f(2−ℓ). It is easy to see that when ℓ is sufficiently
large the estimate µ̃ℓ is close to µ by property of the sub-Gaussian estimator. More
precisely, if 2−ℓ ≤ µ/2 then we have µ̃ℓ ≥ (3/4)µ ≥ 2−ℓ with high probability. Hence the
algorithm is likely to stop with ℓ ≤ log(2/µ). The challenging part is to prove that it does
not stop too early. For this purpose, we use another property of the quantum sub-Gaussian
estimator, which says that the output estimate is smaller than (2 + 2π)2µ with high
probability whatever t is (Theorem 4.4.2). This can be seen as a weak version of Markov’s
inequality. It implies that when (2 + 2π)2µ ≤ 2−ℓ the estimate µ̃ℓ is smaller than 2−ℓ with
high probability. Hence the algorithm is likely to stop with ℓ ≥ log(1/((2 + 2π)2µ)).

Lower bounds. We sketch the proof of optimality of the quantum sub-Gaussian estimator
(Theorem 4.6.2). The lower bound is proved in the stronger quantum query model, which
allows us to extend it to all the other models mentioned in Section 4.2. Our approach is
inspired by the truncation level chosen in the algorithm. Given σ and t, we consider the two
distributions p0 and p1 that output respectively tσ√

1−1/t2
and −tσ√

1−1/t2
with probability 1/t2,

and 0 otherwise. The two distributions have variance σ2 and the distance between their
means is larger than 2σ

t . Thus, any estimator that satisfies the bound Pr
[
|µ̃− µ| > σ

t

]
≤ 1

3

29

Chapter 4 Mean Estimation Problem

can distinguish between p0 and p1 with constant success probability. However, we show
by a reduction to Quantum Search that it requires at least Ω(t) quantum experiments to
distinguish between two distributions that differ with probability at most 1/t2.

4.2 Model of input

The input to the mean estimation problem is represented by a real-valued random vari-
able X defined on some probability space. A classical estimator accesses this input by
obtaining t i.i.d samples of X. In this section, we describe the access model for quantum
estimators and we compare it to previous models suggested in the literature. We only
consider finite probability spaces for finite encoding reasons. First, we recall the definition
of a random variable, and we define a classical model of access called a random experiment.

Definition 4.2.1 (Random variable). A finite random variable is a function X : Ω→ E
for some probability space (Ω, p), where Ω is a finite sample set, p : Ω→ [0, 1] is a probability
mass function and E ⊂ R is the support of X. As is customary, we will often omit to
mention (Ω, p) when referring to the random variable X.

Definition 4.2.2 (Random experiment). Given a random variable X on a probability
space (Ω, p), we define a random experiment as the process of drawing a sample ω ∈ Ω
according to p and observing the value of X(ω).

We now introduce the concept of “q-random variable” to represent a quantum process
that outputs a real number.

Definition 4.2.3 (q-random variable). A q-variable is a triple (H, U,M) where H is a
finite-dimensional Hilbert space, U is a unitary transformation on H, and M = {Mx}x∈E is
a projective measurement on H indexed by a finite set E ⊂ R. Given a random variable X
on a probability space (Ω, p), we say that a q-variable (H, U,M) generates X when,

(1) H is a finite-dimensional Hilbert space with some basis {|ω⟩}ω∈Ω indexed by Ω.

(2) U is a unitary transformation on H such that U |0⟩ =
∑

ω∈Ω
√
p(ω)|ω⟩.

(3) M = {Mx}x is the projective measurement on H defined by Mx =
∑

ω:X(ω)=x|ω⟩⟨ω|.

A random variable X is a q-random variable if it is generated by some q-variable (H, U,M).

We stress that the sample space Ω may not be known explicitly, and we do not assume
that it is easy to perform a measurement in the {|ω⟩}ω∈Ω basis for instance. Often, we
are given a unitary U such that U |0⟩ =

∑
x∈E

√
p(x)|ψx⟩|x⟩ for some unknown garbage

unit state |ψx⟩, together with the measurement M = {I ⊗ |x⟩⟨x|}x∈E . In this case, we
can consider the q-random variable X defined on the probability space (Ω, p) where
Ω = {|ψx⟩|x⟩}x∈E and X(|ψx⟩|x⟩) = x. This model is similar to previous work [Mon15;
HM19; Bel19; GL20]. The much stronger assumption of having a unitary U such that
U |0⟩ =

∑
x∈E

√
Pr[X = x]|x⟩ is studied in [AT07; Bel19] for example.

We make two minimal assumptions on the type of computations that can be performed
on the Hilbert space H. We assume the existence of a comparison oracle (Assumption 4.A)
and a rotation oracle (Assumption 4.B). These two oracles have also been used in previous
work on quantum mean estimation [Ter99; NW99; BDGT11; Mon15; HM19].

30

4.3 Quantile estimation

Assumption 4.A (Comparison oracle). Given a q-random variable X on a probability
space (Ω, p), and any two values a, b ∈ R ∪ {−∞,+∞} such that a < b, there is a unitary
operator Ca,b acting on H⊗ C2 such that for all ω ∈ Ω,

Ca,b(|ω⟩|0⟩) =
{
|ω⟩|1⟩ when a < X(ω) ≤ b,
|ω⟩|0⟩ otherwise.

Assumption 4.B (Rotation oracle). Given a q-random variable X on a probability
space (Ω, p), and any two reals 0 ≤ a < b, there is a unitary operator Ra,b acting on
H⊗ C2 such that for all ω ∈ Ω,

Ra,b(|ω⟩|0⟩) =

|ω⟩
(√

1−
∣∣∣X(ω)

b

∣∣∣|0⟩+
√∣∣∣X(ω)

b

∣∣∣|1⟩) when a < X(ω) ≤ b,

|ω⟩|0⟩ otherwise.

We now define the measure of complexity used to count the number of accesses to a
q-random variable, which are referred to as quantum experiments.

Definition 4.2.4 (Quantum experiment). Let X be a q-random variable that satisfies
Assumptions 4.A and 4.B. Let (H, U,M) be a q-variable that generates X. We define a
quantum experiment as the process of applying any of the unitaries U , Ca,b, Ra,b (for any
values of a < b), their inverses or their controlled versions, or performing a measurement
according to M .

Note that a random experiment (Definition 4.2.2) can be simulated with two quantum
experiments by computing the state U |0⟩ and measuring it according to M . We briefly
mention two other possible input models. First, some authors [Gro98; NW99; Hei02;
BHH11; CFMW10; BDGT11; LW19] considered the case where p is the uniform distribution
and a quantum oracle is provided for the function ω 7→ X(ω). A second model studies
the problem of learning from quantum states [BJ99; AW18; ABC+20], where the input
consists of several copies of

∑
x∈E

√
Pr[X = x]|x⟩. In this model, it is not possible to

use quantum subroutines such as the amplitude estimation algorithm since we do not
have access to a unitary preparing the state. In fact, we show in Theorem 4.6.6 that no
quantum speedup is achievable for our problem in the latter setting.

4.3 Quantile estimation
In this section, we present a quantum algorithm for estimating the quantiles of a finite
random variable X. This is a key ingredient for the sub-Gaussian estimator of Section 4.4.
For the convenience of reading, we define a quantile in the following non-standard way
(the cumulative distribution function is replaced with its complement).

Definition 4.3.1 (Quantile). Given a discrete random variable X and a real p ∈ [0, 1],
the quantile of order p is the number Q(p) = sup{x ∈ R : Pr[X ≥ x] ≥ p}.

Our result is inspired by the minimum finding algorithm of Dürr and Høyer [DH96]
and its generalization in [AGGW20b]. The problem of estimating the quantiles of a set of
numbers under the uniform distribution was studied before by Nayak and Wu [NW99;
Nay99]. We differ from that work by allowing arbitrary distributions, and by not using
the amplitude estimation algorithm. On the other hand, we restrict ourselves to finding a
constant factor estimate, whereas [NW99; Nay99] can achieve any wanted accuracy.

31

Chapter 4 Mean Estimation Problem

The idea behind our algorithm is rather simple: if we compute a sequence of values
−∞ = y0 ≤ y1 ≤ y2 ≤ y3 ≤ . . . where each yj+1 is sampled from the distribution of X
conditioned on yj+1 ≥ yj , then when j ≃ log(1/p) the value of yj should be close to
the quantile Q(p). The complexity of sampling each yj is on the order of 1/Pr[X ≥ yj]
classically, but it can be done quadratically faster in the quantum setting. We analyze
a slightly different algorithm, where the sequence of samples is strictly increasing and
instead of stopping after roughly log(1/p) iterations we count the number of experiments
performed by the algorithm and stop when it reaches a value close to 1/√p. This requires
showing that the times Tj spent on sampling yj is neither too large nor too small with
high probability, which is proved in the next lemma.

Lemma 4.3.2. There is a quantum algorithm such that, given a q-random variable X
and a value x ∈ R ∪ {−∞,+∞}, it outputs a sample y from the probability distribution
of X conditioned on y > x. If we let T denote the number of quantum experiments
performed by this algorithm, then there exist two universal constants c0 < c1 such that
E[T] ≤ c1/

√
Pr[X > x] and Pr[T < c0/

√
Pr[X > x]] ≤ 1/10.

Proof. Let (H, U,M) be a q-variable generating X. We use the comparison oracle Cx,+∞
from Assumption 4.A to construct the unitary V = Cx,+∞(U ⊗ I) acting on H⊗ C2. By
definition of Cx,+∞ and U (Section 4.2), we have that V |0⟩ =

∑
ω∈Ω:X(ω)≤x

√
p(ω)|ω⟩|0⟩+∑

ω∈Ω:X(ω)>x
√
p(ω)|ω⟩|1⟩ =

√
1− Pr[X > x]|ϕ0⟩|0⟩ +

√
Pr[X > x]|ϕ1⟩|1⟩ for some unit

states |ϕ0⟩, |ϕ1⟩ where |ϕ1⟩ = 1√
Pr[X>x]

∑
ω:X(ω)>x

√
p(ω)|ω⟩. The algorithm for sampling y

conditioned on y > x consists of two steps. First, we use the sequential amplitude
amplification algorithm Seq-AAmp(V, I ⊗ |1⟩⟨1|) from Theorem 3.2.3 on V to obtain the
state |ϕ1⟩. Next, we measure |ϕ1⟩ according to M . The claimed properties follow directly
from Theorem 3.2.3.

We use the next formula for the probability that a value x occurs in the sequence (yj)j
defined before. This lemma is adapted from [DH96, Lemma 1].

Lemma 4.3.3 (Lemma 47 in [AGGW20b]). Let X be a discrete random variable. Consider
the increasing sequence of random variables Y0, Y1, Y2, . . . where Y0 is a fixed value and Yj+1
for j ≥ 0 is a sample drawn from X conditioned on Yj+1 > Yj. Then, for any x, y ∈ R,

Pr[x ∈ {Y1, Y2, . . .} | Y0 = y] =
{

Pr[X = x |X ≥ x] when x > y,
0 otherwise.

The quantile estimation algorithm is described in Algorithm 4.1 and its analysis is
provided in the next theorem.

Theorem 4.3.4 (Quantile estimation). Let X be a q-random variable. Given two reals
p, δ ∈ (0, 1), the approximate quantile Q̃ produced by the quantile estimation algorithm
Quantile(X, p, δ) (Algorithm 4.1) satisfies

Q(p) ≤ Q̃ ≤ Q(cp)

with probability at least 1− δ, where c < 1 is a universal constant. The algorithm performs
O
(

log(1/δ)√
p

)
quantum experiments.

Proof. Let c0, c1 be the universal constants mentioned in Lemma 4.3.2, and set c =
c2

0/(c2
1
√

191) and c′ = 190c1. Fix i and consider the sequence (yj)j≥0 that would be

32

4.3 Quantile estimation

1. Repeat the following steps for i = 1, 2, . . . , ⌈6 log(1/δ)⌉.
a) Set y0 = −∞ and initialize a counter C = 0 that is incremented each time

a quantum experiment is performed.
b) Set j = 1. Repeat the following process and interrupt it when C = c′/

√
p

(where c′ is a constant chosen in the proof of Theorem 4.3.4): sample an
element yj+1 from X conditioned on yj+1 > yj by using the algorithm of
Lemma 4.3.2, set j ← j + 1.

c) Set Q̃(i) = yj .

2. Output Q̃ = median(Q̃(1), . . . , Q̃(⌈6 log(1/δ)⌉)).

Algorithm 4.1: Quantile estimation algorithm, Quantile(X, p, δ).

computed during the i-th execution of steps 1.a-1.c if the stopping condition on C was
removed. We prove that immediately after the c′/

√
p-th quantum experiment is performed

(which may occur during the computation of yj+1), the current value of yj satisfies
Q(p) ≤ yj ≤ Q(cp) with probability at least (9/10)2. The analysis is done in two parts.

First, let x− = Q(p) and denote by T− the number of experiments performed until yj
becomes larger than or equal to x−. According to Lemma 4.3.3, the probability that a
given x occurs in the sequence (yj)j≥0 is equal to Pr[X = x |X ≥ x]. Moreover, using
Lemma 4.3.2, the expected number of experiments performed at step 1.b when yj = x is
at most c1/

√
Pr[X > x]. Consequently, we have

E[T−] ≤ c1
∑
x<x−

Pr[X = x |X ≥ x]√
Pr[X > x]

.

Suppose that Q(1) ̸= x− (otherwise T− = 0). We upper bound the above sum by splitting
it into several parts as follows. Define Qk = Q(2−k) for k ≥ 0 and let ℓ be the largest
integer such that Q(2−ℓ) < x−. For each 1 ≤ k ≤ ℓ such that Qk−1 ̸= Qk, we have∑

Qk−1≤x<Qk

Pr[X = x |X ≥ x]√
Pr[X > x]

≤ 1√
Pr[X > Qk−1]

+
∑

Qk−1<x<Qk

Pr[X = x]
Pr[X > x]3/2

≤ 1√
Pr[X ≥ Qk]

+ Pr[X > Qk−1]
Pr[X ≥ Qk]3/2

≤ 1√
2−k

+ 2−(k−1)

2−3k/2

≤ 2k/2+2.

Similarly,
∑

Qℓ≤x<x−
Pr[X=x|X≥x]√

Pr[X>x]
≤ 2ℓ/2 + 2−ℓ+1/p3/2. Thus, E[T−] ≤ c1

(∑ℓ
k=1 2k/2+2 +

2ℓ/2 + 2−ℓ+1/p3/2) ≤ 19c1/
√
p where we used that log(1/p) − 1 ≤ ℓ < log(1/p) since

Qℓ < Q(p) ≤ Qℓ+1. By Markov’s inequality, Pr[T− ≤ 190c1/
√
p] ≥ 9/10.

Secondly, let x+ = Q(cp) and denote by T+ the number of experiments performed at
step 1.b to sample yj+1 when yj ≥ x+. According to Lemma 4.3.2, we have Pr[T+ ≥
c0/
√

Pr[X > yj]] ≥ 9/10. Moreover, Pr[X > yj] ≤ cp = c2
0/(c2

1
√

191)p by definition of x+.
Thus, Pr[T+ ≥ 191c1/

√
p] ≥ 9/10.

33

Chapter 4 Mean Estimation Problem

We conclude that step 1.b is interrupted when the value Q̃(i) satisfies Q(p) ≤ Q̃(i) ≤ Q(cp)
with probability at least (9/10)2. Thus, by the median trick, the output Q̃ satisfies
Q(p) ≤ Q̃ ≤ Q(cp) with probability at least 1 − δ. The total number of experiments is
guaranteed to be O(log(1/δ)/√p) by our use of the counter C.

4.4 Sub-Gaussian estimator
In this section, we present the main quantum algorithm for estimating the mean of a
random variable with a near-quadratic speedup over the classical sub-Gaussian estimators.
Our result uses the following Bernoulli estimator, which is an easy adaptation of the
amplitude estimation algorithm to the mean estimation problem [BHMT02; Ter99; Mon15].
The Bernoulli estimator allows us to estimate the mean of the truncated random variable
X1a<X≤b for any values of a, b.

Proposition 4.4.1 (Bernoulli estimator). There exists a quantum algorithm, called
the Bernoulli estimator, with the following properties. Let X be a q-random variable and
set as input a time parameter t ≥ 0, two range values 0 ≤ a < b, and a real δ ∈ (0, 1)
such that t ≥ log(1/δ). Then, the Bernoulli estimator BernEst(X, t, a, b, δ) outputs a mean
estimate µ̃a,b of µa,b = E[X1a<X≤b] such that |µ̃a,b − µa,b| ≤

√
bµa,b log(1/δ)

t + b log(1/δ)2

t2 and
µ̃a,b ≤ (1 + 2π)2µa,b with probability at least 1− δ. It performs O(t) quantum experiments.

Proof. Let (H, U,M) be a q-variable generating X. Using the rotation oracle Ra,b from
Assumption 4.B, we consider the unitary algorithm V = Ra,b(U ⊗ I) that acts on H⊗ C2.
In order to simplify notations, let us assume that the random variable X is distributed in
the interval (a, b). Then, µ = µa,b and by definition of Ra,b and U (Section 4.2) we have,

V |0⟩ =
∑
ω∈Ω

√
p(ω)|ω⟩

(√
1− X(ω)

b
|0⟩+

√
X(ω)
b
|1⟩
)

=
√

1− µ

b

(∑
ω∈Ω

√
p(ω)(b−X(ω))

b− µ
|ω⟩

)
|0⟩+

√
µ

b

(∑
ω∈Ω

√
p(ω)X(ω)

µ
|ω⟩

)
|1⟩.

Thus, there exist some unit states |ψ0⟩, |ψ1⟩ such that V |0⟩ =
√

1− µ
b |ψ0⟩+

√
µ
b |ψ1⟩ and

(I ⊗ |1⟩⟨1|)V |0⟩ =
√

µ
b |ψ1⟩. If X takes values outside the interval (a, b) then the same

result holds with µa,b in place of µ and a different definition of |ψ0⟩, |ψ1⟩.
Consider the output ṽ of the amplitude estimation algorithm AEst

(
V,Π,

⌈ 2πt
log(1/δ)

⌉)
(Theorem 3.3.1) where Π = I ⊗ |1⟩⟨1|. Then, the estimate bṽ satisfies the statement of the
proposition with probability 8/π2 by Theorem 3.3.1 and Corollary 3.3.2. The Bernoulli
estimator consists of running ⌈6 log(1/δ)⌉ copies of AEst

(
V,Π,

⌈ 2πt
log(1/δ)

⌉)
and outputting

the median of the results. The success probability is at least 1− δ by the median trick.

The Bernoulli estimator can estimate the mean of a non-negative q-random variable X by
setting a = 0 and b = maxX. However, its performance is worse than that of the classical
sub-Gaussian estimators when the maximum of X is large compared to its variance. Our
quantum sub-Gaussian estimator (Algorithm 4.2) uses the Bernoulli estimator in a more
subtle way, and in combination with the quantile estimation algorithm.

Theorem 4.4.2 (Sub-Gaussian estimator). Let X be a q-random variable with mean µ
and variance σ2. Given a time parameter t and a real δ ∈ (0, 1) such that t ≥ log(1/δ), the

34

4.4 Sub-Gaussian estimator

1. Set k = log t and s = dt
√

log t log(9k/δ)
log(1/δ) , where d > 1 is a constant chosen in the

proof of Theorem 4.4.2 (if k is not an integer, round t to the next power of two).

2. Compute the median η of ⌈30 log(2/δ)⌉ classical samples from X and define the
non-negative random variables

Y + = (X − η)1X≥η and Y − = −(X − η)1X≤η.

3. Compute an estimate µ̃Y+ of E[Y+] and an estimate µ̃Y− of E[Y−] by executing
the following steps with Y := Y+ and Y := Y− respectively:

a) Compute an estimate Q̃ of the quantile of order p =
(

log(1/δ)
6t

)2
of Y

with failure probability δ/8 by using the quantile estimation algorithm
Quantile(Y, p, δ/8).

b) Define a−1 = 0 and aℓ = 2ℓ

t Q̃ for ℓ ≥ 0. Compute an estimate µ̃ℓ of
E[Y 1aℓ−1<Y≤aℓ

] with failure probability δ/(9k) for each 0 ≤ ℓ ≤ k, by
using the Bernoulli estimator BernEst(Y, s, aℓ−1, aℓ, δ/(9k)) with s quantum
experiments.

c) Set µ̃Y =
∑k

ℓ=0 µ̃ℓ.

4. Output µ̃ = η + µ̃Y+ − µ̃Y− .

Algorithm 4.2: Sub-Gaussian estimator, SubGaussEst(X, t, δ).

sub-Gaussian estimator SubGaussEst(X, t, δ) (Algorithm 4.2) outputs a mean estimate µ̃
such that,

Pr
[
|µ̃− µ| ≤ σ log(1/δ)

t

]
≥ 1− δ.

The algorithm performs O(t log3/2(t) log log(t)) quantum experiments. Moreover, if X is
non-negative then Pr[µ̃ ≤ (2 + 2π)2µ] ≥ 1− δ.

Proof. First, by standard concentration inequalities, the median η computed at step 2
satisfies |η − µ| ≤ 2σ with probability at least 1 − δ/2. Moreover, if |η − µ| ≤ 2σ then√
E[(X − η)2] =

√
E[(X − µ+ µ− η)2] ≤

√
E[(X − µ)2] + |µ − η| ≤ 3σ, by using the

triangle inequality. Below we prove that for any non-negative random variable Y the
estimate µ̃Y of µY = E[Y] computed at step 3 satisfies

|µ̃Y − µY | ≤
√

E[Y 2] log(1/δ)
5t (4.4)

with probability at least 1−δ/4. Using the fact thatX = η+Y+−Y− and (X−η)2 = Y 2
++Y 2

−,
we can conclude that

|µ̃− µ| ≤

(√
E[Y 2

+] +
√
E[Y 2

−]
)

log(1/δ)
5t ≤

√
2E[(X − η)2] log(1/δ)

5t ≤ σ log(1/δ)
t

with probability at least 1 − δ. The algorithm performs O(log(1/δ)) ≤ O(t) classical
experiments during step 2, O(log(1/δ)/√p) ≤ O(t) quantum experiments during step 3.a,
and O(ks) ≤ O(t log3/2(t) log log(t)) quantum experiments during step 3.b.

35

Chapter 4 Mean Estimation Problem

We now turn to the proof of Equation (4.4). We make the assumption that all the
subroutines used in step 3 are successful, which is the case with probability at least
(1− δ/8)(1− δ/(9k))k+1 ≥ 1− δ/4. First, according to Theorem 4.3.4, we have Q(p) ≤
Q̃ ≤ Q(cp) for some universal constant c. It implies that cp ≤ Pr[Y ≥ Q(cp)] ≤ Pr[Y ≥
Q̃] ≤ E[Y 2]/Q̃2, where the first two inequalities are by definition of the quantile function Q,
and the last inequality is a standard fact. Consequently, by our choice of p,

Q̃ ≤
6t
√

E[Y 2]√
c log(1/δ) . (4.5)

Next, we upper bound the expectation of the part of Y that is above the largest threshold
ak = Q̃ considered in step 3.b. By Cauchy–Schwarz’ inequality, we have E[Y 1

Y >Q̃
] ≤√

E[Y 2] Pr[Y > Q̃]. Moreover, by definition of Q, Pr[Y > Q̃] ≤ Pr[Y > Q(p)] ≤ p. Thus,

E[Y 1
Y >Q̃

] ≤
√
E[Y 2] log(1/δ)

6t . (4.6)

The expectation of Y is decomposed into the sum µY =
∑k

ℓ=0 µℓ + E[Y 1Y >ak
], where

µℓ = E[Y 1aℓ−1<Y≤aℓ
] is estimated at step 3.b. We have |µ̃ℓ−µℓ| ≤

√
aℓµℓ log(1/δ)
dt

√
log t + aℓ log(1/δ)2

d2t2 log t
for all 0 ≤ ℓ ≤ k according to Proposition 4.4.1. Thus, by the triangle inequality,

|µ̃Y − µY | ≤
k∑
ℓ=0
|µ̃ℓ − µℓ|+ E[Y 1Y >ak

]

≤
k∑
ℓ=0

√
aℓµℓ log

(1
δ

)
dt
√

log t
+

k∑
ℓ=0

aℓ log
(1
δ

)2

d2t2 log t + E[Y 1Y >ak
]

≤
Q̃ log

(1
δ

)
dt2
√

log t
+

k∑
ℓ=1

√
2E[Y 21aℓ−1<Y≤aℓ

] log
(1
δ

)
dt
√

log t
+

2Q̃ log
(1
δ

)2

d2t2 log t + E[Y 1Y >ak
]

≤

√
2k
√∑k

ℓ=1 E[Y 21aℓ−1<Y≤aℓ
] log

(1
δ

)
dt
√

log t
+

3Q̃ log
(1
δ

)2

dt2
√

log t
+ E[Y 1Y >ak

]

≤
√

2k
√
E[Y 2] log

(1
δ

)
dt
√

log t
+

3Q̃ log
(1
δ

)2

dt2
√

log t
+ E[Y 1Y >ak

]

≤
√

2
√

E[Y 2] log
(1
δ

)
dt

+
18
√
E[Y 2] log

(1
δ

)
√
cdt
√

log t
+
√
E[Y 2] log

(1
δ

)
6t

≤
√
E[Y 2] log

(1
δ

)
5t

where the third step uses a0µ0 ≤ a2
0 = (Q̃/t)2 and aℓµℓ ≤ (aℓ/aℓ−1)E[Y 2

1aℓ−1<Y≤aℓ
] ≤

2E[Y 2
1aℓ−1<Y≤aℓ

] when ℓ ≥ 1, the fourth step uses the Cauchy–Schwarz inequality, the
sixth step uses Equations (4.5) and (4.6), and in the last step we choose d = 600/

√
c.

Finally, we prove that Pr[µ̃ > (2 + 2π)2µ] ≤ δ when X is non-negative. For any non-
negative random variable Y , the estimate µ̃Y of µY = E[Y] computed at step 3 is a linear
combination of the estimates µ̃ℓ obtained with the Bernoulli estimator, each of which
satisfies µ̃ℓ ≤ (1 + 2π)2µℓ with probability at least 1 − δ/(9k) by Proposition 4.4.1. It
implies that Pr[µ̃Y ≤ (1+2π)2µY] ≥ 1−δ/4. We also have that Pr[η ≤ (3+4π)µ] ≥ 1−δ/2
by Markov’s inequality and the median trick. Consequently, µ̃ ≤ η + µ̃Y+ ≤ (3 + 4π)µ+
(1 + 2π)2E[X1X≥η] ≤ (2 + 2π)2µ with probability at least 1− δ.

36

4.5 (ϵ, δ)-Estimators

4.5 (ϵ, δ)-Estimators
In this section, we study the (ϵ, δ)-approximation problem under two different scenarios.
First, we give in Section 4.5.1 a parameter-free estimator that performs in expectation
Õ
((

σ
ϵµ + 1√

ϵµ

)
log
(1
δ

))
quantum experiments for any random variable distributed in [0, 1].

Then, we describe in Section 4.5.2 an estimator that performs Õ
(V
ϵ log(1/δ)

)
quantum

experiments given an upper bound V on the coefficient of variation |σ/µ|. We also explain
how to find such a bound V given a non-increasing function f such that f(µ) ≥ σ/µ.

4.5.1 Parameter-free estimators
We follow an approach similar to the classical AA algorithm described in [DKLR00].
We first give a sequential estimator that performs O(1/(ϵ√µ)) quantum experiments in
expectation. We use the term “sequential” in reference to sequential analysis techniques.
The classical counterpart of this estimator is the Stopping Rule Algorithm in [DKLR00].

Proposition 4.5.1 (Sequential Bernoulli estimator). There is a quantum algorithm,
called the sequential Bernoulli estimator, with the following properties. Let X be a q-
random variable distributed in [0, 1] with mean µ. Fix two reals ϵ, δ ∈ (0, 1/2). Then,
the sequential Bernoulli estimator Seq-BernEst(X, ϵ, δ) outputs a mean estimate µ̃ and
performs a number T of quantum experiments such that,

(1) Pr[|µ̃− µ| > ϵµ] ≤ δ.

(2) E[1/µ̃] ≤ O(1/µ) and E[
√
µ̃] ≤ O(√µ).

(3) E[T] ≤ O
(

log(1/δ)
ϵ
√
µ

)
.

(4) There is a universal constant c such that Pr
[
T > c log(1/δ)

ϵ
√
µ

]
≤ δ.

Proof. The algorithm consists of running the sequential amplitude estimation algorithm
Seq-AEst

(
V,Π, ϵ, δ

)
(Theorem 3.3.3), where V and Π are given in the proof of Proposi-

tion 4.4.1 for a = 0 and b = 1. The results follow from Theorem 3.3.3.

We now describe an algorithm that improves the dependence on ϵ compared to the
above estimator. We later show in Proposition 4.6.4 that it is nearly optimal. The classical
counterpart of this estimator is the AA Algorithm in [DKLR00].

Theorem 4.5.2 (Sequential relative estimator). Let X be a q-random variable
distributed in [0, 1] with mean µ and variance σ2. Given two reals ϵ, δ ∈ (0, 1) the estimate µ̃
output by the sequential relative estimator (Algorithm 4.3) satisfies Pr[|µ̃− µ| > ϵµ] ≤ δ.
The algorithm performs

Õ

((
σ

ϵµ
+ 1
√
ϵµ

)
log(1/δ)

)
quantum experiments in expectation.

Proof. We assume that |m− µ| ≤ µ/2 at step 1 of the algorithm, which is the case with
probability at least 1 − δ/4 by Proposition 4.5.1. The analysis of steps 2 and 3 is split
into two cases. First, if σ ≤ √ϵµ, then we directly consider the second term in the max at
step 3. By Theorem 4.4.2, the estimate µ̃ satisfies |µ̃− µ| ≤ σ

2/
√
ϵm
≤ ϵµ with probability

at least 1− δ/4. Secondly, if σ ≥ √ϵµ, then by Proposition 4.5.1 the estimate σ̃2 computed

37

Chapter 4 Mean Estimation Problem

1. Compute an estimate m of µ = E[X] with relative error 1/2 by using the
sequential Bernoulli estimator Seq-BernEst(X, 1/2, δ/4).

2. Let Y denote the random variable (X−X ′)2/2 where X ′ is independent of X and
identically distributed. Compute an estimate σ̃2 of σ2 = E[Y] with relative error
1/2 by using the sequential Bernoulli estimator Seq-BernEst(Y, 1/2, δ/4). Stop
the computation if it performs more than 4c log(4/δ)√

ϵm
quantum experiments and

set σ̃ = 0 (where c is the constant mentioned in part (4) of Proposition 4.5.1).

3. Compute a second estimate µ̃ of µ by using the sub-Gaussian estimator
SubGaussEst(X, t, δ/4) with t = 2 max

(
σ̃
ϵm ,

1√
ϵm

)
log(4/δ). Output µ̃.

Algorithm 4.3: Sequential relative estimator.

at step 2 satisfies |σ̃2 − σ2| ≤ σ2/2 with probability at least 1 − δ/4 if we remove the
stopping condition. Since we assumed that m ≤ (3/2)µ, the computation is stopped if
it performs more than 4c log(4/δ)√

ϵm
≥ 2c log(4/δ)

σ experiments. However, by Proposition 4.5.1,
the number of experiments performed by the sequential Bernoulli estimator at step 2 is at
most 2c log(4/δ)

σ with probability at least 1 − δ/4. Consequently, the computation is not
stopped and |σ̃2−σ2| ≤ σ2/2 with probability at least 1− δ/2. In this case, by considering
the first term in the max at step 3, the estimate µ̃ satisfies |µ̃− µ| ≤ σ

2σ̃/(ϵm) ≤ ϵµ with
probability at least 1− δ/4. The overall success probability is at least 1− δ.

We now analyze the expected number of quantum experiments performed by the
algorithm. Step 1 performs O(log(1/δ)/√µ) experiments in expectation by Proposi-
tion 4.5.1. Step 2 is stopped after O(log(1/δ)/(√ϵµ)) experiments in expectation since
E[1/
√
m] ≤ O(1/√µ) by Proposition 4.5.1. Step 3 performs Õ

(
max

(
σ̃
ϵm ,

1√
ϵm

)
log(1/δ)

)
experiments by Theorem 4.4.2. The estimates σ̃ and m are independent if we ignore
the stopping condition at step 2, in which case E

[
σ̃
m

]
= E[σ̃]E

[1
m

]
≤ O

(
σ
µ

)
by Proposi-

tion 4.5.1. The stopping condition can only decrease this quantity. Thus, step 3 performs
Õ
(

max
(
σ
ϵµ ,

1√
ϵµ

)
log(1/δ)

)
experiments in expectation.

4.5.2 Parametrization by the coefficient of variation
We study the (ϵ, δ)-approximation problem when some information is available on the
coefficient of variation |σ/µ|. First, if we have an upper bound V on the coefficient of
variation then it suffices to use the sub-Gaussian estimator with the correct parameters.

Corollary 4.5.3 (Relative estimator). There exists a quantum algorithm with the
following properties. Let X be a q-random variable with mean µ and variance σ2, and set
as input a value V ≥ |σ/µ| and two reals ϵ, δ ∈ (0, 1). Then, the algorithm outputs a mean
estimate µ̃ such that Pr[|µ̃− µ| > ϵ|µ|] ≤ δ and it performs

Õ

(
V
ϵ

log(1/δ)
)

quantum experiments.

Proof. The algorithm runs the sub-Gaussian estimator SubGaussEst
(
X, V

ϵ log(1/δ), δ
)
.

38

4.5 (ϵ, δ)-Estimators

This approach has the advantage that the number of experiments does not scale with
1/√µ as in Theorem 4.5.2. On the other hand, it requires us to know a “good” upper
bound on the coefficient of variation. This assumption is often met in practice, as is the
case for the applications considered in Chapters 6 and 9.

We now consider the weaker hypothesis where, instead of a direct upper bound V on
σ/µ, we have a non-increasing function f such that f(µ) ≥ σ/µ. We first describe an
algorithm to decide if the mean µ lies in an interval [α, β) or is ϵ-far from it. Our approach
crucially relies on the inequality µ̃ ≤ (2 + 2π)2µ proved for the quantum sub-Gaussian
estimator (Theorem 4.4.2).

1. Compute an estimate µ̃ of µ = E[X] by using the sub-Gaussian estimator
SubGaussEst(X, t, δ) with t = f

(
α

8(1+π)2

)
4 log(1/δ)

ϵ .

2. If µ̃ ∈
[
(1− ϵ

2)α, (1 + ϵ
2)β
)

then output B = 1, else output B = 0.

Algorithm 4.4: Interval estimator, IntervEst(X, f, α, β, ϵ, δ).

Theorem 4.5.4 (Interval estimator). Let X be a q-random variable distributed in
[0, 1] with mean µ and variance σ2, and set as input a non-increasing function f such that
f(µ) ≥ σ/µ, two endpoints α < β and two reals ϵ, δ ∈ (0, 1). Then, the output B of the
interval estimator IntervEst(X, f, α, β, ϵ, δ) (Algorithm 4.4) satisfies,

(1) If µ ∈ [α, β) then B = 1 with probability at least 1− δ.

(2) If µ /∈ [(1− ϵ)α, (1 + ϵ)β) then B = 0 with probability at least 1− δ.

The algorithm performs Õ
(
f
(

α
8(1+π)2

)
log(1/δ)

ϵ

)
quantum experiments.

Proof. Assume first that µ ≥ α
8(1+π)2 . Then, t ≥ 4σ/(ϵµ) log(1/δ) and, by property of

the sub-Gaussian estimator, |µ̃− µ| ≤ (ϵ/4)µ with probability at least 1− δ. Thus, with
probability at least 1 − δ, if µ ∈ [α, β) then µ̃ ∈ [(1 − ϵ

4)α, (1 + ϵ
4)β), if µ ≥ (1 + ϵ)β

then µ̃ ≥ (1 − ϵ/4)µ ≥ (1 − ϵ/4)(1 + ϵ)β ≥ (1 + ϵ/2)β, and if µ ≤ (1 − ϵ)α then
µ̃ ≤ (1 + ϵ/4)µ ≤ (1 + ϵ/4)(1− ϵ)α ≤ (1− ϵ/2)α. In all three cases, the output B is correct
with probability at least 1− δ.

Assume now that µ ≤ α
8(1+π)2 . By property of the sub-Gaussian estimator (second part

of Theorem 4.4.2), we have that µ̃ ≤ (2 + 2π)2µ ≤ (2+2π)2

8(1+π)2α = α/2 ≤ (1 − ϵ/2)α with
probability at least 1− δ, in which case the output is B = 0.

We use the above algorithm to compute a value V that approximates f(µ). This value
can be used subsequently in Corollary 4.5.3 to estimate the mean with any desired accuracy.

Theorem 4.5.5. Let X be a q-random variable distributed in [0, 1] with mean µ and
variance σ2, and set as input a non-increasing function f such that f(µ) ≥ σ/µ and a
real δ ∈ (0, 1). Then, for any integer k ≥ 1 and some universal constant c, Algorithm 4.5
outputs a number V such that

f(µ) ≤ V ≤ f(c2−kµ)

and it performs Õ(V log(2k/µ)2 log(1/δ)) quantum experiments, with probability 1− δk.

39

Chapter 4 Mean Estimation Problem

1. Set ℓ = 1.

2. Run the interval estimator IntervEst(X, f, α, β, ϵ, δ) with α = 2−ℓ, β = +∞,
ϵ = 1/2 and δ/2ℓ. Let B denote the output of the algorithm.

3. If B = 1 then set ℓ = ℓ+ 1 and go to step 2. Else, output V = f(2−ℓ−1).

Algorithm 4.5: Computing an upper bound on the coefficient of variation.

Proof. We first assume that all calls to the interval estimator at step 2 of Algorithm 4.5
are successful, which is the case with probability at least 1−

∑∞
ℓ=1 δ/2ℓ ≥ 1− δ. According

to Theorem 4.5.4, we have B = 0 when ℓ < log(1/(2µ)) and B = 1 when ℓ ≥ log(1/µ).
Consequently, the algorithm stops when ℓ is between log(1/(2µ)) and ⌈log(1/µ)⌉+ 1. In
this case, the output V = f(2−ℓ−1) satisfies f(µ) ≤ V ≤ f(µ/8) and the algorithm per-
forms at most

∑⌈log(1/µ)⌉+1
i=1 Õ

(
f
(2−i

8(1+π)2

)
log(2i/δ)

)
≤ Õ

(
f
(µ

25(1+π)2

)
log(1/µ)2 log(1/δ)

)
quantum experiments. This proves the theorem in the case k = 1.

For k ≥ 2, each time step 2 is executed with ℓ ≥ log(1/µ) the probability that B = 0
is at least 1 − δ. Thus, the probability that the algorithm has not yet stopped when
ℓ = ⌈log(1/µ)⌉+k is at most δk. The number of experiments performed up to that point is at
most

∑⌈log(1/µ)⌉+k
i=1 Õ

(
f
(

2−i

8(1+π)2

)
log(2i/δ)

)
≤ Õ

(
f
(

2−kµ
16(1+π)2

)
log(2k/µ)2 log(1/δ)

)
.

As an application of the above results, we consider the case where f is a power function.
We obtain a simple formula for the number of experiments performed in expectation. This
result is used in Chapter 6.

Corollary 4.5.6 (Exponential estimator). There is a quantum algorithm, called
the exponential estimator, with the following properties. Let X be a q-random variable
distributed in [0, 1] with mean µ and variance σ2, and set as input a function f : x 7→ c/xd

and two reals ϵ, δ ∈ (0, 1) such that f(µ) ≥ σ/µ and δ < 2−3d, where c, d ≥ 0 are two
constants. Then, the exponential estimator ExpEst(X, f, ϵ, δ) outputs an estimate µ̃ such
that Pr[|µ̃− µ| > ϵµ] ≤ δ and it performs a number T of quantum experiments such that

E[T] ≤
√
E[T 2] ≤ Õ

(
f(µ) ·

(
1/ϵ+ log(1/µ) log(1/δ)

)
log(1/δ)

)
.

Proof. The algorithm proceeds as follows: first, it computes V by using the algorithm of
Theorem 4.5.5 with input parameters f, δ/2; then it computes µ̃ by using the algorithm
of Corollary 4.5.3 with input parameters V, ϵ, δ/2. The statement Pr[|µ̃− µ| > ϵµ] ≤ δ is
easy to prove. The number T of experiments satisfies

E[T 2] ≤ Õ
(∞∑
k=0

δk ·
(
f(c2−kµ) log(2k/µ)2 log(1/δ)2 + f(c2−kµ)

ϵ
log(1/δ)

)2)

≤ Õ

(∞∑
k=0

δk ·
(
f(µ)2kd log(2k/µ)2 log(1/δ)2 + f(µ)

ϵ
2kd log(1/δ)

)2
)

≤ Õ
(
f(µ)2(log(1/µ)2 log(1/δ)2 + 1/ϵ2

)
log(1/δ)2)

where the second step uses that f : x 7→ c/xd, and the last step uses that δ < 2−3d.

40

4.6 Lower bounds

4.6 Lower bounds
We prove several lower bounds for the mean estimation problem under different scenarios.
In Section 4.6.1, we study the number of experiments that must be performed to estimate
the mean with a sub-Gaussian error rate. In Section 4.6.2, we study the number of
experiments needed to solve the (ϵ, δ)-approximation problem. Finally, in Section 4.6.3, we
consider the mean estimation problem in the state-based model, where the input consists
of several copies of a quantum state encoding a distribution.

4.6.1 Sub-Gaussian estimation
We show that the quantum sub-Gaussian estimator described in Theorem 4.4.2 is optimal
up to a polylogarithmic factor. We make use of the following lower bound for Quantum
Search in the small-error regime.

Proposition 4.6.1 (Theorem 4 in [BCWZ99]). Let N > 0, 1 ≤ K ≤ 0.9N and δ ≥ 2−N .
Let T (N,K, δ) be the minimum number of quantum queries any algorithm must use to
decide with failure probability at most δ whether a function f : [N]→ {0, 1} has 0 or K
preimages of 1. Then, T (N,K, δ) ≥ Ω(

√
N/K log(1/δ)).

We construct two particular probability distributions that allow us to reduce the
Quantum Search problem to the sub-Gaussian mean estimation problem.

Theorem 4.6.2. Let t > 1 and δ ∈ (0, 1) such that t ≥ 2 log(1/δ). Fix σ > 0 and consider
the family Pσ of all q-random variables with variance σ2. Let T (t, σ, δ) be the minimum
number of quantum experiments any algorithm must perform to compute with failure
probability at most δ a mean estimate µ̃ such that |µ̃− µ| ≤ σ log(1/δ)

t for any X ∈ Pσ with
mean µ. Then, T (t, σ, δ) ≥ Ω(t).

Proof. Let s = t
log(1/δ) and b = s√

1−1/s2σ. We define the probability distribution p0 with

support {0, b} that takes value b with probability 1
s2 . Similarly, we define the probability

distribution p1 with support {0,−b} that takes value −b with probability 1
s2 . The variance

of each distribution is equal to σ2. Moreover, the means µ0 and µ1 of the two distributions
satisfy that,

µ0 − µ1 > 2σ log(1/δ)
t

. (4.7)

Let N,K be two integers such that N ≥ log(1/δ) and K/N = 1/s2 (assuming s is
rational). Let F0 be the family of all functions f : [N]→ {0, 1} with exactly K preimages
of 1. Similarly, let F1 be the family of all functions f : [N] → {−1, 0} with exactly K
preimages of −1. By using Proposition 4.6.1, it is easy to see that any algorithm that
can distinguish between f ∈ F0 and f ∈ F1 with success probability 1 − δ must use at
least Ω(

√
N/K log(1/δ)) = Ω(s log(1/δ)) = Ω(t) quantum queries to f . We associate

with each function f ∈ F0 ∪ F1 the q-variable (H, U,M)f where H = CN+2, U |0⟩ =
1√
N

∑
x∈[N]|x⟩|f(x)⟩, and M = {I⊗|0⟩⟨0|, I⊗|−1⟩⟨−1|, I⊗|1⟩⟨1|}. The random variable X

generated by (H, U,M)f is distributed according to p0 if f ∈ F0, and according to p1 if
f ∈ F1. Moreover, one quantum experiment with respect to X can be simulated with one
quantum query to f . Consequently, any algorithm that can distinguish between a random
variable distributed according to p0 or p1 with success probability 1− δ must perform at
least Ω(t) quantum experiments. On the other hand, by Equation (4.7), if an algorithm
can estimate the mean with an error rate smaller than σ log(1/δ)

t then it can distinguish
between f ∈ F0 and f ∈ F1. Thus, T (t, σ, δ) ≥ Ω(t).

41

Chapter 4 Mean Estimation Problem

4.6.2 (ϵ, δ)-Estimation
We consider the (ϵ, δ)-estimation problem in the parameter-free setting, when the coefficient
of variation is unknown. We make use of the next lower bound for Quantum Counting.
Proposition 4.6.3 (Theorem 4.2.6 in [Nay99]). Let N > 0, 1 < K ≤ N and ϵ ∈

(1
4K , 1

)
.

Consider the set of all quantum algorithms such that, given a query oracle to any function
f : [N]→ {0, 1}, they return an estimate C̃ of the number C of preimages of 1 in f such
that |C̃ − C| ≤ ϵC with probability at least 2/3. Let TK(N, ϵ) be the minimum number of
quantum queries any such algorithm must use when the oracle has exactly K preimages
of 1. Then, TK(N, ϵ) ≥ Ω

(√
K(N−K)
ϵK+1 +

√
N

ϵK+1

)
.

We obtain by a simple reduction to the above problem that the result described in
Theorem 4.5.2 is nearly optimal.
Proposition 4.6.4. Let ϵ ∈ (0, 1). Let PB denote the family of all q-random variables that
follow a Bernoulli distribution. Consider any algorithm that takes as input X ∈ PB and
that outputs a mean estimate µ̃ such that |µ̃− E[X]| ≤ ϵE[X] with probability at least 2/3.
Then, for any µ ∈ (0, 1), there exists X ∈ PB with mean µ such that the algorithm performs
at least Ω

(
σ
ϵµ + 1√

ϵµ

)
quantum experiments on input X, where σ2 = Var[X].

Proof. Given ϵ ∈ (0, 1) and µ ∈ (0, 1), we choose two integers K and N such that
K > 1/(4ϵ) and K/N = µ (assuming µ is rational). Similarly to the proof of Theorem 4.6.2,
we associate with each function f : [N] → {0, 1} the q-variable (H, U,M)f where H =
CN+2, U |0⟩ = 1√

N

∑
x∈[N]|x⟩|f(x)⟩, and M = {I ⊗ |0⟩⟨0|, I ⊗ |1⟩⟨1|}. If a quantum

algorithm can estimate the mean of any Bernoulli random variable with error ϵ and success
probability 2/3, then it can be used to count the number of preimages of 1 in f with the
same accuracy. Thus, by Proposition 4.6.3, any such algorithm must perform at least
Ω
(√

K(N−K)
ϵK+1 +

√
N

ϵK+1

)
= Ω

(√
µ(1−µ)

ϵµ+1/N + 1√
ϵµ+1/N

)
= Ω

(
σ
ϵµ + 1√

ϵµ

)
quantum experiments

on a q-random variable with mean µ and variance σ2 = µ(1− µ).

4.6.3 State-based estimation
We consider the state-based model where the input consists of several copies of a quantum
state |p⟩ =

∑
x∈E

√
p(x)|x⟩ encoding a distribution p over E. This model is weaker

than the one described before, since it does not provide access to a unitary algorithm
preparing |p⟩. We prove that no quantum speedup is achievable in this setting. Our result
uses the next lower bound on the number of copies needed to distinguish two states.
Lemma 4.6.5. Let δ ∈ (0, 1) and consider two probability distributions p0 and p1 with
the same finite support E ⊂ R. Define the states |ϕ0⟩ =

∑
x∈E

√
p0(x)|x⟩ and |ϕ1⟩ =∑

x∈E
√
p1(x)|x⟩. Then, the smallest integer T such that there is an algorithm that can

distinguish |ϕ0⟩⊗T from |ϕ1⟩⊗T with success probability at least 1−δ satisfies T ≥ ln(1/(4δ))
D(p0∥p1) ,

where D(p0∥p1) =
∑

x∈E p0(x) ln
(
p0(x)
p1(x)

)
is the KL-divergence from p0 to p1.

Proof. According to Helstrom’s bound [Hel69] the best success probability to distinguish
between two states |ϕ⟩ and |ϕ′⟩ is 1

2(1 +
√

1− |⟨ϕ |ϕ′⟩|2). Thus, the smallest number T
needed to distinguish |ϕ0⟩⊗T from |ϕ1⟩⊗T must satisfy 1

2(1 +
√

1− ⟨ϕ0 |ϕ1⟩2T) ≥ 1 − δ.
It implies that T ≥ − ln(1−(1−2δ)2)

−2 ln(⟨ϕ0 |ϕ1⟩) ≥
ln(1/(4δ))

−2 ln
(∑

x∈E
p0(x)

√
p1(x)
p0(x)

) ≥ ln(1/(4δ))∑
x∈E

p0(x) ln
(

p0(x)
p1(x)

) = ln(1/(4δ))
D(p0∥p1)

where the second inequality uses the concavity of the logarithm function.

42

4.7 Discussion

We use the above lemma to show that no quantum mean estimator can perform better
than the classical sub-Gaussian estimators in the state-based input model.

Theorem 4.6.6. Let t > 1 and δ ∈ (0, 1) such that t ≥ 2 log(1/δ). Fix σ > 0 and consider
the family Pσ of all distributions with finite support whose variance lies in the interval
[σ2, 4σ2]. For any p ∈ Pσ with support E ⊂ R, define the state |p⟩ =

∑
x∈E

√
p(x)|x⟩.

Let T (t, σ, δ) be the smallest integer such that there exists an algorithm that receives the
state |p⟩⊗T (t,σ,δ) for any p ∈ Pσ, and that outputs an estimate µ̃ of the mean µ of p such

that Pr
[
|µ̃− µ| >

√
σ2 log(1/δ)

t

]
≤ δ. Then, T (t, σ, δ) ≥ Ω(t).

Proof. Let s = t
log(1/δ) , b = s√

s−1σ and α = 2 ln
(

1 +
√

1− 1
s

)
. We define the two

probability distributions p0 and p1 with support E = {0, b} where p0(b) = eα

s and
p1(b) = 1

s . Let µ0 and σ2
0 (resp. µ1 and σ2

1) denote the expectation and the variance
of p0 (resp. p1). Observe that σ0 ∈ [σ, 2σ] and σ1 = σ, thus p0, p1 ∈ Pσ. Moreover,
µ0−µ1 > 2

√
σ2 log(1/δ)

t since µ0−µ1 = σ e
α−1√
s−1 ≥ σ

(
eα/2 +1

)
eα/2−1√
s−1 = σ

(
eα/2 +1

)√ log(1/δ)
t

and 2σ ≤ σ0 +σ1 = σ
(√

eαs−e2α

s−1 +1
)
< σ

(
eα/2 +1

)
. Thus, we can distinguish |p0⟩⊗T (t,σ,δ)

from |p1⟩⊗T (t,σ,δ) with failure probability δ by using any optimal algorithm that satisfies the
error bound stated in the theorem. Since the KL-divergence from p0 to p1 is D(p0∥p1) ≤
p0(b) ln

(
p0(b)
p1(b)

)
= αeα

s2 ≤ 6
s , we must have T (t, σ, δ) ≥ Ω

(
log(1/δ)
D(p1∥p0)

)
= Ω(t) by Lemma 4.6.5.

4.7 Discussion
One interesting open question is to find a quantum mean estimator that achieves the
deviation bound Pr

[
|µ̃−µ| > σ log(1/δ)

t

]
≤ δ by performing a number of experiments that is

linear in t. The current best upper bound (Theorem 4.4.2) is O(t log3/2(t) log log(t)), and
the lower bound is Ω(t) (Theorem 4.6.2). A first step toward this goal could be to obtain a
better algorithm for the restricted case of Gaussian distributions. An equivalent goal is to
find the smallest value L such that the deviation bound Pr

[
|µ̃− µ| > Lσ log(1/δ)

t

]
≤ δ can

be achieved by a quantum mean estimator that performs at most t quantum experiments.
Classically, for the sub-Gaussian deviation bound of Equation (4.1), the optimal value is
L =

√
2(1 + o(1)) [Cat12; LV20].

There exist many variants of the quantum mean estimation problem that have not
been explored in the quantum model yet. Let us mention for instance the multivariate
setting [LM19], where the objective is to estimate the mean of a random variable taking
values in Rd. The first polynomial-time classical algorithm for this problem was only found
recently by Hopkins [Hop20].

We present two applications of the quantum sub-Gaussian estimator later in this thesis.
In Chapter 6, we describe a quantum query algorithm for counting the number of triangles
in a graph. This result uses a variant of the quantum sub-Gaussian estimator developed
in the next chapter. In Chapter 9, we describe a quantum streaming algorithm for
approximating the frequency moments, based on the relative estimator of Corollary 4.5.3.
We note that our quantum sub-Gaussian estimator can also be plugged in simulated
annealing algorithms [Mon15; HW20; CCH+19; AHN+20] (though in this case Montanaro’s
estimator [Mon15] is often sufficient since the variance is small), or for simplifying the
non-integer Rényi entropy estimation algorithms described in [LW19, Section V].

43

5
Variable-Time Mean Estimation

This chapter is based on the following papers:

[HM19] Y. Hamoudi and F. Magniez. “Quantum Chebyshev’s Inequality and Appli-
cations”. In: Proceedings of the 46th International Colloquium on Automata,
Languages, and Programming (ICALP). 2019, 69:1–69:16.

[HM21a] Y. Hamoudi and F. Magniez. “Quantum Approximate Triangle Counting”. In
submission. 2021.

5.1 Introduction

The mean estimation problem presupposes the existence of a random or quantum process
whose output value encodes some given random variable X. The computational complexity
of solving the mean estimation problem is proportional to the number of times this process
is invoked, and to the execution time of the process itself. The first of these two quantities
was studied in the previous chapter, where it was called the “number of (random or
quantum) experiments”. It reflects the amount of information that must be gathered
about X to estimate its mean. The second quantity, which we call the stopping time T ,
measures the computational cost of performing each experiment. The purpose of the
present chapter is to understand the underplay between these two quantities.

The stopping time T of a random experiment is defined as the total number of operations
performed during its execution. The decision to end a random experiment is often based
on the observation of a certain random event during the computation. Thus, the stopping
time T is itself modeled as a random variable. The expected time complexity of an
algorithm is related to the product of the number of random experiments it performs
and of the average stopping time T1 = E[T], by linearity of expectation. This simple
relationship is of crucial importance in amortized analysis. Indeed, it offers a more realistic
measure of complexity than by considering the maximum stopping time Tmax = max(T).

The stopping time of a quantum experiment is more subtle to define. The collapsing
property of quantum measurements make the design of adaptive stopping rules more
difficult to achieve in this setting. Thus, there is often no difference between the average and
the total number of operations performed during a quantum experiment. Ambainis [Amb12]
addressed a related issue by introducing the concept of variable-time algorithm. A variable-
time algorithm has the property that there is a non-negligible probability to obtain the
same output whether its memory is observed at an intermediate stage of the computation
or at the end of it. The stopping time T of such an algorithm is defined as the random
variable distributed according to the probability that a fictitious intermediate measurement,
at a given step of the computation, would return a completed result. Ambainis gave an

45

Chapter 5 Variable-Time Mean Estimation

operational meaning to this quantity by showing that, for the particular task of searching
a marked item in a database, there exists an algorithm whose complexity scales as the
product of the usual number of Grover’s iterations and of the ℓ2-average stopping time
T2 =

√
E[T 2] of the algorithm generating the database [Amb10b]. He later generalized

this result to a variable-time amplitude amplification (VTAA) algorithm [Amb10c; Amb12],
for the task of projecting the output state of a variable-time algorithm in some chosen
subspace.

We adopt the same framework as Ambainis to study the mean estimation problem on
a random variable X generated by a variable-time algorithm with stopping time T . We
focus on the problem of estimating the mean µ = E[X] with relative error ϵ. We exhibit an
algorithm whose time complexity scales as the product VT2ϵ

−2, where V ≥ σ/µ is an upper
bound on the coefficient of variation of X and T2 ≥

√
E[T 2] is an upper bound on its

ℓ2-average stopping time. In comparison, a direct application of the estimators constructed
in the previous chapter (Section 4.5) would require roughly VTmaxϵ

−1 operations, and a
classical estimator would perform V2T1ϵ

−2 operations in expectation. Our main ingredients
are a new variable-time amplitude estimation (VTAE) algorithm, and a new variant of the
mean estimator algorithms studied in the previous chapter.

5.1.1 Related work

We refer the reader to Chapter 4 for related work on the mean estimation problem. We
focus here on previous work for variable-time quantum algorithms.

Ambainis initiated the study of quantum algorithms with variable stopping times
in [Amb10b]. He considered the problem of finding a marked item among n elements,
where the i-th element requires time τi to be checked. The case of τ1 = · · · = τn = 1
corresponds to the standard Grover search algorithm, and a naive generalization to
arbitrary stopping times would lead to a complexity of O(

√
nmaxi τi). Instead, Ambainis

obtained an optimal complexity that scales as the ℓ2-average O
(√

τ2
1 + · · ·+ τ2

n

)
. This

result was later generalized to a variable-time amplitude amplification (VTAA) algorithm
in [Amb10c; Amb12]. The VTAA algorithm prepares a state proportional to ΠU |0⟩,
where Π is a fixed projector and U is a variable-time algorithm with stopping time T , in
time Õ

(
Tmax + 1√

p

√
E[T 2]

)
where p = ∥ΠU |0⟩∥2. In comparison, the standard amplitude

amplification algorithm (Theorem 3.2.1) runs in time O
(1√

pTmax
)
. Chakraborty, Gilyén and

Jeffery [CGJ19] built on Ambainis’ work to develop a variable-time amplitude estimation
(VTAE) algorithm whose complexity scales as Õ

(1
ϵ

(
Tmax + 1√

p

√
E[T 2]

))
to estimate the

aforementioned squared amplitude p with relative error ϵ. In our work, we propose a new
version of the VTAE algorithm where the dependence on Tmax is logarithmic, and with
additional properties that are needed to construct our mean estimator algorithms.

The VTAA algorithm has been used for solving systems of linear equations [Amb10c;
Amb12; CKS17; CGJ19], and for finding triangles in a graph [Gal14; GN17]. It has been
combined with the VTAE algorithm for solving least squares problems and estimating
electrical-network quantities [CGJ19], and for best-arm identification in the multi-armed
bandit model [WYLC21].

5.1.2 Contributions and organization

We explain in Section 5.2 what a variable-time algorithm U = Un · · ·U1 is (Definition 5.2.1),
and we define the stopping time T of U (Definition 5.2.2). We adapt these definitions to
the mean estimation problem and to q-random variables in Definition 5.2.3.

46

5.1 Introduction

Next, we describe in Section 5.3 our variable-time amplitude estimation (VTAE) algo-
rithm for estimating with relative error ϵ the squared amplitude p = ∥ΠU |0⟩∥2, given a
projector Π and a variable-time algorithm U with stopping time T . The time complexity of
the algorithm is on the order of

√
E[T 2]/(ϵ3/2√p) (Theorem 5.3.1), whereas the standard

amplitude estimation algorithm (Theorem 3.3.1) has time complexity Tmax/(ϵ
√
p).

We apply the VTAE algorithm to the mean estimation problem in Section 5.4 by
describing new mean estimators whose time complexity is proportional to the ℓ2-average
stopping time

√
E[T 2] of the algorithm generating X. In comparison, the time complexity

of the estimators developed in Chapter 4 is proportional to the maximum stopping
time Tmax. We first describe a variable-time Bernoulli estimator in Section 5.4.1 for
estimating the mean of a truncated random variable. We use it in Section 5.4.2 to obtain
the next estimator that takes as input an upper bound V on the coefficient of variation
of X. This improves upon the time complexity of the estimator given in Corollary 4.5.3.
Theorem 5.4.4 (Restated). There exists a quantum algorithm with the following prop-
erties. Let X be a q-random variable distributed in [0, 1] with mean µ, variance σ2 and
stopping time T . Set as input two time parameters V, T2 ≥ 1, a lower bound α ≥ 0, and
two reals ϵ, δ ∈ (0, 1). Then, the algorithm outputs a mean estimate µ̃ such that,
(1) If V ≥ σ/µ, T2 ≥

√
E[T 2] and µ ≥ α then Pr[|µ̃− µ| > ϵµ] ≤ δ.

(2) Pr[µ̃ ≤ 2µ] ≥ 1− δ.
The time complexity of the estimator is Õ

(
VT2 ·

(
log
(1
α

)
+ 1

ϵ2

)
· log4(Tmax) log

(1
δ

))
.

Similarly to Corollary 4.5.6, we adapt the previous result to the case where we have a
non-increasing function f such that f(µ) is an upper bound on the coefficient of variation
of X (Proposition 5.4.6). We also remove the need for a lower bound α on µ in the above
theorem.

5.1.3 Proof overview
Variable-time amplitude estimation. Before explaining how our VTAE algorithm works,
we summarize the approach used in the VTAA algorithm developed by Ambainis [Amb10c;
Amb12]. A variable-time algorithm (Definition 5.2.1) is a unitary algorithm U that can
be decomposed as a product U = Un · · ·U1 of n consecutive sub-algorithms, and such
that the memory of the algorithm contains (in superposition) a Boolean flag indicating
whether the computation is finished or not. Each algorithm Ui can only modify the basis
states where the flag is set to 0. The purpose of the VTAA algorithm is to prepare the
state 1

∥ΠU |0⟩∥ΠU |0⟩, for some projector Π, by taking advantage of the fact that each Ui
can be run on its own. The main idea behind the VTAA algorithm is to intertwine the n
computation steps U1, . . . , Un with n amplification steps that increase the amplitude of
the sub-state with flag 1 lying in the support of Π. This has the effect of improving the
running time over the standard amplitude amplification algorithm if a large portion of
ΠU |0⟩ is prepared at an early stage of U . We follow a similar approach in our VTAE
algorithm for estimating the squared amplitude p = ∥ΠU |0⟩∥2. We consider a particular
sequence of intermediate values p1, . . . , pn that are related to the n amplification steps
performed in the VTAA algorithm. We show that the product p1 · · · pi of the first i-th
terms is equal to the squared amplitude ∥ΠUi · · ·U1|0⟩∥2 (Lemma 5.3.3). Moreover, if
a large portion of ΠU |0⟩ is prepared at an early stage or U then it suffices to estimate
∥ΠUi · · ·U1|0⟩∥2 for a small value of i to obtain a good approximation of p. Finally, we use
the standard amplitude estimation algorithm to compute some estimates p̃1, . . . , p̃i of the
i-th first terms, and we combine them into an estimate p̃ = p̃1 · · · p̃i of p (Section 5.3.3).

47

Chapter 5 Variable-Time Mean Estimation

Variable-time Bernoulli estimator. We modify the Bernoulli estimator presented in
Proposition 4.4.1 of Chapter 4 so that it uses the VTAE algorithm instead of the amplitude
estimation algorithm. The new variable-time Bernoulli estimator (Proposition 5.4.2) can
estimate with relative error ϵ the mean of a q-random variable X distributed in [a, b] with
a time complexity that depends on b, on the expectation of the truncated random variable
X1a<X≤b, and on the ℓ2-average stopping time of X. The main step toward constructing
this estimator is to define a new variable-time algorithm U (Proposition 5.4.1) that
intertwines the original variable-time algorithm generating X with a controlled rotation
operator similar to the one used in the Bernoulli estimator. The normalized expectation
E[X1a<X≤b]/b is encoded as a squared amplitude ∥ΠU |0⟩∥2 for some projector Π. We
then use the VTAE algorithm to estimate the latter quantity with relative error ϵ.

Variable-time (ϵ, δ)-estimator. Our approach (Theorem 5.4.4) is tailored to the (ϵ, δ)-
approximation problem, where the goal is to output an estimate µ̃ of the mean µ = E[X]
such that Pr[|µ̃− µ| > ϵµ] ≤ δ. A first attempt is to replace the Bernoulli estimator with
the variable-time Bernoulli estimator in the algorithms of Chapter 4. Unfortunately, the
latter estimator satisfies a less general deviation bound than the former one. We solve
this issue by using a “weaker” version of the sub-Gaussian estimator, which increases the
complexity by a factor of ϵ−1/2. We now sketch the construction of this estimator. Suppose
we are given an upper bound V ≥ σ/µ on the coefficient of variation of a non-negative
random variable X with stopping time T . By the same arguments as in Section 4.1.3 and
Theorem 4.4.2, one can show that for the truncation level b = 2µ(V2+1)

ϵ the expectation
of the random variable Y = X1X≤b satisfies |E[Y] − µ| ≤ ϵµ/2 (Lemma 5.4.3). Thus,
by the triangle inequality, it suffices to estimate E[Y] with relative error ϵ/2. By using
the variable-time Bernoulli estimator, and given our choice of b, the expectation of Y
can be estimated with a time complexity on the order of V

√
E[T 2]ϵ−2. The remaining

obstacle is to find the truncation level b (or an approximation of it). For that, we define
the sequence of truncation levels bℓ = 2−ℓ(V2 + 1) for ℓ ≥ 1 and we estimate the mean
µℓ = E[X1X≤bℓ

] by using the variable-time Bernoulli estimator for increasing values of ℓ.
We set the time complexity of each estimation to V

√
E[T 2]. The crucial property is that

the obtained estimates µ̃ℓ are smaller than 2−ℓ for small values of ℓ, and they become larger
than 2−ℓ when ℓ ≈ log(1/µ). The first part of this property stems from an analog result to
Markov’s inequality, which shows that the output of the variable-time Bernoulli estimator
is smaller than twice the estimated mean with high probability (Proposition 5.4.2). The
second part is similar to the argument presented before, namely when bℓ ≈ µ(V2 + 1) the
variable-time Bernoulli estimator outputs an accurate estimate of µ after only V

√
E[T 2]

steps of computation. Thus, by stopping the above iterations when µ̃ℓ becomes larger
than 2−ℓ, we can take b = bℓ/ϵ as an approximation of the desired truncation level.

5.2 Model of input
We assume the existence of an abstract measure of complexity, called the time complexity,
that characterizes the total amount of time needed to execute a given quantum algorithm.
This measure assigns a 0/1 cost to each gate occurring in a quantum circuit.

Assumption 5.A (Time complexity). Consider a fixed set S of quantum gates, and a
function Tmax : S → {0, 1} where Tmax(G) is called the time complexity of the gate G ∈ S.
Given a quantum circuit A over the gate set S, we define the time complexity Tmax(A)
of A to be the sum of the time complexities of all the gates present in A.

48

5.2 Model of input

The time complexity is intended to measure the worst-case cost of an algorithm. We
present a second measure of complexity for characterizing the average cost, which is based
on the definition of a variable-time algorithm [Amb10c; CKS17; CGJ19]. A variable-time
algorithm is a product U = Un · · ·U1 of n unitaries acting on a space C2n ⊗H, where the
first n registers of the memory contain binary flags that indicate whether the computation
is finished or not. Each sub-algorithm Ui can only modify the states where the computation
is unfinished (which corresponds to the first i− 1-th flags being set to 0). The probability
of the “branches of computation” that are stopped at the i-th step is denoted by pstop,i.
The definition is illustrated in Figure 5.1.

Definition 5.2.1 (Variable-time algorithm). Let n be an integer and H a Hilbert
space. For each i ∈ {0, . . . , n}, define the projection operators Πstop,i = |0i−11⟩⟨0i−11| ⊗ I
and Πstop,≤i =

∑i
j=1 Πstop,j acting on C2n . We say that a quantum unitary algorithm U

acting on C2n ⊗H is a variable-time algorithm with intermediate stopping times (ti)i∈[n]
and stopping probabilities (pstop,i)i∈[n] if it can be decomposed as a product U = Un · · ·U1
of n unitary quantum algorithms that satisfy the following conditions. For each i ∈ [n],

(1) There exists a unitary operator Vi acting on C2n−i+1 ⊗H such that

Ui = |0i−1⟩⟨0i−1| ⊗ Vi + Πstop,≤i−1 ⊗ I.

(2) The time complexity of Ui is Tmax(Ui) = ti − ti−1 (where t0 = 0).

(3) The stopping probability is pstop,i = ∥Πstop,i(Ui · · ·U1|0⟩)∥2.

Additionally, we require that ∥Πstop,≤nU |0⟩∥ = 1.

. . .

. . .

. . .
...
. . .

. . .

. . .

|0⟩⊗n

V1
V2

V3
Vn

|0⟩ ∈ H

Figure 5.1: An illustration of the n steps of a variable-time algorithm U = Un · · ·U1. The
i-th layer of the circuit represents the unitary operator Ui. Each Vi is controlled
on the first i− 1 registers being equal to 0 (represented by the white circles).

The stopping time T of a variable-time algorithm is the random variable taking values in
{t1, . . . , tn} that is distributed according to the stopping probabilities of the algorithm U .
The time complexity mentioned in Assumption 5.A is simply equal to the maximum
value tn taken by T . More interestingly, we can define two measures of average stopping
time T1 and T2 by taking the expectation of T in ℓ1 or ℓ2 norms respectively.

Definition 5.2.2 (Stopping time). The stopping time of a variable-time algorithm U
with intermediate stopping times (ti)i∈[n] and stopping probabilities (pstop,i)i∈[n] is the
random variable T that takes value ti with probability pstop,i. The ℓ1-average stopping
time is T1(U) = E[T]. The ℓ2-average stopping time is T2(U) =

√
E[T 2].

49

Chapter 5 Variable-Time Mean Estimation

We have T1(U) ≤ T2(U) ≤ Tmax(U). We can easily adapt the definition of a q-random
variable (Section 4.2) to the case where it is generated by a variable-time algorithm.

Definition 5.2.3 (Stopping time of a q-random variable). A random variable X is
a q-random variable with stopping time T if it is generated by some q-variable (H, U,M)
where U has stopping time T .

The comparison oracle from Assumption 4.A is not needed in this chapter. We assume
that the time complexity of the rotation oracle Ra,b defined in Assumption 4.B is at most 1.

5.3 Variable-time amplitude estimation

The main contribution of this section is the next variable-time amplitude estimation
(VTAE) algorithm for estimating the squared amplitude p = ∥ΠU |0⟩∥2 with relative error ϵ,
where Π is a projector and U is a variable-time algorithm with stopping time T . The time
complexity of the VTAE algorithm is on the order of T2(U)/(ϵ3/2√p), whereas the standard
amplitude estimation algorithm (Theorem 3.3.1) has time complexity Tmax(U)/(ϵ√p).

Theorem 5.3.1 (Variable-time amplitude estimation). Let U = Un · · ·U1 be a
variable-time algorithm on C2n⊗H, for some Hilbert space H, with stopping time T . Given
a projection operator Π on H, define the number p ∈ [0, 1] such that p = ∥(I ⊗Π)U |0⟩∥2.
Then, given two time parameters t, T2 ≥ 1 and two reals ϵ, δ ∈ (0, 1), the variable-time
amplitude estimation algorithm VT-AEst(U,Π, t, T2, ϵ, δ) outputs an estimate p̃ such that

(1) If t ≥ 1
ϵ
√
p and T2 ≥ T2(U) then Pr[|p̃− p| > ϵp] ≤ δ.

(2) Pr[p̃ ≤ 2p] ≥ 1− δ.

The time complexity of the algorithm is Õ
(
tT2 ·min

(
log4(Tmax)√

ϵ
, 1 + Tmax

ϵtT2

)
log
(1
δ

))
.

The rest of this section is dedicated to the proof of this theorem. We first introduce
some notations in Section 5.3.1. Next, we present in Section 5.3.2 the two state generations
algorithms (Bi)i and (Ai)i used by Ambainis [Amb10c] for the VTAA algorithm. We make
a crucial observation about the amplitude of the states they generate in Lemma 5.3.3.
Finally, we use these algorithms in Section 5.3.3 to construct the VTAE algorithm.

5.3.1 Notations

For clarity in the proof, we assume the existence of an extra flag register containing a
value in {0, 1, 2} that indicates if the computation is unfinished (value 2), if it is finished
and corresponds to the “accepted” part lying in the support of Π (value 1), or if it is
finished and corresponds to the “rejected” part lying in the support of I − Π (value 0).
More formally, the projection operator Π is assumed to be I ⊗ |1⟩⟨1|, the initial state is
|ψ(0)⟩ = |0⟩|2⟩, and each intermediate state |ψ(i)⟩ = Ui · · ·U1|ψ(0)⟩ of the variable-time
algorithm U = Un · · ·U1 is written as

|ψ(i)⟩ = √prej,≤i|ψ(i)
0 ⟩|0⟩+√pacc,≤i|ψ(i)

1 ⟩|1⟩+√pstop,>i|ψ(i)
2 ⟩|2⟩

for some numbers prej,≤i, pacc,≤i, pstop,>i, and some unit states |ψ(i)
0 ⟩, |ψ

(i)
1 ⟩, |ψ

(i)
2 ⟩ such

that |ψ(i)
2 ⟩|2⟩ = (|0i⟩⟨0i| ⊗ I)|ψ(i)⟩. We have that pstop,>n = 0 since all the computations

50

5.3 Variable-time amplitude estimation

must be finished at step n. The quantity to be estimated is p = ∥(I ⊗ |1⟩⟨1|)|ψ(n)⟩∥2,
which is equal to

p = pacc,≤n.

Finally, we define the following two projectors on C2n ⊗H:{
Π1 = I ⊗ |1⟩⟨1| (projection on the accepted part)
Π1,2 = I ⊗ (|1⟩⟨1|+ |2⟩⟨2|) (projection on the non-rejected part).

5.3.2 State generation algorithms

We recall the definition of the two sequences of state generation algorithms (Bi)i (Algo-
rithm 5.2) and (Ai)i (Algorithm 5.3) defined by Ambainis [Amb10c] in the context of
VTAA. These algorithms alternate between running one of the sub-algorithms Ui, and
amplifying the non-rejected part of the state lying in the support of Π1,2. They take
as input a sequence of amplitude estimates (̃bi)i of bi = ∥Π1,2(Bi|ψ(0)⟩)∥2 that will be
computed later on. The main properties of these algorithms are given in Proposition 5.3.2.
The proof of parts (2) and (3) appears implicitly in [Amb10c], we give it with new details.

1. If i = 1, output B1 = U1.

2. If i > 1, output Bi = UiAi−1 where Ai−1 = GenA(U, i− 1, (̃bj)1≤j≤i−1).

Algorithm 5.2: State generation algorithm Bi = GenB(U, i, (̃bj)1≤j≤i−1).

1. Let Bi = GenB(U, i, (̃bj)1≤j≤i−1).

2. If b̃i > 1
9n , output Ai = Bi.

3. If b̃i ≤ 1
9n , output the amplitude amplification algorithm Ai = AAmp(Bi,Π1,2, ki)

where ki is the smallest integer satisfying 1/(9n) ≤ (2ki + 1)2b̃i ≤ 1/n.

Algorithm 5.3: State generation algorithm Ai = GenA(U, i, (̃bj)1≤j≤i).

Proposition 5.3.2. Let U be a variable-time algorithm with intermediate stopping times
(ti)i∈[n] under the notations of Section 5.3.1. Given a sequence of estimates (̃bj)1≤j≤n define
Bi = GenB(U, i, (̃bj)1≤j<i) (Algorithm 5.2) and Ai = GenA(U, i, (̃bj)1≤j≤i) (Algorithm 5.3)
for each i ∈ [n]. Let bi = ∥Π1,2(Bi|ψ(0)⟩)∥2 and ai = ∥Π1,2(Ai|ψ(0)⟩)∥2. Then, for
all i ∈ [n] and some universal constant C,

(1) bi = ai−1
1−prej,≤i

1−prej,≤i−1
where a0 = 0.

(2) If |̃bj − bj | ≤ bj

3n for all j ∈ [i] then Tmax(Ai) ≤ C
√
n
(
ti + i T2(U)√

1−prej,≤i

)
.

(3) If |̃bj − bj | ≤ bj

3n for all j ∈ [i] then ai ≥
(
1− 1

3n
) 1

9n .

51

Chapter 5 Variable-Time Mean Estimation

Proof of part (1). The state B1|ψ(0)⟩ is U1|ψ(0)⟩ = √prej,≤1|ψ(1)
0 ⟩|0⟩+√pacc,≤1|ψ(1)

1 ⟩|1⟩+
√
pstop,>1|ψ(1)

2 ⟩|2⟩, thus b1 = pacc,≤1 +pstop,>1 = 1−prej,≤1. For i > 1, the state Ai−1|ψ(0)⟩
is equal to

√
1− ai−1|ψ(i−1)

0 ⟩|0⟩+√ai−1

(√
pacc,≤i−1

1− prej,≤i−1
|ψ(i−1)

1 ⟩|1⟩+
√

pstop,>i−1
1− prej,≤i−1

|ψ(i−1)
2 ⟩|2⟩

)
.

Furthermore, there exist some unit states |ψ(i−1)
2→0 ⟩, |ψ

(i−1)
2→1 ⟩, |ψ

(i−1)
2→1 ⟩ such that

|ψ(i−1)
2 ⟩ = 1√

1− pstop,>i−1

(√
prej,i|ψ(i−1)

2→0 ⟩+√pacc,i|ψ(i−1)
2→1 ⟩+√pstop,>i|ψ(i−1)

2→2 ⟩
)

where prej,i = prej,≤i − prej,≤i−1, pacc,i = pacc,≤i − pacc,≤i−1, and Ui(|ψ(i−1)
2→b ⟩|2⟩) lies in the

support of I ⊗ |f⟩⟨f | for each f ∈ {0, 1, 2}. We obtain that bi = ∥Π1,2(Bi|ψ(0)⟩)∥2 =
∥Π1,2(UiAi−1|ψ(0)⟩)∥2 = ai−1

(
pacc,≤i−1+pacc,i

1−prej,≤i−1
+ pstop,>i

1−prej,≤i−1

)
= ai−1

1−prej,≤i

1−prej,≤i−1
.

Proof of parts (2) and (3). Assume that |̃bj − bj | ≤ bj/(3n) for all j ∈ [i]. The time
complexity of Bi is Tmax(Bi) = Tmax(Ai−1) + (ti − ti−1). If b̃i > 1/(9n) then Tmax(Ai) =
Tmax(Bi) = Tmax(Ai−1) + (ti − ti−1) and ai = bi ≥

(
1 + 1

3n
)−1 1

9n ≥
(
1− 1

3n
) 1

9n . If
b̃i ≤ 1/(9n) then by Theorem 3.2.1 the time complexity of Ai is Tmax(Ai) = (2ki +
1)Tmax(Bi) = (2ki + 1)(Tmax(Ai−1) + (ti − ti−1)). Moreover, by Corollary 3.2.2, we have
ai ≥

(
1− (2ki+1)2

3 b̃i

)
(2ki + 1)2b̃i ≥ max

((
1− 1

3n
) 1

9n , (1−
1

3n)2(2ki + 1)2bi
)

where the last
inequality uses the definition of ki and the hypothesis b̃i ≥ (1 − 1

3n)bi. Consequently,
Tmax(Ai) ≤

(
1 + 1

3n−1

)√
ai
bi

(Tmax(Ai−1) + (ti − ti−1)). Applying this result recursively,

Tmax(Ai) ≤
(

1 + 1
3n− 1

)i i∑
ℓ=1

(
i∏
j=ℓ

√
aj
bj

)
(tℓ − tℓ−1)

=
(

1 + 1
3n− 1

)i i∑
ℓ=1

√
ai
aℓ−1

·
1− prej,≤ℓ−1
1− prej,≤i

· (tℓ − tℓ−1) (by part (1))

≤ C
√
n

i∑
ℓ=1

√
1− prej,≤ℓ−1
1− prej,≤i

· (tℓ − tℓ−1)

≤ C
√
n

i∑
ℓ=1

√
1 + pstop,>ℓ−1

1− prej,≤i
· (tℓ − tℓ−1)

(since 1− prej,≤ℓ−1 = pacc,≤ℓ−1 + pstop,>ℓ−1)

≤ C
√
n

(
ti + 1√

1− prej,≤i

i∑
ℓ=1

√
pstop,>ℓ−1 · t2ℓ

)
(∀x ∈ R+ :

√
1 + x ≤ 1 +

√
x)

≤ C
√
n

(
ti + i

T2(U)√
1− prej,≤i

)
. (∀ℓ ∈ [i] :

√
pstop,>ℓ−1 · t2ℓ ≤ T2(U))

The next lemma provides a crucial formula that expresses the acceptance probability
pacc,≤i after i steps as a telescoping product.

52

5.3 Variable-time amplitude estimation

Lemma 5.3.3. Using the notations of Section 5.3.1 and Proposition 5.3.2, for each i ∈ [n],
the probability pacc,≤i of the accepting part in Ui · · ·U1|ψ(0)⟩ is equal to

pacc,≤i = b1 ·
i−1∏
j=2

bj
aj−1

· bi,1
ai−1

where bi,1 = ∥Π1(Bi|ψ(0)⟩)∥2.

Proof. The product b1 ·
∏i−1
j=2

bj

aj−1
is equal to 1− prej,≤i−1 by part (1) of Proposition 5.3.2.

Moreover, bi,1 = ai−1
pacc,≤i

1−prej,≤i−1
by the same arguments as in Proposition 5.3.2.

5.3.3 Main algorithm
We describe the VTAE algorithm used to prove Theorem 5.3.1. We first show in Algo-
rithm 5.4 how to approximate the intermediate acceptance probability pacc,≤i at any step
i ∈ {1, . . . , n}. The estimate p̃acc,≤i is obtained by approximating each term aj , bj and bi,1
appearing in the formula of Lemma 5.3.3. The estimation is performed by using the
sequential amplitude estimation algorithm Seq-AEst described in Theorem 3.3.3, which is
applied to the state generation algorithms (Bi)i and (Ai)i from Proposition 5.3.2.

1. For j = 1, . . . , i− 1:
a) Set Bj = GenB(U, j, (̃bk)1≤k≤j−1), compute b̃j = Seq-AEst(Bj ,Π1,2,

ϵ
4n ,

δ
2n).

b) Set Aj = GenA(U, j, (̃bk)1≤k≤j), compute ãj = Seq-AEst(Aj ,Π1,2,
ϵ

8n ,
δ

2n).

2. Set Bi = GenB(U, i, (̃bk)1≤k≤i−1), compute b̃i,1 = Seq-AEst(Bi,Π1,
ϵ

4n ,
δ

2n).

3. Output p̃acc,≤i = b̃1 ·
∏i−1
j=2

b̃j

ãj−1
· b̃i,1
ãi−1

.

Algorithm 5.4: Estimation of the intermediate acceptance probability pacc,≤i.

Proposition 5.3.4. Let U be a variable-time algorithm with intermediate stopping times
t1, . . . , tn, under the notations of Section 5.3.1 and Proposition 5.3.2. Given a step i ∈ [n]
and two reals ϵ, δ ∈ (0, 1), the output p̃acc,≤i of Algorithm 5.4 satisfies, with probability at
least 1− δ,

|p̃acc,≤i − pacc,≤i| ≤ ϵpacc,≤i.

Moreover, the time complexity is O
(
n3

ϵ

√
1−prej,≤i

pacc,≤i

(
ti + i T2(U)√

1−prej,≤i

)
log
(
n
δ

))
with proba-

bility at least 1− δ.

Proof. We have that |̃bj − bj | ≤ ϵ
4nbj , |ãj − aj | ≤

ϵ
8naj (for all j ∈ [i− 1]) and |̃bi,1− bi,1| ≤

ϵ
4nbi,1 with probability at least (1− δ

2n)2i−1 ≥ 1− δ by Theorem 3.3.3 and a union bound.
Moreover, if |ãj − aj | ≤ ϵ

8naj then | 1
ãj
− 1

aj
| ≤ ϵ

4n
1
aj

. Consequently, the estimate p̃acc,≤i
satisfies with probability at least 1− δ that,

p̃acc,≤i ≤
(

1 + ϵ

4n

)2i
b1 ·

i−1∏
j=2

bj
aj−1

· bi,1
ai−1

≤
(

1 + 4i
4nϵ

)
· pacc,≤i ≤ (1 + ϵ)pacc,≤i

53

Chapter 5 Variable-Time Mean Estimation

where the first inequality uses Lemma 5.3.3, and the second inequality uses that 1 +x ≤ ex
for x ∈ R and ey − 1 ≤ 2y for y ∈ [0, 1]. Similarly, it also satisfies that,

p̃acc,≤i ≥
(

1− ϵ

4n

)2i
b1 ·

i−1∏
j=2

bj
aj−1

· bi,1
ai−1

≥
(

1− 2i
4nϵ

)
· pacc,≤i ≥ (1− ϵ)pacc,≤i

where the second step is by Bernoulli’s inequality.
We now analyze the total time complexity. By Theorem 3.3.3 and a union bound,

with probability at least 1 − δ, step 1.a has time complexity O
(

n

ϵ
√
bj
Tmax(Bj) log(nδ)

)
,

step 1.b has time complexity O
(

n
ϵ
√
aj
Tmax(Aj) log(nδ)

)
and step 2 has time complexity

O
(

n

ϵ
√
bi,1
Tmax(Bi) log(nδ)

)
. Moreover, by definitions of (Bj)j and (Aj)j , if b̃j > 1

9n then

aj = bj and Tmax(Aj) ≥ Tmax(Bj), and if b̃j ≤ 1
9n then Tmax(Aj) = Ω

(√
aj

bj
Tmax(Bj)

)
.

In both cases we get Tmax(Bj)√
bj

= O
(
Tmax(Aj)√

aj

)
. Similarly, Tmax(Bi)√

bi,1
= O

(√
bi

aibi,1
Tmax(Ai)

)
.

Thus, the total time complexity is O
((∑i−1

j=1
n

ϵ
√
aj
Tmax(Aj)+ n

ϵ

√
bi

aibi,1
Tmax(Ai)

)
log(nδ)

)
=

O
(
n3

ϵ

√
1−prej,≤i

pacc,≤i

(
ti + i T2(U)√

1−prej,≤i

)
log(nδ)

)
with probability 1− δ by Proposition 5.3.2.

The VTAE algorithm is finally described in Algorithm 5.5. It uses the above algorithm to
obtain an amplitude estimate p̃ of p = pacc,≤n that satisfies the properties of Theorem 5.3.1.
We cannot simply run the above result on the input i = n since the time complexity would
depend linearly on the maximum stopping time tn = Tmax(U). Instead, we show that it
suffices to stop the algorithm at step i = T2(U)/√ϵp to get an ϵ error approximate of p. We
make the basic assumption (also used in [Amb10c; CGJ19]) that the intermediate stopping
times ti are exponentially distributed, that is ti = 2i for i ∈ [n] (if it is not the case, we
first reslice the circuit computing U). In particular, we have that n = log(Tmax(U)).

1. Set i = min
(
n, ⌈log(2

√
ϵtT2)

)
and t′ = 2Dn3

ϵ (ti + iϵtT2) log
(
n
δ

)
, where D is the

constant hidden in the O(.) notation of Proposition 5.3.4.

2. Run Algorithm 5.4 with input U , i, ϵ/2, δ for at most t′ time steps.
a) If the computation has not ended after t′ steps, stop it and output p̃ = 0.
b) Else, output p̃ = p̃acc,≤i, where p̃acc,≤i is the result of Algorithm 5.4.

Algorithm 5.5: Variable-time amplitude estimation, VT-AEst(U, t, T2, ϵ, δ).

Theorem 5.3.1 (Restated). Let U be a variable-time algorithm under the notations of
Section 5.3.1 and Proposition 5.3.2. Then, given two time parameters t, T2 ≥ 1 and two
reals ϵ, δ ∈ (0, 1), the output p̃ of Algorithm 5.5 satisfies,

(1) If t ≥ 1
ϵ
√
p and T2 ≥ T2(U) then Pr[|p̃− p| > ϵp] ≤ δ.

(2) Pr[p̃ ≤ 2p] ≥ 1− δ.

The time complexity of the algorithm is O
(
tT2 ·

(
n+ min

(
1√
ϵ
, Tmax(U)

ϵtT2

))
n3 log

(
n
δ

))
where

n = log(Tmax(U)).

54

5.4 Variable-time mean estimator

Proof. Assume first that t ≥ 1
ϵ
√
p and T2 ≥ T2(U), and suppose that ti = 2i for all i ∈ [n].

Then, the ℓ2-average stopping time of U satisfies T2(U) ≥
√
pstop,>i · t2i =

√
pstop,>i · 22i.

Thus, by choosing i = min(n, ⌈log(2
√
ϵtT2)⌉), the probability of stopping after step i is at

most pstop,>i ≤ T2(U)2/22i ≤ ϵp/2. Since the probability to be estimated is p = pacc,≤n,
we get that p ≥ pacc,≤i ≥ p−pstop,>i ≥ (1− ϵ/2)p and 1−prej,≤i ≤ p+pstop,>i ≤ (1+ ϵ/2)p.
Thus,

|pacc,≤i − p| ≤ ϵp/2 (5.1)

and Dn3

ϵ

√
1−prej,≤i

pacc,≤i

(
ti + i T2(U)√

1−prej,≤i

)
log
(
n
δ

)
< t′. Consequently, by Proposition 5.3.4, the

algorithm reaches step 2.b and obtain an estimate p̃acc,≤i such that

|p̃acc,≤i − pacc,≤i| ≤ ϵpacc,≤i/2 (5.2)

with probability at least 1− δ. By Equations (5.1) and (5.2) and the triangle inequality,
we get that |p̃acc,≤i − p| ≤ ϵp with probability at least 1− δ.

Assume now that t ≤ 1
ϵ
√
p . According to Proposition 5.3.4, the estimate p̃acc,≤i obtained

at step 2.b satisfies p̃acc,≤i ≤ (1 + ϵ/2)pacc,≤i ≤ 2p with probability at least 1 − δ. The
output p̃ of the algorithm is either 0 or p̃acc,≤i, thus it satisfies p̃ ≤ 2p with probability at
least 1− δ.

The time complexity is deduced from the stopping condition used at step 2.

5.4 Variable-time mean estimator
We use the VTAE algorithm given in the previous section to construct a series of efficient
mean estimators for q-random variables generated by variable-time algorithms. We first
present a variable-time Bernoulli estimator in Section 5.4.1 whose complexity depends on
the largest value taken by X. We build upon this algorithm to obtain faster estimators in
Section 5.4.2, whose complexities depend on the coefficient of variation of X.

5.4.1 Variable-time Bernoulli estimator

We adapt the Bernoulli estimator presented in Proposition 4.4.1 to the case of a q-random
variable generated by a variable-time algorithm. We first explain how to transform the
latter algorithm into a new variable-time algorithm U that encodes the expectation of the
truncated random variable as an amplitude into the state U |0⟩.

Proposition 5.4.1. Let X be a q-random variable with stopping time T , and set as input
two range values 0 ≤ a < b. Then, there exist a variable-time algorithm U = Un · · ·U1
with stopping time O(T) acting on some Hilbert space C2n ⊗H, and a projector Π acting
on H, such that

∥(I ⊗Π)U |0⟩∥2 = E[X1a<X≤b]
b

.

Proof. By Definition 5.2.3, there exists a q-variable (C2n ⊗H′, V,M) generating X, where
V = Vn · · ·V1 is a variable-time algorithm with stopping time T acting on C2n⊗H′ for some
Hilbert space H′. Let H = H′⊗C4. Given the projector Πstop,i = |0i−11⟩⟨0i−11|⊗ I acting
on C2n (Definition 5.2.1), we define the unitary Ustop,i = Πstop,i⊗ I ⊗X + (I −Πstop,i)⊗ I,
acting on C2n ⊗H, that flips the value of the last qubit if the flag registers indicate that
the computation is stopped at the i-th step.

55

Chapter 5 Variable-Time Mean Estimation

Consider the controlled rotation Ra,b acting on C2n ⊗H′ ⊗ C2 (Assumption 4.B). We
modify the variable-time algorithm V so that, after each step i, it applies Ra,b to the
branches of computation that are just finished. This is formalized by defining the new
variable-time algorithm U = Un · · ·U1 defined as,

Ui = (Ra,b ⊗ |1⟩⟨1|+ I ⊗ |0⟩⟨0|) · Ustop,i · (Vi ⊗ I).

The operators (Ra,b⊗|1⟩⟨1|+I⊗|0⟩⟨0|)·Ustop,i and Vj⊗I commute when i < j since they act
as non-identities on disjoint subspaces by Definition 5.2.1. Moreover, ∥(I⊗|0⟩⟨0|)U |0⟩∥ = 0
since all the basis states in the support of V |0⟩ must contain a flag register with a 1 (all the
branches of computation are finished at the end). Using these two facts, we obtain that the
final state U |0⟩ is equal to the state (Ra,b(V ⊗ I2)|0⟩)|1⟩ obtained by applying Ra,b only
once at the end of V . In order to simplify the analysis of the latter state, let us assume
that the random variable X is distributed in (a, b). Then, µ = E[X] = E[X1a<X≤b] and,

U |0⟩ = (Ra,b ⊗ I2)
∑
ω∈Ω

√
p(ω)|ω⟩|01⟩ by Definition 5.2.3

=
∑
ω∈Ω

√
p(ω)|ω⟩

(√
1− X(ω)

b
|0⟩+

√
X(ω)
b
|1⟩
)
|1⟩ by Assumption 4.B

=
√

1− µ

b

(∑
ω∈Ω

√
p(ω)(b−X(ω))

b− µ
|ω⟩

)
|01⟩+

√
µ

b

(∑
ω∈Ω

√
p(ω)X(ω)

µ
|ω⟩

)
|11⟩.

Thus, µ
b = ∥(I ⊗ Π)U |0⟩∥2 where Π = |11⟩⟨11|. This result also holds if X takes values

outside the interval (a, b] (it only changes the unit states in front of |01⟩ and |11⟩). The
stopping time of U is O(T) since Tmax(Ui) ≤ O(Tmax(Vi)) for all i ∈ [n].

We estimate the expectation of the truncated random variable X1a<X≤b by using the
VTAE algorithm on the variable-time algorithm constructed in the above proposition.

Proposition 5.4.2 (Variable-time Bernoulli estimator). There is a quantum
algorithm, called the variable-time Bernoulli estimator, with the following properties.
Let X be a q-random variable distributed in [0, 1] with stopping time T , and set as input
two time parameters t, T2 > 1, two range values 0 ≤ a < b, and two reals ϵ, δ ∈ (0, 1). Then,
the variable-time Bernoulli estimator VT-BernEst(X, t, T2, a, b, ϵ, δ) outputs an estimate µ̃a,b
of µa,b = E[X1a<X≤b] such that,

(1) If t ≥
√
b

ϵ
√
µa,b

and T2 ≥
√

E[T 2] then Pr[|µ̃a,b − µa,b| > ϵµa,b] ≤ δ.

(2) Pr[µ̃a,b ≤ 2µa,b] ≥ 1− δ.

The time complexity of the estimator is Õ
(

t√
ϵ
T2 · log4(Tmax) log(1/δ)

)
.

Proof. Let U and Π denote the variable-time algorithm and the projector provided by
Proposition 5.4.1 on input X, a, b. The algorithm consists of using the variable-time
amplitude estimation algorithm VT-AEst(U,Π, t, T2, ϵ, δ) (Theorem 5.3.1) to obtain an esti-
mate ṽ of µa,b/b, and to output µ̃a,b = bṽ. The result follow directly from Proposition 5.4.1
and Theorem 5.3.1 (the expression of the time complexity has been simplified).

As was the case with the Bernoulli estimator, we can use the variable-time Bernoulli
estimator with parameters a = 0 and b = 1 to estimate the mean µ of a random variable
distributed in [0, 1]. However, the time complexity is on the order of T2

ϵ3/2√
µ

, which is often
sub-optimal. We describe a more efficient approach in the next section.

56

5.4 Variable-time mean estimator

5.4.2 Variable-time (ϵ, δ)-estimator
We provide three estimators whose time complexity is on the order of σT2

ϵ2µ . Our main
result (Theorem 5.4.4) builds upon the relative estimator of Corollary 4.5.3. The analysis
is based on the next lemma that bounds the truncated mean at different truncation levels.

Lemma 5.4.3. Let X be a non-negative random variable. For any numbers Γ, c,m > 0
such that Γ ≥

√
E[X2]/E[X] and m ≥ cE[X], we have

(
1− 1

c

)
E[X] ≤ E[X1X≤mΓ2] ≤ E[X].

Proof. We have that E[X1X≤mΓ2] = E[X] − E[X1X>mΓ2] and 0 ≤ E[X1X>mΓ2] ≤
E[X2

1X>mΓ2]/(mΓ2) ≤ E[X2]/(mΓ2) ≤ (1/c) · E[X].

The algorithm uses two extra input parameters compared to Corollary 4.5.3: a candidate
upper bound T2 on the ℓ2-average stopping time, and a candidate lower bound α on the
mean µ. The need for α is removed in Proposition 5.4.6 by doing an exponential search.

1. Set m = 1/2.

2. Set bm = m(V2 + 1). Compute an estimate µ̃m of E[X1X≤bm] by using
the variable-time Bernoulli estimator VT-BernEst(X, t, T2, 0, bm, ϵ′, δ′) with t =
2
√

2(V + 1) and ϵ′ = 1/2, δ′ = δ
4+2 log(1/u) .

3. If µ̃m < m/16 and m ≥ α then set m = m/2 and go to step 2.

4. Set b = m(V2+1)
ϵ . Compute an estimate µ̃ of E[X1X≤b] by using the variable-time

Bernoulli estimator VT-BernEst(X, t, T2, 0, b, ϵ, δ/2) with t = 8(V+1)
ϵ3/2 . Output µ̃.

Algorithm 5.6: Variable-time relative estimator, VT-RelatEst(X,V, T2, α, ϵ, δ).

Theorem 5.4.4 (Variable-time relative estimator). Let X be a q-random variable
distributed in [0, 1] with mean µ, variance σ2 and stopping time T . Set as input two time
parameters V, T2 ≥ 1, a lower bound α ≥ 0, and two reals ϵ, δ ∈ (0, 1). Then, the mean
estimate µ̃ computed by the variable-time relative estimator VT-RelatEst(X,V, T2, α, ϵ, δ)
(Algorithm 5.6) satisfies

(1) If V ≥ σ/µ, T2 ≥
√

E[T 2] and µ ≥ α then Pr[|µ̃− µ| > ϵµ] ≤ δ.

(2) Pr[µ̃ ≤ 2µ] ≥ 1− δ.

The time complexity of the estimator is Õ
(
VT2 ·

(
log
(1
α

)
+ 1

ϵ2

)
· log4(Tmax) log

(1
δ

))
.

Proof. We prove part (1) of the theorem. Let us assume that V ≥ σ/µ and µ ≥ α. Note
that V + 1 ≥

√
E[X2]/E[X]. We make the assumption that all calls to the variable-time

Bernoulli estimator satisfy parts (1) and (2) of Proposition 5.4.2, which is the case with
probability at least 1− δ by a union bound. First, we show that the value m at step 4
satisfies the following constant relative error bound,

2µ ≤ m ≤ 32µ. (5.3)

Let µm = E[X1X≤bm] denote the expectation of the truncated random variable estimated
at step 2 of the algorithm. If m > 32µ then µ̃m ≤ 2µm ≤ 2µ < m/16, where the first

57

Chapter 5 Variable-Time Mean Estimation

inequality is by Proposition 5.4.2. If m ∈ [2µ, 4µ] then µm ≥ µ/2 by Lemma 5.4.3, and√
bm√
µm
≤ 2
√

2(V + 1). Thus, by Proposition 5.4.2, if m ∈ [2µ, 4µ] then |µ̃m − µm| ≤ µm/2,
and in particular µ̃m ≥ µ/4 ≥ m/16. Consequently, the algorithm reaches step 4 with a
value m that satisfies Equation (5.3). Next, we show that the computation at step 4 has
the effect of decreasing the relative error to ϵ. Let µb = E[X1X≤b] denote the expectation
estimated at step 4. Since m ≥ 2µ the threshold value b = m(V2+1)

ϵ is at least

b ≥ 2E[X2]
ϵE[X] . (5.4)

Consequently, by Lemma 5.4.3, the estimated mean µb satisfies |µb−µ| ≤ (ϵ/2)µ. Moreover,
the time parameter t used at step 4 is at least t = 8(V+1)

ϵ3/2 ≥ 2
√
b

ϵ
√
µb

since µb ≥ µ/2 and

b ≤ 32(V2+1)
ϵ . Thus, by Proposition 5.4.2, the estimate µ̃ satisfies |µ̃−µb| ≤ (ϵ/2)µ. By the

triangle inequality, we conclude that |µ̃− µ| ≤ ϵµ. This proves part (1) of the theorem.
Part (2) and the time complexity are directly implied by Proposition 5.4.2.

Similarly to Theorem 4.5.4, we consider the weaker hypothesis where, instead of a direct
upper bound V on σ/µ, we have a non-increasing function f such that f(µ) ≥ σ/µ. We
describe an interval estimator that decides if the mean µ lies in the interval [α, β) or is
ϵ-far from it. Our approach relies on the two properties proved in the previous theorem.

1. Compute an estimate µ̃ of µ = E[X] by using the variable-time relative estimator
VT-RelatEst(X,V, T2, α, ϵ/4, δ) with V = f

(
α
4
)
.

2. If µ̃ ∈
[
(1− ϵ

2)α, (1 + ϵ
2)β
)

then output B = 1, else output B = 0.

Algorithm 5.7: Variable-time interval estimator, VT-IntervEst(X, f, T2, α, β, ϵ, δ).

Proposition 5.4.5 (Variable-time interval estimator). Let X be a q-random
variable distributed in [0, 1] with mean µ, variance σ2 and stopping time T . Set as
input a non-increasing function f ≥ 1, a time parameter T2 ≥ 1, two endpoints α < β,
and two reals ϵ, δ ∈ (0, 1). Let B denote the Boolean value computed by the variable-
time interval estimator VT-IntervEst(X, f, T2, α, β, ϵ, δ) (Algorithm 5.7). If f(µ) ≥ σ/µ
and T2 ≥

√
E[T 2] then

(1) If µ ∈ [α, β) then B = 1 with probability at least 1− δ.

(2) If µ /∈ [(1− ϵ)α, (1 + ϵ)β) then B = 0 with probability at least 1− δ.

The time complexity of the algorithm is Õ
(
f
(
α
4
)
T2 ·

(
log
(1
α

)
+ 1

ϵ2

)
· log4(Tmax) log

(1
δ

))
.

Proof. Assume first that µ ≥ α/4. Then, V ≥ σ/µ and, by part (1) of Theorem 5.4.4,
|µ̃− µ| ≤ (ϵ/4)µ with probability at least 1− δ. Thus, with probability at least 1− δ,

• if µ ∈ [α, β) then µ̃ ∈ [(1− ϵ
4)α, (1 + ϵ

4)β),

• if µ ≥ (1 + ϵ)β then µ̃ ≥ (1− ϵ/4)µ ≥ (1− ϵ/4)(1 + ϵ)β ≥ (1 + ϵ/2)β,

• if µ ≤ (1− ϵ)α then µ̃ ≤ (1 + ϵ/4)µ ≤ (1 + ϵ/4)(1− ϵ)α ≤ (1− ϵ/2)α.

58

5.4 Variable-time mean estimator

In all three cases, the output B is correct with probability at least 1 − δ. Assume now
that µ ≤ α/4. By part (2) of Theorem 5.4.4, we have µ̃ ≤ 2µ ≤ α/2 ≤ (1− ϵ/2)α with
probability at least 1− δ. Thus, the output is B = 0 with probability at least 1− δ.

We finally describe an estimator that removes the need for a lower bound α on µ by
combining the two previous algorithms. In order to simplify the analysis, we only consider
the case where f is a power function. The algorithm is similar to the exponential estimator
of Corollary 4.5.6.

1. Set α = 1/2 and δ′ = δ/2.

2. Compute a Boolean value B by running the variable-time interval estimator
VT-IntervEst(X, f, T2, α, β, ϵ

′, δ′) with β = 1 and ϵ′ = 1/2.
a) If B = 0 then set α = α/2, δ′ = δ/2 and go to step 2.
b) Else, output the estimate µ̃ obtained by using the variable-time relative

estimator VT-RelatEst(X,V, T2, α/2, ϵ, δ′/2) with V = f(α/2).

Algorithm 5.8: Variable-time exponential estimator, VT-ExpEst(X, f, T2, ϵ, δ).

Proposition 5.4.6 (Variable-time exponential estimator). Let X be a q-random
variable distributed in [0, 1] with mean µ, variance σ2 and stopping time T . Set as input
a function f : x 7→ max(1, c/xd) for two constants c, d ≥ 0 such that f(µ) ≥ σ/µ, a time
parameter T2 ≥

√
E[T 2], and two reals ϵ, δ ∈ (0, 1) such that δ < 2−2d. Then, the mean

estimate µ̃ computed by the variable-time exponential estimator VT-ExpEst(X, f, T2, ϵ, δ)
(Algorithm 5.8) satisfies Pr[|µ̃− µ| > ϵµ] ≤ δ. Moreover, the time complexity C of the
estimator satisfies

1. Pr
[
C > Õ

(
f(µ)
ϵ2 T2 · log3(1

µ

)
log4(Tmax) log

(1
δ

))]
≤ δ,

2. E[C] ≤ Õ
(
f(µ)
ϵ2 T2 · log3(1

µ

)
log4(Tmax) log

(1
δ

))
.

Proof. According to Proposition 5.4.5, the probability to obtain B = 0 at step 2 is at least
1− δ′ when α ≥ 2µ, and at most δ′ when α ≤ µ. Consequently, the value α at step 2.b
satisfies α ∈ [µ/2, 2µ] with probability at least 1 − δ/2. In this case, V ≥ σ/µ and the
output µ̃ satisfies |µ̃− µ| ≤ ϵµ with probability at least 1− δ/2.

The total number C− of operations performed until α gets smaller than µ/2 is at
most C− ≤ Õ

(f(µ)
ϵ2 log3(1/µ)T2 · log4(Tmax) log(1/δ)

)
. Each time step 2 is executed with

α ≤ µ/2 the probability that it outputs 1 is at least 1− δ′. Thus, the expectation of the
number C+ of operations performed while α is smaller than µ/2 is

E[C+] ≤ Õ
(∞∑
k=0

δk · f(2−kµ)
ϵ2

log(2k/µ)T2 · log4(Tmax) log(2k/(µδ))
)

≤ Õ

(∞∑
k=0

δk · 2kdk2 f(µ)
ϵ2

log2(1/µ)T2 · log4(Tmax) log(1/δ)
)

≤ Õ
(
f(µ)
ϵ2

log2(1/µ)T2 · log4(Tmax) log(1/δ)
)
.

The total time complexity is C = C− + C+.

59

Chapter 5 Variable-Time Mean Estimation

5.5 Discussion
We observe that the use of the ℓ2-average stopping time comes at the cost of a larger
dependence on the error parameter ϵ compared to the algorithms based on the maximum
stopping time (as in Chapter 4). There is an overhead factor of ϵ−1/2 for the amplitude
estimation in the variable-time setting (Theorem 3.3.1 vs. Theorem 5.3.1), and an overhead
factor of ϵ−1 for the (ϵ, δ)-mean estimation problem (Corollary 4.5.3 vs. Theorem 5.4.4).
We leave as an open problem to improve the complexities in ϵ. A related question is to
find an efficient variable-time mean estimator achieving the sub-Gaussian deviation bound
Pr
[
|µ̃− µ| > σ log(1/δ)

t

]
≤ δ studied in the previous chapter. The results presented in the

current chapter are tailored to the (ϵ, δ)-approximation guarantee.

60

6
Estimation of Graph Parameters

This chapter is based on the following papers:

[HM19] Y. Hamoudi and F. Magniez. “Quantum Chebyshev’s Inequality and Appli-
cations”. In: Proceedings of the 46th International Colloquium on Automata,
Languages, and Programming (ICALP). 2019, 69:1–69:16.

[HM21a] Y. Hamoudi and F. Magniez. “Quantum Approximate Triangle Counting”. In
submission. 2021.

6.1 Introduction

The two previous chapters studied the mean estimation problem in the “black-box” model,
where the input consists of several independent runs of a random or quantum process
whose outcome encodes the distribution of an arbitrary random variable X. Our results
characterized the number of experiments and the time complexity needed to estimate the
mean µ of X with some prescribed accuracy. In this chapter, we consider a more specific
version of the mean estimation problem, where the random variable X encodes some graph
parameter. We show that having oracle access to the underlying graph may lead to faster
mean estimation algorithms. We focus on achieving the (ϵ, δ)-approximation guarantee
Pr[|µ̃− µ| > ϵµ] ≤ δ, that was studied before in Section 4.5 and Chapter 5.

The mean estimation problem takes on a different tone when the process that generates X
is not arbitrary. In a seminal work, Feige [Fei06] showed for instance that the average
degree in an n-vertex graph is easier to estimate than the average value of n arbitrary
numbers. This result prompted the study of sublinear-time algorithms for subgraph
counting problems [GR08; GRS11; ORRR12; NO08; YYI12; ELRS17; ERS20b; ERS20a].
These algorithms use the graph representation in the adjacency list or adjacency matrix
model to achieve faster estimations than in the black-box setting. The generic mean
estimators are still of great importance here, but they must be combined with more
advanced mean estimation procedures. A typical approach [GR08; GRS11; ELRS17;
ERS20b] is to design a random process, based on local graph exploration techniques, that
outputs a random variable X whose mean equals a parameter of the graph. The objective
is to minimize both the coefficient of variation of X (that controls the number of samples
needed to approximate the mean) and the graph exploration time T (that determines the
average stopping time for generating one sample). In the classical setting, the expected
time complexity of this method is the product N ×T1 of the number N of classical samples
needed and of the average exploration time T1 = E[T]. The quantum variable-time mean
estimators constructed in Chapter 5 lead to a tradeoff on the order of

√
N × T2, with a

quadratic improvement over the first part of the product, but a larger dependence on the

61

Chapter 6 Estimation of Graph Parameters

ℓ2-average exploration time T2 =
√

E[T 2] for the second part. We investigate the question
of whether such estimators may speed up the approximation of graph parameters.

We focus our study on the quantum query complexity of the Triangle Counting problem
in the general graph model [KKR04; Gol17], where both neighbor and edge queries are
permitted. This model is commonly used for handling arbitrary graphs whose sparsity is
unknown. In a recent work, Eden, Levi, Ron and Seshadhri [ELRS17] showed that the
classical query complexity for estimating the number t of triangles in an n-vertex with
m-edges is O∗(n/t1/3 + min(m,m3/2/t))1. We present an optimal quantum algorithm that
achieves a quadratic speedup over this quantity when t ≥ Ω(

√
m). Our result builds on

the classical algorithms for approximate triangle counting [ELR15; Ses15; ELRS17], and
on the variable-time mean estimators constructed in Chapter 5.

6.1.1 Related work
We refer the reader to Chapters 4 and 5 for related work on the mean estimation problem
in the “black-box” model. The approximation of several graph parameters has been
considered in the classical sublinear time literature, such as the number of edges [Fei06;
GR08], stars [GRS11], triangles [ELRS17], k-cliques [ERS20b; ERS20a] or the size of a
minimum spanning tree [CRT05] or a maximum matching [NO08; YYI12]. These results
have broad applications in diverse areas, such as social network analysis or bioinformatics.
None of these problems has been studied in the quantum setting to our knowledge. There
are a few quantum algorithms for estimating other graph parameters, such as electrical
network quantities [IJ19; JJKP18; Wan17; Pid19; CGJ19; AW20], the circuit rank of
a graph [DKW19], or the number of colorings, matchings or independent sets [Mon15;
HW20]. There is a much more extensive literature on quantum algorithms for deciding
graph properties [BDF+04; SYZ04; DHHM06; CK12], especially for detecting the presence
of a subgraph in a graph [MSS07; CK12; LMS12; Zhu12; BR12; LMS17]. In particular,
the Triangle Finding problem has received a great deal of interest [MSS07; Bel12; Gal14;
CLM20], and determining its query complexity is still an open problem. Some recent
results in fine-grained complexity have drawn connections between subgraph counting and
subgraph finding problems [DL18; DLM20], but it is unclear how strong the link is [FGP20;
ERR20]. Our algorithm for triangle counting is rather different than the previous quantum
algorithms for triangle finding, which have been developed mainly in the quantum walk
framework. However, it shall be noted that the variable-time amplitude amplification
algorithm has played a role in the Triangle Finding problem [Gal14; GN17], whereas our
result is based on the variable-time amplitude estimation algorithm.

6.1.2 Contributions and organization
We define the input model and the graph terminology in Section 6.2. Next, we present an
optimal quantum algorithm for estimating the number of edges in a graph in Section 6.3.
We obtain the following result that is needed for our triangle counting algorithm.

Theorem 6.3.2 (Restated). There exists a quantum algorithm with the following proper-
ties. Let G be a graph with n vertices and m edges in the quantum adjacency list model,
and fix two parameters ϵ, δ ∈ (0, 1/2). Then, the algorithm outputs an edge estimate m̃
such that |m̃ − m| ≤ ϵm with probability at least 1 − δ. The expected quantum query
complexity of the algorithm is O∗

(√
n

m1/4

)
.

1In this chapter, we use the notation Õ(x) to hide any polynomial factor in log(x), and the notation O∗(x)
to hide any polynomial factor in log(x), log(n), log(1/δ) and 1/ϵ.

62

6.1 Introduction

The quantum triangle counting algorithm is presented in Section 6.4. It relies on a series
of assumptions described in Section 6.4.1, that we remove later on. The main concepts
used in the algorithm are introduced in Section 6.4.2. The algorithm itself is described in
Sections 6.4.3–6.4.5. The final result (Algorithm 6.9) achieves the following complexity.

Theorem 6.4.18 (Restated). There exists a quantum algorithm with the following proper-
ties. Let G be a graph with n vertices, m edges and t triangles in the quantum general graph
model, and fix an error parameter ϵ ∈ (0, 1/2). Then, the algorithm outputs a triangle
estimate t̃ such that |t̃ − t| ≤ ϵt and it performs O∗

(√
n

t1/6 + m3/4
√
t

)
quantum queries with

probability at least 1− 1/ log(n).

We prove a lower bound for the Edge Counting problem in Proposition 6.5.3 that
matches the complexity of our algorithm. We also obtain the next result for Triangle
Counting that is optimal (up to logarithmic factors) when t ≥ Ω(

√
m).

Proposition 6.5.5 (Restated). Any algorithm that estimates the number t of triangles
in an n-vertex m-edge graph with relative error ϵ = 1/2 and success probability 2/3 must
perform at least Ω̃

(√
n

t1/6 + min
(
m3/4

√
t
,
√
m
))

quantum queries in the general graph model.

6.1.3 Proof overview
We present a high overview of the triangle counting algorithm and we explain how it
differs from previous classical work. Our result builds on a series of classical sublinear
algorithms [ELR15; Ses15; ELRS17] and it uses the variable-time quantum mean estimators
developed in Chapter 5. We assume for most of the presentation that the algorithm has
prior knowledge of an edge estimate m ∈ [m/4,m] (Assumption 6.A) and a triangle
estimate t ∈ [t/8, t] (Assumption 6.B). The purpose of the algorithm is to obtain a finer
estimate t̃ ∈ [(1− ϵ)t, (1 + ϵ)t] given a fixed error parameter ϵ ∈ (0, 1). We explain later
on how to get rid of these assumptions by estimating the edge count m with a separate
algorithm (Section 6.3), and by running the triangle counting algorithm over a decreasing
sequence of values for t (Algorithm 6.9).

The core of the algorithm is made of four estimators summarized in Table 6.1. In each of
the four cases, the expectation µ of the estimator equals some quantity related to the total
triangle count and we know a non-increasing function f such that the coefficient of variation
σ/µ is upper bounded by f(µ). The variable-time quantum mean estimators developed
in Chapter 5 (Theorem 5.4.4 and Proposition 5.4.6) can estimate the expectation µ of
any such estimator in time roughly O∗(f(µ)T2), where T2 is an upper bound on the
ℓ2-average stopping time of the considered estimator. Alternatively, the variable-time
interval estimator (Proposition 5.4.5) can decide if the mean µ is above some threshold
value α in time O∗(f(α)T2). Below, we describe the estimators of Table 6.1 and we explain
how they can be used to solve the Triangle Counting problem.

Buckets partitioning. Our starting point is to consider a discretization of the interval
[1, n2] into a sequence 1 = ν0 < ν1 < · · · < νk = n2 of O∗(logn) values, where each two
consecutive numbers differ by a small factor on the order of 1 + ϵ. These values define a
partition of the graph vertices into k buckets B1, . . . , Bk, where each bucket Bi consists
of all the vertices whose triangle-degree tv lies between νi and νi+1 (Assumption 6.D). If
we could compute an estimate s̃i of each bucket size |Bi| with relative error O(ϵ), then
the triangle estimate t̃ = 1

3
∑

i∈[k] s̃iνi would solve the Triangle Counting problem. The
most natural algorithm for computing s̃i is to estimate the expectation of the unbiased

63

Chapter 6 Estimation of Graph Parameters

Estimator Expectation Coefficient of variation ℓ2-average stopping time

Triangle-degree Tv
Proposition 6.4.8 tv O

(
m1/4

√
dv
tv

)
O(1)

Bucket size Si
Proposition 6.4.10 |Bi| O

(√
n

|Bi|

)
O∗
(

1 + m3/4
√
nνi

)
Weighted triangle-

degree Tv
Proposition 6.4.13

τv O
(
m1/4

√
dv
τv

)
O∗
(

1 +
√
tv√

dvm1/4
m3/4

√
t

)
Bucket weight Wi

Proposition 6.4.15
∑

v∈Bi
τv O

(√
n

|Bi|

)
O∗
(

1 + m3/4
√
nνi

+
√

|Bi|
n

m3/4
√
t

)
Table 6.1: Estimators used in the triangle counting algorithm. The values in the second

column are approximately equal to the expectation of each estimator.

random variable Si = n1v∈Bi where v is a vertex chosen uniformly at random in the graph
(Proposition 6.4.10). This approach poses two challenges. First, it requires a procedure
to decide if a given vertex v belongs to the bucket Bi (which amounts to estimate if
tv ∈ [νi, νi+1)). Secondly, the coefficient of variation of the random variable Si is

√
n/|Bi|,

which makes the time needed to estimate its mean prohibitively large when Bi is small.
The first idea toward solving these problems is to restrict our attention to the significant
buckets (Definition 6.4.3) defined as,

|Bi| ≥ Ω
(
ϵt

kνi

)
and νi ≤ O

(
t
2/3

ϵ1/3

)
. (significant)

We let S denote the set of the vertices that belong to a significant bucket (the vertices
in S are also called significant). Although the non-significant vertices cannot be fully
ignored (we explain later on how to compensate their loss), the sum 1

3
∑

v∈S tv of the
triangle-degrees over S already constitutes a constant fraction of the total triangle count t.
This sum is broken down into different terms 1

3
∑

v∈Bi
tv for each significant bucket Bi.

The latter quantity is now easier to estimate using the estimator Si = n1v∈Bi . Indeed,
the largeness condition on |Bi| provides a lower bound on the coefficient of variation of Si,
and the smallness condition on the bucket boundary νi will facilitate the computation of
whether a given vertex v belongs to Bi. We explain these two points in more detail in the
next two paragraphs.

Triangle-degree estimator and bucket assignment. The triangle-degree tv of a fixed
vertex v can be represented as the expectation of a particular random variable Tv computed
by a simple random process described in [ELRS17] and in Algorithm 6.4. The coefficient
of variation of Tv is upper bounded by O

(
m1/4√dv/tv), and the ℓ2-average stopping

time of the process generating Tv is O(1). We obtain a bucket assignment algorithm
(Proposition 6.4.9) that decides if tv lies in the interval [νi, νi+1) (meaning that v is assigned
to the bucket Bi) by applying the variable-time interval estimator developed in the previous
chapter to Tv. The query complexity of this algorithm is O∗(1 +m1/4√dv/νi).
Significant buckets detection. We use the above bucket assignment algorithm to im-
plement the bucket size estimator Si = n1v∈Bi where v is chosen uniformly at random

64

6.1 Introduction

(Proposition 6.4.10). The coefficient of variation of Si is O(
√
n/|Bi|), and the ℓ2-average

stopping time to compute Si is O∗
(√

1
n

∑
v∈V (1 +m1/4

√
dv/νi)2

)
= O∗

(
1 + m3/4

√
nνi

)
. Con-

sequently, by using again the variable-time interval estimator, we can decide if the size |Bi|
exceeds the threshold value Ω(ϵt

kνi
) in time O∗

(√
nkνi

ϵt

(
1 + m3/4

√
nνi

))
(Proposition 6.4.11).

We only perform this computation when νi ≤ O
(
t
2/3

ϵ1/3

)
to decide if the bucket is significant.

Thus, the query complexity is O∗
(√

n

t1/6 + m3/4
√
t

)
. Furthermore, the size of a significant

bucket can be estimated at the same cost by using the variable-time exponential estimator.

Weighted triangle-degree. The sum 1
3
∑

v∈S tv of the triangle-degrees over S may be
smaller than the lower endpoint (1− ϵ)t of the error interval we are aiming at. Thus, we
cannot simply estimate the size of the significant buckets for solving the problem (although
it would be sufficient for getting a constant factor estimate of t). We address this issue by
considering the set H of all the heavy vertices (Definition 6.4.4), defined as

dv ≥ Ω
(

m

ϵ4/3t
1/3

)
or tv ≥ Ω

(
t
2/3

ϵ1/3

)
. (heavy)

We show that the augmented sum
∑

v∈S∪H tv over the union of S and H is larger than
the lower endpoint (1 − ϵ)t (Proposition 6.4.6). Thus, it can be estimated in place of
the triangle count t. We estimate this sum in an indirect way by using a compensation
idea. First, we assign the weight w(∆) = 1/max(1, 3− h) to each triangle ∆ in the graph,
where h ∈ {0, 1, 2, 3} is the number of heavy vertices contained in ∆ (Definition 6.4.5).
Next, we define the weighted triangle-degree τv of a vertex v as the sum of the weights of
all the triangles adjacent to v. Suppose for a moment that none of the heavy vertices is
significant, and that each triangle containing a heavy vertex also contains a significant one.
Then the sum of the weighted triangle-degrees

∑
v∈S τv over S would exactly be equal

to the sum of the triangle-degrees
∑

v∈S∪H tv over S ∪ H. In practice, a vertex can be
both heavy and significant, and a triangle can contain three non-significant heavy vertices.
However, we show that the total contribution of these events to the total triangle count is
negligible (Proposition 6.4.6 and Proposition 6.4.7). Thus, the quantity

∑
v∈S τv can be

estimated in place of the triangle count t.

Weighted triangle-degree estimation. The weighted triangle-degree τv can be estimated
in a similar way as the triangle-degree tv (note that these two quantities can only differ by
a factor of 3). The main difference is the use of a procedure for deciding whether some
vertex w is heavy, which can be done in time O∗(m3/4/

√
t) by using the variable-time

interval estimator on the triangle-degree estimator Tw defined before (Proposition 6.4.12).
The resulting algorithm (Proposition 6.4.13) generates a random variable Tv whose ex-
pectation is close to τv, and whose coefficient of variation is upper bounded by a value
O
(
m1/4√dv/τv) similar to that of the triangle-degree estimator. The ℓ2-average stopping

time of the quantum process generating Tv is O∗
(

1 +
√
tv√

dvm1/4
m3/4

√
t

)
due to the heavy

detection procedure occurring with probability tv
dv

√
m

during the computation. As a result
(Proposition 6.4.14), we can estimate with high accuracy the weighted triangle-degree τv
of a vertex v ∈ Bi in time O∗

(
m1/4√

dv√
νi

(
1 +

√
tv√

dvm1/4
m3/4

√
t

))
≤ O∗

(
m1/4√

dv√
νi

+ m3/4
√
t

)
, by

using the variable-time relative estimator on Tv.

65

Chapter 6 Estimation of Graph Parameters

Bucket weight estimation. We can finally wrap up the algorithm. The triangle estimate t̃
is set to be t̃ =

∑
i w̃i, where w̃i is an estimate of the bucket weight

∑
v∈Bi

τv for each
significant bucket Bi (Proposition 6.4.17). The weight w̃i is obtained by considering the
unbiased bucket weight estimator Wi = n1v∈Biτv, where v is a vertex chosen uniformly
at random in the graph (Proposition 6.4.15). We use the bucket assignment algorithm
for computing 1v∈Bi , and the weighted triangle-degree estimator for estimating τv when
v ∈ Bi. The ℓ2-average stopping time of Wi is shown to be O∗

(
1+ m3/4

√
nνi

+
√

|Bi|
n

m3/4
√
t

)
. The

weight estimate w̃i is obtained by using the variable-time relative estimator on Wi (Propo-
sition 6.4.16). Since the coefficient of variation of Wi is upper bounded by O(

√
n/|Bi|),

and provided that we only compute w̃i for significant buckets, the query complexity is on
the order of O∗

(√
n

|Bi|

(
1 + m3/4

√
nνi

+
√

|Bi|
n

m3/4
√
t

))
≤ O∗

(√
n

t1/6 + m3/4
√
t

)
.

Misclassification. A central aspect of the analysis, that we did not mention yet, is to
handle the case where a vertex or a bucket is misclassified by the algorithm. This is likely
to happen when the estimated quantity is close to the threshold value used to classify it.
For instance, the bucket assignment procedure can wrongly assign a vertex v to a bucket
Bi if the triangle-degree tv is slightly smaller than the lower endpoint νi. We ensure that
such misclassifications do not impact the accuracy of the triangle estimate much. First, the
threshold values used to define the buckets and the sets S and H are randomly perturbed
to guarantee that few elements lie in their neighborhood (Lemmas 6.4.1 and 6.4.2). Next,
we duplicate each concept involving a threshold value (significant bucket, heavy vertex,
triangle weight, etc.) into a weak variant allowing for a small error in the estimation. We
then show that the algorithm remains correct in this relaxed setting.

Prior knowledge of m and t. We compute the edge estimate m in time O∗
(√

n

m1/4

)
(Theorem 6.3.2) by using the exponential estimator on an unbiased estimator of m
described in [Ses15] and in Algorithm 6.1. The triangle estimate t ∈ [t/8, t] is obtained in a
more complicated way. We run our triangle counting algorithm over a decreasing sequence
of values t = n3, n3/2, . . . (Algorithm 6.9). We show that the obtained estimate t̃ is larger
than 3t when t > t, and it becomes smaller than 3t when t ∈ [t/8, t/4]. This property
is inherited from a Markov-like inequality satisfied by the quantum mean estimators,
which states that the estimates are smaller than a small multiple of the mean with high
probability. By comparing t and t̃, we can detect when t lies in the correct range of values.

Differences with [ELR15; Ses15; ELRS17]. Our work uses the quantum mean estimators
developed in Chapter 5, whereas the classical algorithms use the median-of-means estimator.
As a consequence, we must upper bound the ℓ2-average stopping time of the processes
generating the random variables we are considering, whereas classically it suffices to bound
the ℓ1-average stopping time. The bucketing technique originates from [GR08; GRS11;
ELR15] but was abandoned in subsequent versions of the triangle counting algorithm [Ses15;
ELRS17]. The weighted triangle-degree τv was introduced in the later version [Ses15;
ELRS17], where the sum

∑
v∈S τv is approximated by using a different estimator from Wi.

The authors need to set up a data structure of size O∗(n/t1/3) for sampling edges uniformly
at random, which is unclear how to speed up in the quantum setting. In the present work,
we combine the bucketing and the weighted triangle-degree ideas together to avoid edge
sampling, which requires some subtle changes in the analysis. For instance, the definition
of a heavy vertex differs by a factor of 1/ϵ compared to [Ses15; ELRS17].

66

6.2 Preliminaries

6.2 Preliminaries
Our algorithms are formulated in the graph query model. Before describing the latter, we
first introduce the terminology used in the present chapter.
Definition 6.2.1 (Terminology of graphs). A graph G with n vertices and m edges
is a pair (V,E), where V = [n] is the vertex set and E ⊆

(
V
2
)

is the edge set of size m. We
let Gn denote the set of all graphs with n vertices. Given two vertices v, w ∈ V , we say
that w is a neighbor of v if {v, w} ∈ E. An edge e ∈ E is adjacent to a vertex v if v ∈ e.
We let E(v) denote the set of all the edges adjacent to v. The degree of a vertex v is
dv = |E(v)|. A triangle ∆ = {u, v, w} is a subset of three vertices of V such that the edges
{u, v}, {v, w} and {u,w} belong to E. We say that a triangle ∆ is adjacent to v if v ∈ ∆,
and we let T (v) denote the set of all the triangles adjacent to v. The triangle-degree tv of v
is defined as tv = |T (v)|. The total number t of triangles in G is equal to t = 1

3
∑

v∈V tv.
We also define the following total order ≺ on the vertex set V = [n].

Definition 6.2.2 (Vertex ordering). We let ≺ denote the total order on V defined as
u ≺ v when du < dv, or when du = dv and u < v (where < is the natural order on [n]).

A graph can be represented in different ways, leading to different query models. The
two most common representations are the adjacency list and adjacency matrix models,
which are suitable for bounded degree graphs and dense graphs respectively. The general
graph model [KKR04; Gol17] is a combination of these two models that is relevant when
the input graph is arbitrary. We first present the classical definitions of these models.
Definition 6.2.3 (Classical graph oracles). Given a graph G = (V,E), we define
three oracles to G corresponding to the following types of queries:

(1) degree query: given v ∈ V , returns the degree dv of v,

(2) neighbor query: given v ∈ V and i ∈ [n], returns the i-th neighbor of v (according to
any fixed order) if i ≤ dv, and 0 otherwise,

(3) edge query: given u, v ∈ V , returns the Boolean value indicating if {u, v} ∈ E.
A graph is in the adjacency list model if it can be accessed with degree and neighbor
queries. It is in the adjacency matrix model if it can be accessed with edge queries. It is
in the general graph model if it can be accessed with degree, neighbor and edge queries.

We adapt these models to the quantum setting by defining the corresponding quantum
oracle operators. The query complexity of a quantum algorithm is equal to the number of
times these operators are used.
Definition 6.2.4 (Quantum graph oracles). Given a graph G = (V,E), we consider
the three unitary operators Odeg, Ongh and Oedg defined on the basis states as follows,

(1) degree query: Odeg(|v⟩|y⟩) = |v⟩|y ⊕ dv⟩, where v ∈ V and y ∈ {0, 1}⌈logn⌉,

(2) neighbor query: Ongh(|v⟩|i⟩|y⟩) = |v⟩|i⟩|y ⊕N(v, i)⟩, where v ∈ V , i ∈ {0, 1}⌈logn⌉,
y ∈ {0, 1}⌈log(n+1)⌉ and N(v, i) is the i-th neighbor of v if i ≤ dv, and 0 otherwise,

(3) edge query: Oedg(|u⟩|v⟩|b⟩) = |u⟩|v⟩|b⊕ 1{u,v}∈E⟩ where u, v ∈ V and b ∈ {0, 1}.
A graph is in the quantum adjacency list model if it can be accessed with Odeg and Ongh.
It is in the quantum adjacency matrix model if it can be accessed with Oedg. It is in the
quantum general graph model if it can be accessed with Odeg, Ongh and Oedg.

We recall that the notation O∗(x) is used to hide any polynomial factor in log(x), log(n),
log(1/δ) and 1/ϵ, where δ is the failure probability parameter, and ϵ is the error parameter.

67

Chapter 6 Estimation of Graph Parameters

Quantum mean estimation. In this chapter, the time complexity (Assumption 5.A) is
measured as the number of quantum queries to the input graph. We sometimes use the
quantum mean estimators developed in Chapters 4 and 5 to estimate the expected output
value of a randomized algorithm A. When doing so, we implicitly assume that A is first
turned into a q-variable (Definition 4.2.3) by using standard reversibility techniques that
do not significantly increase the time complexity (such as [Ben73]). In particular, if the
number T of queries used by A is a random variable, then we also call T the stopping time
of A and we can turn A into a variable-time quantum algorithm with stopping time O(T)
(in the sense of Definition 5.2.2). Some of the quantum mean estimators also require the
input q-random variable X to be distributed in [0, 1]. If X is instead distributed in [0,M]
for some M ≥ 1, then we implicitly estimate the expectation of X/M and we multiply the
result by M . This does not change the accuracy of the estimate since we use relative error
bounds. Moreover, the time complexity increases only by a logarithmic factor in M .

6.3 Edge counting
We describe an optimal algorithm for estimating the number m of edges in the quantum
adjacency list model. Our approach uses the following unbiased estimator of m taken
from [Ses15]. The analysis is given here for completeness.

1. Sample a vertex v ∈ V uniformly at random. Sample a neighbor w of v uniformly
at random.

2. If v ≺ w, then output ndv. Else, output 0.

Algorithm 6.1: Edge estimator from [Ses15].

Proposition 6.3.1 (Theorem 12 in [Ses15]). The output X of Algorithm 6.1 satisfies
E[X] = m and Var[X] ≤ 2

√
2nm3/2. The query complexity is O(1).

Proof. Let d+
v denote the number of neighbors w of v such that v ≺ w, where ≺ is defined in

Definition 6.2.2. We have d+
v ≤
√

2m and
∑

v∈V d
+
v = m. Thus, E[X] = 1

n

∑
v∈V

d+
v
dv
ndv =

m, and Var[X] ≤ E[X2] = 1
n

∑
v∈V

d+
v
dv

(ndv)2 ≤ n
√

2m
∑

v∈V dv ≤ 2
√

2nm3/2.

The classical edge counting algorithm [Ses15] consists of applying the median-of-means
estimator to O

(
n

ϵ2
√
m

)
samples drawn from the random variable computed by Algorithm 6.1.

We obtain a quadratic speedup by instead using the quantum exponential estimator.
Theorem 6.3.2 (Edge counting). There exists a quantum algorithm with the following
properties. Let G be a graph with n vertices and m edges in the quantum adjacency list
model, and fix two parameters ϵ, δ ∈ (0, 1/2). Then, the algorithm outputs an edge estimate
m̃ such that |m̃ −m| ≤ ϵm with probability at least 1 − δ. The expected quantum query
complexity of the algorithm is O∗

(√
n

m1/4

)
.

Proof. The algorithm consists of using the exponential estimator ExpEst(X, f, ϵ, δ) on the
random variable X computed by Algorithm 6.1 with f : y 7→ 4

√
n

y1/4 . Observe that f(E[X]) ≥
√

Var[X]
E[X] by Proposition 6.3.1. Thus, the algorithm returns a correct estimate with

probability at least 1− δ and uses O∗
(√

n

m1/4

)
queries in expectation by Corollary 4.5.6.

68

6.4 Triangle counting

6.4 Triangle counting
In this section, we describe our quantum algorithm for estimating the number t of triangles
in a graph. The relative error parameter ϵ ∈ (0, 1) is fixed from now on. We explain
how to compute a triangle count estimate t̃ such that |t̃ − t| ≤ ϵt with probability at
least 1− 1/ logn (Theorem 6.4.18). We suppose that t ≥ 1. A simple adaptation of our
algorithm (that we will not describe here) can handle the case t = 0 separately by finding
a triangle in time Õ

(√
n+m3/4) if there is one.

6.4.1 Assumptions
We make four assumptions that simplify the description of the triangle counting algorithm.
We explain later on how to remove them. First, we assume that the algorithm has prior
knowledge of an edge estimate m and a triangle estimate t with constant relative error.

Assumption 6.A. The algorithm takes as input an edge estimate m such that m ∈
[
m
4 ,m

]
.

Assumption 6.B. The algorithm takes as input a triangle estimate t such that t ∈
[
t
8 , t
]
.

Next, we assume that the algorithm has prior knowledge of a threshold value τ on
the order of t2/3

ϵ1/3 such that the sum of the triangle-degrees lying in a small neighborhood
[τ−, τ+] of τ is negligible. We explain how to satisfy this assumption in Lemma 6.4.1.

Assumption 6.C. The algorithm takes as input a threshold value τ > 0 such that,

(1) (Separation) Define τ− =
(

1− 800ϵ
log3(n)

)
τ and τ+ =

(
1 + 800ϵ

log3(n)

)
τ .

(2) (Triangle threshold) τ− ∈
[

16t2/3

ϵ1/3 , 32t2/3

ϵ1/3

]
.

(3) (Anti-concentration)
∑

v:tv∈[τ−,τ+] tv ≤
ϵ

30 t.

Finally, we consider two vertex bucketing sequences (B̂i)i and (Bi)i, where each bucket
contains all the vertices with a similar triangle-degree. We assume that Bi ⊆ B̂i for all i,
the sum of the triangle-degrees lying in B̂i \ Bi is negligible, and there is some margin
between the boundaries of Bi and B̂i. These buckets are represented in Figure 6.2. We
explain how to construct them in Lemma 6.4.2.

Assumption 6.D. Let k =
⌊ log4(n)

90ϵ
⌋
. The algorithm takes as input three increasing

sequences (ν−
i)i∈[k], (ν+

i)i∈[k] and (νi)i∈[k] where νi < ν−
i < ν+

i < νi+1 for each i. Given
the sets Bi = {v ∈ V : tv ∈ [ν−

i , ν
+
i)} and B̂i = {v ∈ V : tv ∈ [νi, νi+1)}, we have that

(1) (Partition & Inclusion) (B̂i)i is a partition of {v ∈ V : tv ̸= 0}, and Bi ⊆ B̂i for all i.

(2) (Closeness) νi+1 ≤
(

1 + 800ϵ
log3(n)

)
νi for all i.

(3) (Separation) νi ≤
(

1− 50ϵ3
log8(n)

)
ν−
i and νi+1 ≥

(
1 + 50ϵ3

log8(n)

)
ν+
i for all i.

(4) (Anti-concentration)
∑

i∈[k]
∑

v∈B̂i\Bi
tv ≤ ϵ

30 t.

Assumptions 6.A and 6.B are removed in the final algorithm (Algorithm 6.9). As-
sumptions 6.C and 6.D are easier to satisfy. Indeed, it suffices to randomly choose the
threshold values involved in their definition. We first describe a procedure that satisfies
Assumption 6.C with high probability.

69

Chapter 6 Estimation of Graph Parameters

Lemma 6.4.1. There exists an algorithm that outputs a threshold value τ > 0 satisfying
Assumption 6.C with probability at least 1− 1

30 log2(n) . The algorithm makes no query.

Proof. Define τj =
(
1 + 1200ϵ

log3(n)
)2j+1 16t2/3

ϵ1/3 and τ−
j =

(
1 − 800ϵ

log3(n)
)
τj , τ+

j =
(
1 + 800ϵ

log3(n)
)
τj

for j ≥ 0. Note that the intervals [τ−
j , τ

+
j] are disjoint. There are at most 90

ϵ values j such
that

∑
v:tv∈[τ−

j ,τ
+
j] tv >

ϵ
30 t since

∑
v∈V tv = 3t. Consider the algorithm that chooses j

uniformly at random between 0 and 2700 log2(n)
ϵ −1 and that sets τ = τj , τ− = τ−

j , τ+ = τ+
j .

By a union bound, this choice satisfies
∑

v:tv∈[τ−,τ+] tv ≤
ϵ

30 t with probability at least
1− 1

30 log2(n) . Moreover, τ− ≤
(
1+ 1200ϵ

log3(n)
)5400 log2(n)/ϵ 16t2/3

ϵ1/3 ≤ 32t2/3

ϵ1/3 for n large enough.

We now describe a procedure that satisfies Assumption 6.D with high probability. The
algorithm is similar to that of the previous lemma.
Lemma 6.4.2 (Adapted from [ELR15]). There exists an algorithm that outputs three
sequences (ν−

i)i∈[k], (ν+
i)i∈[k] and (νi)i∈[k] satisfying Assumption 6.D with probability at

least 1− 1
2 logn . The algorithm makes no query.

Proof. For convenience in the proof, we change the range of i to {−1, 0, 1, . . . , k − 2}.
Let µi =

(
1 + 800ϵ

log3(n)
)i/2 for i ≥ −1. We subdivide the interval [µi, µi+1] by defining

ωi,j = µi
(
1 + 800ϵ

log3(n)
)jϵ2/(4 log5(n)) for 0 ≤ j ≤ 2 log5(n)/ϵ2 (assuming 2 log5(n)/ϵ2 is

an integer). For each i, there are at most 90
ϵ values j such that

∑
v:tv∈[ωi,j ,ωi,j+1] tv >

ϵ
90
∑

v:tv∈[µi,µi+1] tv. Consider the algorithm that chooses ji uniformly at random between 0
and 2 log5(n)/ϵ2−1 for each i, and that sets ν−

i = ωi,ji+1, ν+
i = ωi+1,ji+1 and νi = ωi,ji

(
1+

800ϵ
log3(n)

)ϵ2/(8 log5(n)). By a union bound, we have
∑

v:tv∈[ωi,ji
,ωi,ji+1] tv ≤

ϵ
90
∑

v:tv∈[µi,µi+1] tv

for all i with probability at least 1− 90ϵ
2 log5(n)k ≥ 1− 1

2 logn . The construction is depicted
in Figure 6.2.

Figure 6.2: An illustration of the triangle-degree intervals defined in the proof of
Lemma 6.4.2 (with a logarithmic scale). The upper red rectangles repre-
sent the buckets B̂i, whereas the lower blue ones represent the buckets Bi.

We prove that Assumption 6.D holds for the above choice with probability at least
1− 1

2 logn . First, for part (1), the buckets B̂i are disjoint and they cover all the vertices
whose triangle-degree is between ν−1 ≤ µ0 = 1 and νk−2 ≥ µk−3 > n2. Thus, (B̂i)i is
a partition of {v ∈ V : tv ̸= 0}. The inclusion property is trivial. Part (2) is a direct
consequence of µi ≤ νi, νi+1 ≤ µi+2 =

(
1 + 800ϵ

log3(n)
)
µi. The first half of part (3) is obtained

by νi =
(
1 + 800ϵ

log3(n)
)−ϵ2/(8 log5(n))

ν−
i ≤

(
1 − 50ϵ3

log8(n)
)
νi. The second half is obtained by

νi+1 =
(
1 + 800ϵ

log3(n)
)ϵ2/(8 log5(n))

ν+
i ≥

(
1 + 100ϵ3

log8(n)

)
ν+
i . Finally, for part (4), the sum of

the triangle-degrees over the vertices outside a bucket Bi is at most
∑

i∈[k]
∑

v∈B̂i\Bi
tv =∑

i∈[k]
∑

v:tv∈[ωi,ji
,ωi,ji+1] tv ≤

ϵ
90
∑

i∈[k]
∑

v:tv∈[µi,µi+1] tv = ϵ
30 t with probability at least

1− 1
2 logn .

70

6.4 Triangle counting

6.4.2 Main concepts
We introduce three concepts that play a central role in the triangle counting algorithm.
First, we define the notion of “significant bucket” and “significant vertex”. A bucket is
significant if it contains enough vertices, and if the triangle-degrees are sufficiently small.
The notion of “weak significance” allows for a slightly smaller bucket size.

Definition 6.4.3 (Significant). A bucket Bi is significant if |Bi| ≥ ϵt
30kνi+1

and νi ≤ τ .
A bucket B̂i is weakly significant if |B̂i| ≥ ϵt

60kνi+1
and νi ≤ τ . We let IS ⊆ [k] (resp. IŜ)

denote the set of the indices of the significant (resp. weakly significant) buckets. A vertex v
is (weakly) significant if it belongs to a (weakly) significant bucket. We let S = ∪i∈ISBi
denote the set of all significant vertices, and Ŝ = ∪i∈IŜ

B̂i denote the set of all weakly
significant vertices.

We say that a vertex is “heavy” if its degree or its triangle-degree is large. The notion
of “weakly heavy” vertex allows for a slightly smaller triangle-degree.

Definition 6.4.4 (Heavy). A vertex v is heavy if dv > 211m

ϵ4/3t
1/3 or tv > τ . A vertex v is

weakly heavy if dv > 211m

ϵ4/3t
1/3 or tv > τ−. We let H (resp. Ĥ) denote the set of all heavy

(resp. weakly heavy) vertices.

We finally define the “weight” of a triangle as the inverse of the number of non-heavy
vertices it contains. We set the weight to 1 if all three vertices are heavy. The “weighted
triangle-degree” of a vertex v is the sum of the weights of the triangles adjacent to v. We
also adapt these definitions to the notion of “weakly heavy” vertices.

Definition 6.4.5 (Weight). The weight w(∆) of a triangle ∆ is w(∆) = 1/max{1, 3−h},
where h is the number of heavy vertices in ∆. The weak weight ŵ(∆) of a triangle ∆ is
ŵ(∆) = 1/max{1, 3− ĥ}, where ĥ is the number of weakly heavy vertices in ∆. Given
a vertex v, we define the weighted triangle-degree τv =

∑
∆∈T (v)w(∆) and the weakly

weighted triangle-degree τ̂v =
∑

∆∈T (v) ŵ(∆).

The triangle-degree tv, the weighted triangle-degree τv and the weakly weighted triangle-
degree τ̂v are related by the inequalities

1
3 tv ≤ τv ≤ τ̂v ≤ tv.

The total number t of triangles in the graph is equal to the sum of the triangle-degrees
t = 1

3
∑

v∈V tv over all the vertices. We show that the sum of the weighted triangle-degrees
over the set of the significant vertices is equal to t up to an additive factor on the order of
±ϵt (a similar result is shown in [Ses15; ELRS17] for slightly different definitions). This is
proved in two parts. First, we show that the latter sum is sufficiently large compared to t.

Proposition 6.4.6. If Assumptions 6.A–6.D hold then
∑

v∈S τv ≥
(
1− 4ϵ

5
)
t.

Proof. Given a vertex v such that tv ̸= 0, let I(v) ∈ [k] be the index such that v ∈
B̂I(v). The set N = V \ S of all non-significant vertices is partitioned into the sets
N0 = V \

(
∪i∈[k]Bi

)
, N1 =

{
v : |BI(v)| < ϵt

30kν2I(v)+1

}
\ N0 and N2 =

{
v : |BI(v)| ≥

ϵt
30kν2I(v)+1

and ν2I(v) > τ
}
\N0. The set H of all heavy vertices is partitioned into the sets

H1 =
{
v : dv > 211m

ϵ4/3t
1/3 and tv ≤ τ

}
, H2 = {v ∈ N : tv > τ} and H3 = {v ∈ S : tv > τ}.

The relations between the different sets are depicted in Figure 6.3. We have N2 ⊆ H2.

71

Chapter 6 Estimation of Graph Parameters

Figure 6.3: A Venn diagram of the sets described in the proof of Proposition 6.4.6. The
ellipse represents the set V of all the vertices in the graph, where the upper
half consists of the significant vertices (S) and the lower half consists of the
non-significant vertices (N = N0 ∪N1 ∪N2). These sets are delimited by the
black solid lines. The disk represents the set H of all the heavy vertices, and
it is partitioned into the three areas depicted on the right.

We prove that the sum of the triangle-degrees over N0 ∪N1 ∪H1 ∪H3 is at most 7
20ϵt.

For N0, we have
∑

v∈N0
tv ≤ ϵ

30 t by parts (1) and (4) of Assumption 6.D. For N1,
we have

∑
v∈N1

tv ≤
∑

i∈[k]
ϵt

30kν2I(v)+1
· ν2I(v)+1 ≤ ϵ

30 t. The set H1 contains at most
2mϵ4/3t

1/3

211m ≤ 2−8ϵ4/3t1/3 vertices, thus
∑

v∈H1
tv ≤ 2−8ϵ4/3t1/3τ ≤ 2−8ϵ4/3t1/3 64t2/3

ϵ1/3 ≤ ϵ
4 t

by Assumption 6.C. The vertices in S have triangle-degree at most
(
1 + 800ϵ

log3(n)
)
τ = τ+ by

Definition 6.4.3, part (1) of Assumption 6.C, and part (2) of Assumption 6.D. Conse-
quently, for all v ∈ H3 ⊂ S, we have tv ∈ [τ, τ+]. Thus, by part (3) of Assumption 6.C,∑

v∈H3
tv ≤ ϵ

30 t. We conclude that
∑

v∈N0∪N1∪H1∪H3
tv ≤ (1

30 + 1
30 + 1

4 + 1
30)ϵt = 7

20ϵt.
Let T1 be the set of triangles that have all their vertices in H2, let T2 be the set of

triangles that have at least one vertex in N0 ∪N1 ∪H1 ∪H3, and let T3 be all the other
triangles. The setH2 is of size at most |H2| ≤ 3t

τ ≤
3
4(ϵt)1/3. Thus, |T1| ≤

(|H2|
3
)
≤ (3/4)3ϵt.

We have shown in the previous paragraph that |T2| ≤ 7
20ϵt. Finally, for any triangle ∆ ∈ T3

there is an integer h ∈ {0, 1, 2} such that ∆ contains h vertices in H2 ⊆ N and 3−h vertices
in S \ H, which implies that

∑
v∈∆∩S w(∆) = 1. Consequently, we have

∑
v∈S τv ≥ |T3|

and t ≤ |T1|+ |T2|+ |T3| ≤ 4
5ϵt+ |T3|. Thus,

∑
v∈S τv ≥

(
1− 4ϵ

5
)
t.

Next, we show that the above sum does not exceed the triangle count t by more than
an additive factor on the order of ϵt. In fact, we prove the stronger result that the sum of
the weakly weighted triangle-degrees over the larger set Ŝ of all weakly significant vertices
is not too large. This result allows the triangle counting algorithm to misclassify a weakly
significant or weakly heavy vertex as a significant or heavy vertex.

Proposition 6.4.7. If Assumptions 6.A–6.D hold then
∑

v∈Ŝ τ̂v ≤
(
1 + 3ϵ

5
)
t.

Proof. Given a vertex v such that tv ̸= 0, let I(v) ∈ [k] be the index such that v ∈ B̂I(v).
The set N̂ = V \ Ŝ of all non weakly significant vertices is partitioned into the sets
N̂0 = {v ∈ V : tv = 0}, N̂1 =

{
v : |B̂I(v)| < ϵt

60kν2I(v)+1

}
and N̂2 =

{
v : |B̂I(v)| ≥

ϵt
60kν2I(v)+1

and ν2I(v) > τ
}

. The set Ĥ of all weakly heavy vertices is partitioned into

72

6.4 Triangle counting

the sets Ĥ1 =
{
v : dv > 211m

ϵ4/3t
1/3 and tv ≤ τ−

}
, Ĥ2 =

{
v ∈ N̂ : tv > τ−

}
and Ĥ3 ={

v ∈ Ŝ : tv > τ−
}

. We have N̂2 ⊆ Ĥ2.
Similarly to the proof of Proposition 6.4.6, we have

∑
v∈N̂1

tv ≤ ϵ
60 t,

∑
v∈Ĥ1

tv ≤ ϵ
8 t and∑

v∈Ĥ3
tv ≤ ϵ

30 t. Let T̂1 be the set of triangles that have all their vertices in Ĥ2, let T̂2 be
the set of triangles that have at least one vertex in N̂1 ∪ Ĥ1 ∪ Ĥ3, and let T̂3 be all the
other triangles. For any ∆ ∈ T̂1, we have ∆ ∩ Ŝ = ∅. Using the above inequalities, |T̂2| ≤
(1

60 + 1
8 + 1

30)ϵt = 7
40ϵt. For any ∆ ∈ T̂3 there is an integer ĥ ∈ {0, 1, 2} such that ∆ contains

ĥ vertices in Ĥ2 ⊆ N̂ and 3− ĥ vertices in Ŝ \ Ĥ, which implies that
∑

v∈∆∩Ŝ ŵ(∆) = 1.
Thus,

∑
v∈Ŝ τ̂v =

∑
∆∈T̂1∪T̂2∪T̂3

∑
v∈∆∩Ŝ ŵ(∆) ≤ 3|T̂2|+ |T̂3| ≤

(
1 + 3ϵ

5
)
t.

6.4.3 Triangle degree estimator
The first ingredient of the algorithm is an unbiased estimator Tv of the triangle-degree tv,
taken from [ELRS17, Lemma 3.9]. It uses the order ≺ on V described in Definition 6.2.2.
The analysis of E[Tv] and Var[Tv] was done in [ELRS17] (the proof is given here for
completeness). The upper bound on the expected squared stopping time E[T 2] is new.

1. Sample an edge e ∈ E(v) uniformly at random. Let w be the endpoint of e that
is not v. Let ue be the smaller endpoint of e according to ≺. Let r =

⌈
due/
√
m
⌉
.

2. For i = 1, . . . , r:
a) Sample a neighbor x of ue uniformly at random.
b) If e and x form a triangle and w ≺ x, set Tv,i = dvdue . Else, set Tv,i = 0.

3. Output Tv = 1
r

∑r
i=1 Tv,i.

Algorithm 6.4: Triangle-degree estimator, Triangle(v).

Proposition 6.4.8. Given a vertex v, if Assumption 6.A holds then the output Tv of
Triangle(v) (Algorithm 6.4) satisfies E[Tv] = tv and Var[Tv] ≤ 3

√
mdvtv. The stopping

time T of the algorithm satisfies E[T 2] ≤ O(1).

Proof. Given an edge e = {v, w}, let te,v denote the number of triangles {v, w, x} such that
w ≺ x. Observe that tv =

∑
e∈E(v) te,v. Moreover, if dw ≤

√
2m then te,v ≤ dw ≤

√
2m,

and if dw >
√

2m then there are at most
√

2m neighbors x of w such that w ≺ x. Thus,
we always have te,v ≤

√
2m.

The expectation of Tv is E[Tv] = 1
dv

∑
e∈E(v)

te,v

due
dvdue = tv. The variance of Tv

conditioned on the edge e obtained at step 1 is Var[Tv | e] = 1
⌈due/

√
m⌉Var[Tv,1 | e] ≤

1
⌈due/

√
m⌉E[T 2

v,1 | e] = 1
⌈due/

√
m⌉

te,v

due
(dvdue)2 ≤

√
md2

vte,v. Thus, by the law of total vari-

ance, Var[Tv] ≤ E[Var[Tv | e]] + E[E[Tv | e]2] ≤ 1
dv

∑
e∈E(v)

(√
md2

vte,v +
(te,v

due
dvdue

)2
)
≤(√

m+
√

2m
)
dvtv ≤ 3

√
mdvtv, where we used that t2e,v ≤

√
2mte,v. The number T

of operations used by the algorithm satisfies E[T 2] ≤ O

(
1
dv

∑
e∈E(v)

⌈
due√
m

⌉2
)
≤ O

(
1 +

1
dv

∑
{v,w}∈E(v)

min(dv ,dw)2

m

)
≤ O

(
1 + 1

dv

∑
{v,w}∈E(v)

dvdw
m

)
≤ O(1).

73

Chapter 6 Estimation of Graph Parameters

We present three quantum algorithms that use the above estimator. First, we describe
a bucket assignment algorithm that decides if a vertex v belongs to the bucket Bi. Due to
the limited accuracy, the algorithm can output a wrong answer when v ∈ B̂i \Bi.

Proposition 6.4.9. There exists a quantum algorithm Bucket(v, i, δ) that takes as input
a vertex v, an index i ∈ [k] and a real δ ∈ (0, 1), and that outputs a Boolean value such
that if Assumptions 6.A and 6.D hold then,

(1) If v ∈ Bi then the output is 1 with probability at least 1− δ.

(2) If v /∈ B̂i then the output is 0 with probability at least 1− δ.

(3) The query complexity of the algorithm is O∗
(

1 + m1/4√
dv√

νi

)
.

Proof. Consider the function f : y 7→ max
(
1, 5m1/4√dv/y). The algorithm consists

of running the variable-time interval estimator VT-IntervEst(Tv, f, T2, α, β, ϵ
′, δ) on the

random variable Tv computed by Triangle(v) (Proposition 6.4.8), where α = ν−
i , β = ν+

i ,
ϵ′ = 50ϵ3

log8(n) and T2 = Θ(1) is an upper bound on the ℓ2-average stopping time of Triangle(v).

Observe that f(E[Tv]) ≥ max
(

1,
√

Var[Tv]
E[Tv]

)
. Thus, by Proposition 5.4.5, the output

is 1 when tv ∈ [ν−
i , ν

+
i) (i.e. v ∈ Bi) with probability at least 1 − δ, and it is 0 when

tv /∈
[(

1 − 50ϵ3
log8(n)

)
ν−
i ,
(
1 + 50ϵ3

log8(n)
)
ν+
i

)
⊂ [νi, νi+1) (in particular, when v /∈ B̂i) with

probability at least 1− δ. This proves parts (1) and (2) of the proposition. The query
complexity is O∗(f(α)T2) ≤ O∗

(
1 + m1/4√

dv√
νi

)
.

We use the previous bucket assignment algorithm to estimate the size |Bi| of a given
bucket Bi. The algorithm uses a quantum mean estimator on (an approximation of) the
random variable n1v∈Bi where v is a vertex chosen uniformly at random in the graph.

1. Sample a vertex v ∈ V uniformly at random.

2. Run Bucket(v, i, δ) (Proposition 6.4.9), where δ = ϵ2

215knνi+1
, to decide if v ∈ Bi.

If the result is 0 then output Si = 0. Else, output Si = n.

Algorithm 6.5: Bucket size estimator, BucketSize(i).

Proposition 6.4.10. Given an index i ∈ [k], if Assumptions 6.A and 6.D hold then the
output Si of BucketSize(i) (Algorithm 6.5) satisfies E[Si] ∈

[3
4 |Bi|, |B̂i| +

ϵ
180kνi+1

]
and

Var[Si] ≤ nE[Si]. The stopping time T of the algorithm satisfies E[T 2] ≤ O∗
(

1 + m3/2

nνi

)
.

Proof. We only use δ ≤ 1
4 and δ ≤ ϵ

180knνi+1
for that proof. If v ∈ Bi then Bucket(v, i, δ)

outputs 1 with probability at least 1− δ by Proposition 6.4.9. Thus, E[Si] ≥ 1
n

∑
v∈Bi

(1−
δ)n ≥ 3

4 |Bi|. If v /∈ B̂i then Bucket(v, i, δ) outputs 0 with probability at least 1− δ. Since
Si ≤ n, we get E[Si] ≤ δn+ 1

n

∑
v∈B̂i

n ≤ ϵ
180kνi+1

+ |B̂i|. The variance is Var[Si] ≤ E[S2
i] ≤

nE[Si]. The stopping time satisfies E[T 2] ≤ 1
n

∑
v∈V O

∗(1 +
√
mdv

νi

)
≤ O∗(1 + m3/2

nνi

)
.

Finally, we present an algorithm for deciding if a bucket is significant. The algorithm
can output a wrong answer if the bucket is weakly significant but not significant. This is
due to the inaccuracy of the bucket size estimation procedure.

74

6.4 Triangle counting

Proposition 6.4.11. There exists a quantum algorithm Significant(i, δ) that takes as
input an index i ∈ [k] and a real δ ∈ (0, 1), and that outputs a Boolean value such that if
Assumptions 6.A–6.D hold then,
(1) If i ∈ IS then the output is 1 with probability at least 1− δ.

(2) If i /∈ IŜ then the output is 0 with probability at least 1− δ.

(3) The query complexity of the algorithm is O∗
(√

n

t1/6 + m3/4
√
t

)
.

Proof. We consider the algorithm that outputs 0 if νi > τ , and otherwise that outputs
the result of the variable-time interval estimator VT-IntervEst(Si, f, T2, α, β, ϵ

′, δ) on the
random variable Si computed by BucketSize(i) (Proposition 6.4.10), where f : y 7→

√
n/y,

α = ϵt
40kνi+1

, β = +∞, ϵ′ = 4
9 and T2 = O∗(1 + m3/4

√
nνi

)
is an upper bound on the ℓ2-average

stopping time of BucketSize(i).
Note that f(E[Si]) ≥

√
Var[Si]
E[Si] ≥ 1 by Proposition 6.4.10. Moreover, if i ∈ IS then

E[Si] ≥ 3
4 |Bi| ≥

ϵt
40kνi+1

= α, and if i /∈ IŜ and νi ≤ τ then E[Si] < |B̂i| + ϵ
180kνi+1

≤
ϵt

60kνi+1
+ ϵ

180kνi+1
= ϵ

45kνi+1
= 5

9α. Thus, by Proposition 5.4.5, if i ∈ IS then the output
is 1 with probability at least 1 − δ, and if i /∈ IŜ and νi ≤ τ then the output is 0 with
probability at least 1 − δ. If i /∈ IŜ and νi > τ then the output is 0 with probability 1.
This proves parts (1) and (2) of the proposition. The query complexity is O(1) when
νi > τ , and O∗(f(α)T2) ≤ O∗(√nτ

t + m3/4
√
t

)
≤ O∗(√

n

t1/6 + m3/4
√
t

)
otherwise.

6.4.4 Weighted triangle degree estimator
We update the algorithms of the previous section to take the triangle weights into account.
We first use the triangle estimator described before to decide if a vertex is heavy or not.
Proposition 6.4.12. There exists a quantum algorithm Heavy(v, δ) that takes as input a
vertex v and a real δ ∈ (0, 1), and that outputs a Boolean value such that if Assumptions 6.A–
6.C hold then,
(1) If v ∈ H then the output is 1 with probability at least 1− δ.

(2) If v /∈ Ĥ then the output is 0 with probability at least 1− δ.

(3) The query complexity of the algorithm is O∗
(
m3/4

√
t

)
.

Proof. The proof is similar to that of Proposition 6.4.9. Consider the function f : y 7→
max

(
1, 27m3/4

ϵ2/3t
1/6√

y

)
. The algorithm consists of two steps. First, it queries the degree

of v and it outputs 1 if dv > 211m

ϵ4/3t
1/3 . Else, it outputs the result of the variable-time

interval estimator VT-IntervEst(Tv, f, T2, α, β, ϵ
′, δ) on the random variable Tv computed

by Triangle(v) (Proposition 6.4.8), where α = τ , β = +∞, ϵ′ = 800ϵ
log3(n) and T2 = Θ(1) is an

upper bound on the ℓ2-average stopping time of Triangle(v).
The algorithm is always correct when dv >

211m

ϵ4/3t
1/3 . If dv ≤ 211m

ϵ4/3t
1/3 then

√
Var[Tv]
E[Tv] ≤

√
3m1/4

√
dv
tv
≤ 27m3/4

ϵ2/3t
1/6√

tv
by Proposition 6.4.8. Thus, the function f satisfies f(E[Tv]) ≥

max
(

1,
√

Var[Tv]
E[Tv]

)
. By Proposition 5.4.5, if tv ∈ [τ,+∞) (i.e. v ∈ H) the output is 1 with

probability at least 1− δ, and if tv ≤ τ− =
(
1− 800ϵ

log3(n)
)
τ (i.e. v /∈ Ĥ) the output is 0 with

probability at least 1− δ. The query complexity is O∗(f(α)T2) ≤ O∗(m3/4/
√
t
)
.

75

Chapter 6 Estimation of Graph Parameters

We use the above algorithm to construct an estimator for the weighted triangle-degree τv.
This is a refinement of the triangle estimator, adapted from [ELRS17, Claim 3.16].

1. Sample an edge e ∈ E(v) uniformly at random. Let w be the endpoint of e that
is not v. Let ue be the smaller endpoint of e according to ≺.

2. If due ≤
√
m, set r = 1 with probability due/

√
m, and output Tv = 0 otherwise.

If due >
√
m, set r =

⌈
due/
√
m
⌉
.

3. For i = 1, . . . , r:
a) Sample a neighbor x of ue uniformly at random.
b) If e and x do not form a triangle, or if x ≺ w, set Tv,i = 0.
c) Else, compute h = Heavy(v, ϵ

180) + Heavy(w, ϵ
180) + Heavy(x, ϵ

180), and set
Tv,i = dv max{due ,

√
m}

max{1,3−h} .

4. Output Tv = 1
r

∑r
i=1 Tv,i.

Algorithm 6.6: Weighted triangle-degree estimator, WeightedTriangle(v).

Proposition 6.4.13. Given a vertex v, if Assumptions 6.A–6.C hold then the output Tv of
WeightedTriangle(v) (Algorithm 6.6) satisfies E[Tv] ∈ [(1− ϵ

20)τv, (1 + ϵ
20)τ̂v] and Var[Tv] ≤

7
√
mdvtv. The stopping time T of the algorithm satisfies E[T 2] ≤ O∗

(
1 + tv

dv
√
m
m3/2

t

)
.

Proof. The proof is similar to that of Proposition 6.4.8. For any triangle ∆ = {v, w, x},
let w̃(∆) = 1

max{1,3−h} denote the approximate triangle weight obtained with the value h
computed at step 3.c. We have E[w̃(∆)] ≥ (1− ϵ

180)3w(∆) ≥ (1− ϵ
60)w(∆) and E[w̃(∆)] ≤

ŵ(∆) + 3ϵ
180 ≤ (1 + ϵ

20)ŵ(∆) by property of Heavy (Proposition 6.4.12) and the fact that
1
3 ≤ w(∆) ≤ ŵ(∆) ≤ 1. Given an edge e = {v, w}, let T (e, v) denote the set of all
triangles that contribute to te,v (where te,v is defined in the proof of Proposition 6.4.8).
The expectation of Tv conditioned on the edge e obtained at step 1 and due ≤

√
m satisfies

E[Tv |e, due ≤
√
m] ≤ due√

m
· 1
due

∑
∆∈T (e,v) dv

√
m(1 + ϵ

20)ŵ(∆) = (1 + ϵ
20)dv

∑
∆∈T (e,v) ŵ(∆).

The expectation of Tv conditioned on the edge e obtained at step 1 and due >
√
m satisfies

E[Tv |e, due >
√
m] ≤ 1

due

∑
∆∈T (e,v) dvdue(1+ ϵ

20)ŵ(∆) = (1+ ϵ
20)dv

∑
∆∈T (e,v) ŵ(∆). Thus,

by the law of total expectation, E[Tv] ≤ 1
dv

∑
e∈E(v)(1+ ϵ

20)dv
∑

∆∈T (e,v) ŵ(∆) = (1+ ϵ
20)τ̂v.

The lower bound E[Tv] ≥ (1 − ϵ
20)τv is proved in a similar way. The variance satisfies

Var[Tv | e, due ≤
√
m] ≤ E[T 2

v | e, due ≤
√
m] ≤ due√

m
· te,v

due
·
(
dv
√
m
)2 =

√
md2

vte,v and
Var[Tv | e, due >

√
m] ≤

√
m

due
E[T 2

v,1 | e] ≤
√
m

due
· te,v

due
· (dvdue)2 ≤

√
md2

vte,v. Thus, by the law
of total variance, Var[Tv] ≤ E[Var[Tv | e]] + E[E[Tv | e]2] ≤ 1

dv

∑
e∈E(v)

(√
md2

vte,v +
(
(1 +

ϵ
20)dvte,v

)2
)
≤ 7
√
mdv

∑
e∈E(v) te,v =

√
mdvtv, where we used that t2e,v ≤

√
2mte,v.

The expectation of T 2 conditioned on the edge e sampled at step 1 and due ≤
√
m is

E[T 2 |e, due ≤
√
m] ≤ O

(
1+ due√

m
· te,v

due
T 2

Heavy
)

= O
(
1+ te,v√

m
T 2

Heavy
)

where THeavy ≤ O∗(m3/4
√
t

)
is the query complexity of Heavy. If we condition instead on due >

√
m then the number

of executions of step 3.c is upper bounded by the outcome of the binomial distribution
B
(⌈

due√
m

⌉
,
te,v

due

)
, whose second moment is at most

(⌈
due√
m

⌉
· te,v

due

)2
+
⌈
due√
m

⌉
· te,v

due
≤ O

(
te,v√
m

)

76

6.4 Triangle counting

since due ≥
√
m and te,v ≤

√
2m. Thus, E[T 2 | e, due >

√
m] ≤ O

(
1 + te,v√

m
T 2

Heavy
)
. By the

law of total expectation, E[T 2] ≤ 1
dv

∑
e∈E(v)O

(
1 + te,v√

m
T 2

Heavy
)
≤ O

(
1 + tv

dv
√
m
T 2

Heavy
)
.

We apply a quantum mean estimator to the above algorithm in order to estimate τv
with high accuracy. We suppose that the index i ∈ [k] for which v ∈ B̂i is known.

Proposition 6.4.14. There is a quantum algorithm ApproxWeightedTriangle(v, i, δ) that
takes as input an index i ∈ [k], a vertex v ∈ B̂i and a real δ ∈ (0, 1), and that outputs an
estimate τ̃v such that if Assumptions 6.A–6.D hold then τ̃v ∈ [(1− ϵ

15)τv, (1 + ϵ
15)τ̂v] with

probability at least 1− δ. The query complexity of the algorithm is O∗
(√

dvm1/4
√
νi

+ m3/4
√
t

)
.

Proof. The estimate τ̃v is obtained by running the variable-time relative estimator VT-RelatEst(Tv,V, T2, α,
ϵ

70 , δ)
on the random variable Tv output by WeightedTriangle(v) (Proposition 6.4.13) with
V = max

(
1, 10

√
dvm1/4
√
νi

)
, α = νi/6 and T2 = O∗

(
1 +

√
νi√

dvm1/4
m3/4

√
t

)
being an upper

bound on the ℓ2-average stopping time of WeightedTriangle(v).
Note that V ≥ max

(
1,
√

Var[Tv]/E[Tv]
)

and E[Tv] ≥ (1 − ϵ
20)τv ≥ tv/6 ≥ α since

v ∈ B̂i and by Proposition 6.4.13. Thus, the estimate τ̃v satisfies |τ̃v − E[Tv]| ≤ ϵ
70E[Tv]

with probability at least 1 − δ. Since E[Tv] ∈ [(1 − ϵ
20)τv, (1 + ϵ

20)τ̂v], we obtain that
τ̃v ∈ [(1− ϵ

20)(1− ϵ
70)τv, (1 + ϵ

20)(1 + ϵ
70)τ̂v] ⊂ [(1− ϵ

15)τv, (1 + ϵ
15)τ̂v] with probability at

least 1− δ. The query complexity is O∗(VT2) ≤ O∗
(√

dvm1/4
√
νi

+ m3/4
√
t

)
.

Similarly to the bucket size estimator of Proposition 6.4.10, we construct a bucket
weight estimator for the quantity

∑
v∈Bi

τv by using the previous proposition. We restrict
our attention to the case of weakly significant buckets. The new estimator differs from
Algorithm 6.5 by multiplying the final result with a triangle-weight estimate.

1. Sample a vertex v ∈ V uniformly at random.

2. Run Bucket(v, i, δ) (Proposition 6.4.9), where δ = ϵ2

215knνi+1
, to decide if v ∈ B̂i,

a) If the result is 0 then output Wi = 0.
b) Else, compute a weight estimate τ̃v by using ApproxWeightedTriangle(v, i, δ)

(Proposition 6.4.14). Output Wi = n ·median{νi/3, τ̃v, νi+1}.

Algorithm 6.7: Bucket weight estimator, BucketWeight(i).

Proposition 6.4.15. Given an index i ∈ IŜ , let Wi denote the output of BucketWeight(i)
(Algorithm 6.7) and let Si denote the output of BucketSize(i) (Proposition 6.4.10). Then,

(1) If Assumptions 6.A–6.D hold then E[Wi] ∈
[
(1− ϵ

10)
∑

v∈Bi
τv, (1 + ϵ

10)
∑

v∈B̂i
τ̂v

]
and Var[Wi] ≤ nνi+1E[Wi].

(2) If Assumptions 6.A and 6.D hold then E[Wi] ∈
[
νi
3 E[Si], νi+1E[Si]

]
.

(3) If Assumptions 6.A–6.D hold then the stopping time T of BucketWeight(i) satisfies
E[T 2] ≤ O∗

(
1 + m3/2

nνi
+ E[Si]

n
m3/2

t

)
.

77

Chapter 6 Estimation of Graph Parameters

Proof. The algorithm BucketWeight(i) is identical to BucketSize(i) (Proposition 6.4.10),
except at step 2.b where the output is multiplied by a coefficient in the interval [νi/3, νi+1].
This directly proves part (2) of the proposition. The variance is Var[Wi] ≤ E[W 2

i] ≤
nνi+1E[Wi] since Wi ≤ nνi+1. For the rest of the proof, observe that for any vertex
v ∈ B̂i the weighted triangle-degrees τv and τ̂v must lie in the interval [νi/3, νi+1] since
tv ∈ [νi, νi+1] and τv, τ̂v ∈ [tv/3, tv].

We first prove the lower bound E[Wi] ≥ (1− ϵ
10)
∑

v∈Bi
τv given in part (1). If v ∈ Bi then

the algorithm Bucket(v, i, δ) outputs 1 with probability at least 1−δ (Proposition 6.4.9) and
the estimate τ̃v satisfies τ̃v ≥ (1− ϵ

15)τv with probability at least 1− δ (Proposition 6.4.14).
Thus, E[Wi] ≥ (1− δ)2 1

n

∑
v∈Bi

n(1− ϵ
15)τv ≥ (1− ϵ

10)
∑

v∈Bi
τv by our choice of δ.

Next, we prove the upper bound E[Wi] ≤ (1 + ϵ
10)
∑

v∈B̂i
τ̂v given in part (1). If

v /∈ B̂i then Bucket(v, i, δ) outputs 0 with probability at least 1 − δ (Proposition 6.4.9).
If v ∈ B̂i then the estimate τ̃v satisfies τ̃v ≤ (1 + ϵ

15)τ̂v with probability at least 1 − δ
(Proposition 6.4.14). Since Wi ≤ nνi+1, we have E[Wi] ≤ δnνi+1 + 1

n

∑
v∈B̂i

n(1 + ϵ
15)τ̂v.

Moreover,
∑

v∈B̂i
τ̂v ≥ |B̂i|νi

3 ≥
ϵt

360k ≥
30
ϵ · δnνi+1 since i ∈ IŜ . Thus, by our choice of δ,

we have E[Wi] ≤ ϵ
30
∑

v∈B̂i
τ̂v + (1 + ϵ

15)
∑

v∈B̂i
τ̂v ≤ (1 + ϵ

10)
∑

v∈B̂i
τ̂v.

The stopping time of BucketWeight(i) can increase compared to that of BucketSize(i) only
at step 2.b. The probability to run this step is equal to E[Si]

n by definition of Algorithm 6.5
and Algorithm 6.7. Moreover, the query complexity of ApproxWeightedTriangle(v, i, δ) is
O∗
(√

dvm1/4
√
νi

+ m3/4
√
t

)
by Proposition 6.4.14. The first term in this expression is of the same

order of magnitude as the complexity of Bucket(v, i, δ) (used at step 2), and thus can be
ignored. By adding the contribution of the second term to the complexity of BucketSize(i),
we obtain that E[T 2] ≤ O∗

(
1 + m3/2

nνi
+ E[Si]

n
m3/2

t

)
.

Finally, we describe the main algorithm for estimating the total weight
∑

v∈Bi
τv of a

significant bucket Bi with any desired accuracy (Algorithm 6.8). The algorithm first ensures
that the bucket is significant (step 1) before estimating its weight (step 3). We apply a
quantum mean estimator (step 3.b) on the bucket weight estimator from Proposition 6.4.15.
The upper bounds on the coefficient of variation and on the ℓ2-average stopping time of
the latter estimator are obtained at step 3.a by computing a constant factor estimate s̃i of
the bucket size |Bi|.

Proposition 6.4.16. Given an index i ∈ [k] and a real δ ∈ (0, 1), the bucket weight
estimate w̃i output by ApproxBucketWeight(i, δ) (Algorithm 6.8) satisfies the following
properties. If Assumptions 6.A–6.D hold then,

(1) If i ∈ IS then w̃i ≥ (1− 3ϵ
20)
∑

v∈Bi
τv with probability at least 1− δ.

(2) If i ∈ IŜ then w̃i ≤ (1 + 3ϵ
20)
∑

v∈B̂i
τ̂v with probability at least 1− δ.

(3) If i /∈ IŜ then w̃i = 0 with probability at least 1− δ.

(4) The query complexity of the algorithm is O∗
(√

n

t1/6 + m3/4
√
t

)
with probability at least

1− δ when i ∈ IS or i /∈ IŜ .

If Assumptions 6.A and 6.D hold then,

(5) w̃i ≤ 2νi+1|B̂i|+ ϵ
90k with probability at least 1− δ.

78

6.4 Triangle counting

1. Run Significant(i, δ/3) (Proposition 6.4.11) to decide if i is significant.

2. If the outcome of step 1 is 0 then output w̃i = 0.

3. Else,
a) Compute a bucket size estimate s̃i by using the variable-time exponen-

tial estimator VT-ExpEst
(
Si, f, T2,

1
2 ,

δ
3
)

on the random variable Si out-
put by BucketSize(i) (Proposition 6.4.10), where f : y 7→

√
n/y, and

T2 = O∗
(√

1 + m3/2

nνi

)
.

b) Compute a bucket weight estimate w̃i by running the variable-time relative
estimator VT-RelatEst

(
Wi,V, T2, α,

ϵ
25 ,

δ
3
)

on the random variable Wi output
by BucketWeight(i) (Proposition 6.4.15), where V =

√
5n/s̃i, α = νis̃i/5

and T2 = O∗
(√

1 + m3/2

nνi
+ 2s̃i

n
m3/2

t

)
.

c) Output w̃i.

Algorithm 6.8: Bucket weight estimation, ApproxBucketWeight(i, δ).

Proof. If i /∈ IŜ then the algorithm stops at step 2 and outputs w̃i = 0 with probability at
least 1− δ/3 by Proposition 6.4.11. If i ∈ IS then it proceeds to step 3 with probability at
least 1− δ/3. At step 3.a, the estimate s̃i satisfies |s̃i − E[Si]| ≤ E[Si]/2 with probability
at least 1− δ/3 since f(E[Si]) ≥

√
Var[Si]/E[Si] ≥ 1. Finally, at step 3.b, if |s̃i − E[Si]| ≤

E[Si]/2 and i ∈ IŜ then by Proposition 6.4.15 we have that V ≥
√

10n
3E[Si] ≥

√
10nνi

9E[Wi] ≥√
nνi+1
E[Wi] ≥

√
Var[Wi]
E[Wi] ≥ 1, E[Wi] ≥ α and T2 is larger than the ℓ2-average stopping time of

BucketWeight(i). In this case, the output w̃i satisfies |w̃i − E[Wi]| ≤ ϵ
25E[Wi] with proba-

bility at least 1− δ/3. Since E[Wi] ∈
[
(1− ϵ

10)
∑

v∈Bi
τv, (1 + ϵ

10)
∑

v∈B̂i
τ̂v

]
by Proposi-

tion 6.4.15, we obtain that w̃i ∈
[
(1− ϵ

25)(1− ϵ
10)
∑

v∈Bi
τv, (1 + ϵ

25)(1 + ϵ
10)
∑

v∈B̂i
τ̂v

]
⊂[

(1− 3ϵ
20)
∑

v∈Bi
τv, (1 + 3ϵ

20)
∑

v∈B̂i
τ̂v

]
. This concludes the proof of parts (1)–(3).

The complexity of step 1 is O∗
(√

n

t1/6 + m3/4
√
t

)
by Proposition 6.4.11. The complex-

ity of step 3.a is O∗
(√

n
E[Si]

(
1 + m3/2

nνi

))
with probability at least 1 − δ/3 by Propo-

sition 5.4.6. The complexity of step 3.b is O∗
(√

n
E[Si]

(
1 + m3/2

nνi
+ E[Si]

n
m3/2

t

))
when

|s̃i−E[Si]| ≤ E[Si]/2 by Proposition 6.4.15. Thus, if i ∈ IS then the complexity of step 3.b
O∗
(√

n
|Bi| + m3/2

|Bi|νi
+ m3/2

t

)
≤ O∗

(√
nνi+1
t

+ m3/2νi+1
tνi

+ m3/2

t

)
≤ O∗

(√
n
t1/3 + m3/2

t

)
where

we used that E[Si] ≥ 3
4 |Bi| by Proposition 6.4.10, and |Bi| ≥ ϵt

30kνi+1
and νi ≤ τ by

definition of IS . This proves part (4) of the proposition.
Finally, for part (5), according to Proposition 6.4.15 and Proposition 6.4.10 the ex-

pectation value of the random variable Wi computed by BucketWeight(i) is at most
E[Wi] ≤ νi+1E[Si] ≤ νi+1|B̂i| + ϵ

180k . Moreover, the estimate w̃i computed at step 3.b
satisfies w̃i ≤ 2E[Wi] with probability at least 1− δ/3 by part (2) of Theorem 5.4.4. Thus,
w̃i ≤ 2νi+1|B̂i|+ ϵ

90k .

79

Chapter 6 Estimation of Graph Parameters

6.4.5 Final algorithm

We use the results from the previous sections to describe the final triangle counting
algorithm. We first show how to estimate the triangle count t with relative error ϵ when
Assumptions 6.A–6.D hold. We later remove these assumptions.

Proposition 6.4.17. There is a quantum algorithm ApproxTriangleCount(m, t, τ, (ν−
i)i,

(ν+
i)i, (νi)i, ϵ, δ) that takes as input an edge estimate m, a triangle estimate t, a threshold

value τ > 0, three sequences (ν−
i)i, (ν+

i)i, (νi)i and two reals ϵ, δ ∈ (0, 1/2), and that outputs
a triangle estimate t̃ such that,

(1) If Assumptions 6.A–6.D hold then |t̃− t| ≤ ϵt with probability at least 1− δ.

(2) If Assumptions 6.A and 6.D hold then t̃ ≤ 3t with probability at least 1− δ.

(3) The query complexity of the algorithm is O∗
(√

n

t
1/6 + m3/4

√
t

)
.

Proof. The algorithm consists of computing an estimate w̃i of the weight of the i-th bucket
by using the algorithm ApproxBucketWeight(i, δ/(2k)) (Proposition 6.4.16) for each i ∈ [k],
and to output the triangle estimate t̃ =

∑
i∈[k] w̃i.

According to Proposition 6.4.16, if Assumptions 6.A–6.D hold then (1− 3ϵ
20)
∑

v∈S τv ≤
t̃ ≤ (1 + 3ϵ

20)
∑

v∈Ŝ τ̂v with probability at least (1 − δ/(2k))k ≥ 1 − δ/2. In this case, by
Proposition 6.4.6 and Proposition 6.4.7, we have t̃ ∈

[
(1− 4ϵ

5)(1− 3ϵ
20)t, (1 + 3ϵ

5)(1 + 3ϵ
20)t

]
⊂

[(1 − ϵ)t, (1 + ϵ)t]. If only Assumptions 6.A and 6.D hold, we have t̃ =
∑

i∈[k] w̃i ≤∑
i∈[k](2ν

+
i |B̂i|+ ϵ

90k) ≤ 3t with probability at least 1− δ/2, where the first inequality is
by part (5) of Proposition 6.4.16, and the second inequality is by Assumption 6.D. This
proves parts (1) and (2) of the proposition.

According to Proposition 6.4.16, if Assumptions 6.A–6.D hold and i ∈ IS then the query
complexity of ApproxBucketWeight(i, δ/(2k)) is O∗

(√
n

t
1/6 + m3/4

√
t

)
with probability at least

1−δ/(2k). If the computation takes more time than that, then we stop it and we set w̃i = 0.
The new estimate t̃ =

∑
i∈[k] w̃i is still large enough by part (1) of Proposition 6.4.16.

We finally explain how to get rid of the assumptions made in the previous algorithm.
Assumptions 6.A, 6.C and 6.D are satisfied with high probability by using the algorithms
described in Section 6.3, Lemma 6.4.1 and Lemma 6.4.2 respectively. Assumption 6.B
is handled by running the algorithm from Proposition 6.4.17 over a decreasing sequence
t = n3, n3/2, n3/4, We use part (2) of Proposition 6.4.17 to stop this sequence when t
satisfies Assumption 6.B with high probability. The final result is given in Algorithm 6.9.

Theorem 6.4.18 (Triangle counting). Let G be a graph with n vertices, m edges and t
triangles in the quantum general graph model, and fix an error parameter ϵ ∈ (0, 1/4). Then,
the triangle counting algorithm (Algorithm 6.9) outputs a triangle estimate t̃ such that
|t̃− t| ≤ ϵt and it uses O∗

(√
n

t1/6 + m3/4
√
t

)
quantum queries with probability at least 1− 1

logn .

Proof. By a union bound, Assumptions 6.A, 6.C and 6.D hold at each step of the algorithm
with probability at least 1 − 1

5 logn −
3 logn

30 log2(n) −
1

2 logn = 1 − 4
5 logn . Let us assume that

they indeed hold. Consider the estimate t̃ computed at step 3.b. If t > t then t̃ ≤ 3t < 3t
with probability at least 1− 1

15 log2 n
by part (2) of Proposition 6.4.17. If t ∈ [t/8, t] (i.e.

Assumption 6.B holds) then |t̃− t| ≤ ϵt by part (1) of Proposition 6.4.17. Furthermore,
if t ∈ [t/8, t/4] and |t̃− t| ≤ ϵt then t̃ ≥ (1− ϵ)t ≥ 3t/4 ≥ 3t. Consequently, by a union

80

6.5 Lower bounds

1. Compute an edge estimate m̃ by using the algorithm of Theorem 6.3.2 with
error 1/2 and failure probability 1

5 logn . Set m = m̃/2.

2. Compute the buckets’ boundaries (ν−
i)i, (ν+

i)i, (νi)i by using Lemma 6.4.2.

3. For t = n3, n3/2, n3/4, . . . , 1:
a) Compute a threshold value τ by using Lemma 6.4.1.
b) Compute a triangle count estimate t̃ by using the algorithm Approx-

TriangleCount
(
m, t, τ, (ν−

i)i, (ν+
i)i, (νi)i, ϵ, 1

15 log2 n

)
from Proposition 6.4.17.

c) If t̃ ≥ 3t then stop and output t̃.

4. Output t̃ = 1.

Algorithm 6.9: Triangle counting algorithm.

bound over the (at most) 3 log(n) iterations of step 4, the algorithm stops when t ∈ [t/8, t]
and outputs a value t̃ such that |t̃ − t| ≤ ϵt with probability at least 1 − 1

5 logn . In this
case, the total query complexity is O∗

(√
n

t1/6 + m3/4
√
t

)
by Proposition 6.4.17.

6.5 Lower bounds
We prove two lower bounds for the Edge and Triangle Counting problems by using a
standard reduction technique from the two-player communication problem Disjointness.
The reductions are based on two families of graphs constructed in [ER18], whose main
properties are given below. We first describe the general reduction framework. We define
an efficient graph embedding as a mapping from an input pair (x, y) in the communication
model to a graph E(x, y) such that any query in the general graph model can be answered
by an efficient communication protocol.

Definition 6.5.1. Let N,n > 0 be two integers. Consider a set P ⊆ {0, 1}N × {0, 1}N
and a function E : P → Gn. We say that E is an efficient graph embedding if it satisfies
the following condition. For any degree, neighbor or edge query, there exists a zero-error
two-party classical communication protocol with communication cost O(1) such that for
any (x, y) ∈ P the protocol computes the result of the given query on the graph E(x, y).

Eden and Rosenbaum [ER18] described an efficient graph embedding that relates the
Disjointness problem to the number of r-cliques in a graph. The Disjointness function
maps an input (x, y) ∈ {0, 1}N × {0, 1}N to 0 if there exists an index i ∈ [N] such that
xi = yi = 1, and to 1 otherwise.

Proposition 6.5.2 (Theorem 4.1 and Corollary 4.3 in [ER18]). Let r be a fixed constant.
Let n,Cr > 0 be two integers such that Cr ≤

(
n/2
r

)
and let ϵ ∈ (0, 1/3). Set N =

⌊
cn

(ϵCr)1/r

⌋
where c is a universal constant. Then, there exists an efficient graph embedding E :
{0, 1}N × {0, 1}N → Gn such that,

(1) If Disjointness(x, y) = 1 then the number of r-cliques in E(x, y) is equal to Cr.

(2) If Disjointness(x, y) = 0 then the number of r-cliques in E(x, y) is equal to (1 + 3ϵ)Cr.

81

Chapter 6 Estimation of Graph Parameters

We use the above result to first show that the edge counting algorithm (Theorem 6.3.2)
is nearly optimal. We use a standard technique developed in [BCW98] to simulate a query
algorithm with a communication protocol.

Proposition 6.5.3. Any algorithm that estimates the number m of edges in an n-vertex
graph with relative error ϵ ∈ (0, 1) and success probability 2/3 must perform at least
Ω
(√

n

(ϵm)1/4 log(n)

)
quantum queries in the general graph model.

Proof. Fix n, m, ϵ and consider any quantum query algorithm that can estimate the
number of edges with relative error ϵ and success probability 2/3. Let q(n,m, ϵ) denote
the maximum number of quantum queries performed by this algorithm over all input
graphs with n vertices and m or (1 + 3ϵ)m edges. We transform this algorithm into a
communication protocol with cost O(q(n,m, ϵ) log(n)) for solving Disjointness on input
size N =

⌊
cn√
ϵm

⌋
as follows. Consider an input (x, y) ∈ {0, 1}N × {0, 1}N distributed over

two players Alice and Bob. Alice simulates the quantum edge counting algorithm on the
graph E(x, y) defined by the efficient graph embedding of Proposition 6.5.2. Each time a
quantum query must be performed, Alice appends an ancilla register of O(1) qubits to the
query register (made of O(logn) qubits), and she exchanges the two registers with Bob
over O(1) rounds of communication to simulate in superposition the protocol provided
by Definition 6.5.1. The simulation uses the same technique as in [BCW98, Theorem
2.1]. Once Alice has computed an edge estimate with relative error ϵ, she can distinguish
between the graph having m or (1 + 3ϵ)m edges. According to Proposition 6.5.2, it
allows her to obtain the value of Disjointness(x, y) with success probability 2/3. Since the
quantum communication complexity of Disjointness is Ω(

√
N) [Raz03], we conclude that

O(q(n,m, ϵ) log(n)) ≥ Ω(
√
N).

Next, we present an efficient graph embedding that relates the k-Intersection problem
to the number of triangles in a graph. The Intersectionk function maps an input (x, y) ∈
{0, 1}N × {0, 1}N to 1 if there exists at least k indices i ∈ [N] such that xi = yi = 1, and
to 0 if there is no index i ∈ [N] such that xi = yi = 1. The function is undefined otherwise.

Proposition 6.5.4 (Theorem 4.7 in [ER18]). Let n,m, t > 0 be three integers such that
m ≤ n2/9 and t ≤ m3/2/8. Set N = m/4 and k = max(1, 2t/

√
m). If N and k are

integers, then there is an efficient graph embedding E : {0, 1}N × {0, 1}N → Gn such that,

(1) If Intersectionk(x, y) = 1 then E(x, y) contains m edges and no triangle.

(2) If Intersectionk(x, y) = 0 then E(x, y) contains m edges and at least t triangles.

We finally use the two previous graph embeddings to obtain the next lower for the
Triangle Counting problem.

Proposition 6.5.5. Any algorithm that estimates the number t of triangles in an n-vertex
m-edge graph with relative error ϵ = 1/2 and success probability 2/3 must perform at least
Ω
(

1
logn

(√
n

t1/6 + min
(
m3/4

√
t
,
√
m
)))

quantum queries in the general graph model.

Proof. The proof is similar to that of Proposition 6.5.3. The two terms in the lower bound
are proved separately by using the efficient graph embeddings of Proposition 6.5.2 (with
r = 3) and Proposition 6.5.4 respectively. The second term in the lower bound uses that
the quantum communication complexity of the k-Intersection problem is Ω

(√
N/k

)
, which

can be proved by a simple reduction from Disjointness (see [ER18, Corollary 2.7] for
instance).

82

6.6 Discussion

6.6 Discussion
There is a gap in our understanding of the triangle counting problem in the small triangle
count regime where t ≤ O(m). The running time of our algorithm is O∗

(√
n

t1/6 + m3/4
√
t

)
(Theorem 6.4.18), whereas the best known query lower bound is Ω̃

(√
n

t1/6 +
√
m
)

(Propo-
sition 6.5.5) in this case. Classically [ELR15; Ses15; ELRS17; ERS20b; ERS20a], the
optimal query complexity is O∗(n

t1/3 +m
)

when t ≤ O(m), although the best known gate
complexity is O∗(n

t1/3 + m3/2

t

)
. The improvement in terms of query complexity comes from

keeping the results of all queries in memory so that the same edge is never queried twice.
We do not know if a similar improvement is possible in the quantum query model. We
suggest to first study the problem of finding one triangle in the quantum general graph
model. A simple adaptation of our triangle counting algorithm leads to a query complexity
of Õ

(√
n+m3/4), whereas one can show a lower bound of Ω̃

(√
n+
√
m
)
.

We suspect that the techniques used in this chapter can be extended to counting the
number of k-cliques in a graph [ERS20b; ERS20a], and to approximate other graph
parameters such as the size of a minimum spanning tree [CRT05]. Another improvement
could be to express the quantum query complexity of these problems in terms of graph
arboricity as in [ERS20b; ERS20a].

83

Part III

Quantum Algorithms for Optimization
with Importance Sampling

85

7
Quantum State Preparation

and Importance Sampling

This chapter is based on the following papers:

[HRRS19] Y. Hamoudi, P. Rebentrost, A. Rosmanis, and M. Santha. “Quantum and
Classical Algorithms for Approximate Submodular Function Minimization”.
In: Quantum Information & Computation 19.15&16 (2019), pp. 1325–1349.

[Ham22] Y. Hamoudi. “Preparing Many Copies of a Quantum Sate in the Black-Box
Model”. In: Physical Review A 105 (2022), p. 062440.

7.1 Introduction
The preparation of a specific quantum state is an important building block and a critical
bottleneck in many quantum algorithms [MNRS11; HHL09; Ber14; Aar15]. The objective
of the State Preparation problem is to find the minimum amount of resources needed to
generate a quantum state given some description of it. In general, the complexity of this
problem scales linearly with the dimension of the state to be prepared [MVBS05; PB11].
Yet, it is possible to achieve sublinear bounds for particular states or input models. One
such example is the black-box model where, given oracle access to a non-zero real vector
w = (w1, . . . , wN), the objective is to load the associated normalized probability vector
into the amplitudes of the log(N)-qubit state |w⟩ defined as

|w⟩ = 1√
∥w∥1

∑
i∈[N]

√
|wi||i⟩.

Grover adapted his celebrated quantum search algorithm to this problem in [Gro00b],
where he showed that O(

√
N) queries to w are sufficient to prepare |w⟩. In practice, one

can expect that several copies of the same quantum state are needed for further use. For
instance, |w⟩ may be fed in an algorithm that fails with some probability and that must be
repeated several times. The no-cloning theorem prevents the state |w⟩ from being easily
duplicated. In fact, it is easy to show that additional queries to the input are required to
prepare several copies of |w⟩. The problem of adapting the state preparation procedure
to the desired number K of copies has received little attention. Usually, it is possible
to simply repeat K times the procedure used to prepare one copy, but the complexity
grows linearly with K. For instance, the algorithm of Grover leads to a query complexity
of O(K

√
N) for preparing the K-fold state |w⟩⊗K . In this chapter, we investigate the

question of whether a more efficient algorithm exists. We describe a preprocessing phase
that uses O(

√
KN) queries, after which each copy of |w⟩ requires O(

√
N/K) queries to

87

Chapter 7 Quantum State Preparation and Importance Sampling

be prepared. Our result improves upon the previous approach by a factor of
√
K, and it

is shown to be optimal.
The State Preparation problem is intimately related to the task of preparing samples

from a discrete distribution. In the Importance Sampling problem, the objective is to
generate K independent samples from the probability vector

(
|w1|
∥w∥1

, . . . , |wN |
∥w∥1

)
associated

with a weight vector (w1, . . . , wN). There is a rich literature on importance sampling,
which dates back to the early days of the Monte Carlo method and to the work of Von
Neuman on random number generation [Neu51]. It has found numerous applications in
computer simulations, statistics, numerical analysis, etc. The Born rule paves the way for
a quantum mechanical approach to random number generation. Grover [Gro00a; Gro00b]
suggested addressing the Importance Sampling problem by preparing the state |w⟩ and
measuring it in the computational basis. We use our state preparation algorithm for
generating K independent samples faster than it is possible classically. We also propose
an alternative and more direct approach that does not require preparing the full quantum
state |w⟩⊗K . These results are applied in the next chapter to obtain a quantum speedup
for two stochastic optimization methods (multiplicative weight update and stochastic
gradient descent).

7.1.1 Related work

Our work is based on the Quantum Rejection Sampling method, where a state that is
easy to prepare (e.g. a uniform superposition) is mapped to a target state by amplitude
amplification. This method was pioneered by Grover in [Gro00b] (Proposition 7.3.2) and
subsequently studied in [ORR13; SLSB19; LYC14; WG17]. All of these works (except
for [LYC14]) take place in the quantum oracle model and they often require a number
of queries that is polynomial in the dimension N of the state. In the non-oracular
setting, the problem of loading an arbitrary vector (w1, . . . , wN) into the amplitudes
of a quantum state requires a circuit of depth O(N) and width O(logN) [MVBS05;
PB11]. It is possible to use only polylog(N) resources for specific cases such as efficiently
integrable probability distributions [Zal98; GR02; KM01] (Proposition 7.3.3), uniformly
bounded amplitudes [SS06], Gaussian states [KW09] or probability distributions resulting
from a Bayesian network [LYC14]. A different line of work [AT07; SBBK08; WA08;
OBD18; Ape19; HW20] studied the preparation of a quantum state that corresponds to
the stationary distribution of a Markov chain. These algorithms use Markov chain Monte
Carlo methods and quantum walk techniques to obtain a preparation time scaling with the
spectral gap. Aharonov and Ta-Shma [AT07] also showed that the existence of an efficient
procedure to convert any circuit into a coherent state encoding the output distribution of
that circuit would imply that SZK ⊆ BQP.

We refer the reader to [Dev86; BFS87; Knu98] for a general overview of classical tech-
niques for sampling from a discrete distribution. In the Importance Sampling problem that
we consider here (also called Weighted Sampling or L1 Sampling), given a non-zero vector
w = (w1, . . . , wN), the objective is to construct a data structure that supports fast sam-
pling of an element i ∈ [N] with probability proportional to |wi|. The alias method [Wal74;
Wal77; KP79; Vos91] solves this problem with a preprocessing cost of O(N) operations,
and a generating cost of O(1) operations per sample (Proposition 7.5.2). This method was
subsequently adapted to other settings such as dynamic weight updates [HMM93; MVN03],
subset sampling [BP17] and space-efficient data structures [BL13; BIJK18]. Knuth and
Yao [KY76] initiated the study of entropy-efficient samplers that ought to minimize the
number of random bits used for generating one sample. The related question of minimizing

88

7.1 Introduction

the number of non-basis-preserving gates for quantum state preparation was studied by
Shi [Shi05].

7.1.2 Contributions and organization
We first present in Section 7.2 the input model used in this chapter. Next, we recall in
Section 7.3 some algorithms for maximum finding and quantum state preparation that are
needed for our work. We study the problem of preparing K copies of a quantum state in
Section 7.4. Our first main result is summarized in the next theorem.

Theorem 7.4.3 (Restated). There is a quantum algorithm with the following properties.
Consider two integers 1 ≤ K ≤ N , a real δ ∈ (0, 1) and a non-zero vector w ∈ RN .
Then, with probability at least 1 − δ, the algorithm outputs K copies of the state |w⟩ =

1√
∥w∥1

∑
i∈[N]

√
|wi||i⟩ and it performs O(

√
KN log(1/δ)) queries to w in expectation.

We study the problem of sampling K elements from a discrete probability distribution
in Section 7.5. We obtain the next result as a simple corollary of Theorem 7.4.3.

Theorem 7.5.1 (Restated). There is a quantum algorithm with the following properties.
Consider two integers 1 ≤ K ≤ N , a real δ ∈ (0, 1) and a non-zero vector w ∈ RN .
Then, with probability at least 1 − δ, the algorithm outputs K independent samples
i1, . . . , iK ∈ [N] from the probability distribution Dw =

(|w1|
∥w∥1

, . . . , |wN |
∥w∥1

)
on [N] and

it performs O(
√
KN log(1/δ)) queries to w in expectation.

We propose a simpler algorithm for the above problem when w is of unit norm (Theo-
rem 7.5.3). We finally show that our results are nearly optimal in Proposition 7.5.4.

7.1.3 Proof overview
K-fold state preparation. Our starting point is the result from Grover [Gro00b] (pre-
sented in Proposition 7.3.2) for preparing one copy of the state |w⟩ in the black-box model.
This algorithm uses an upper bound m on the largest value maxi|wi| to construct a unitary
algorithm U such that,

U |0⟩ = 1√
N

∑
i∈[N]

|i⟩
(√

1− |wi|
m
|0⟩+

√
|wi|
m
|1⟩
)
.

The state |w⟩|1⟩ has amplitude
√

∥w∥1
Nm in U |0⟩, thus it can be extracted by using the am-

plitude amplification algorithm with O
(√

Nm
∥w∥1

)
applications of U and U−1. In particular,

if the largest coordinate of w (in absolute value) is smaller than m = ∥w∥1/K then we
can prepare one copy of |w⟩ in time O(

√
N/K), and K copies in time O(

√
KN). We

use this observation to construct a new circuit C such that |w⟩|1⟩ has amplitude at least
K/(2N) in C|0⟩, even if w contains large coordinates. The circuit C uses only two queries
to w, but it requires O(

√
KN) queries to be constructed during a preprocessing phase

that is executed only once (Proposition 7.4.1). The preprocessing phase first computes
the set H that contains the positions of the K largest coordinates in w, by using a variant
of the quantum maximum finding algorithm (Proposition 7.3.1). The circuit C proceeds
in two stages. First, it prepares a state whose amplitudes depend only on the values in
{wi : i ∈ H} (step 4 of Algorithm 7.2). Next, it modifies this state by querying the set
{wi : i /∈ H} in a way that is similar to that of U . The crucial observation is that the

89

Chapter 7 Quantum State Preparation and Importance Sampling

values in {|wi| : i /∈ H} must be smaller than ∥w∥1/K by definition of H, thus they can be
amplified at a smaller cost. Finally, each copy of |w⟩ can be obtained by one application
of the amplitude amplification algorithm on C (Proposition 7.4.2).

K-fold importance sampling. We propose two different algorithms for sampling K
independent elements from the distribution Dw =

(|w1|
∥w∥1

, . . . , |wN |
∥w∥1

)
given query access to w.

The first algorithm (Theorem 7.5.1) prepares K copies of |w⟩ and it measures them in the
computational basis. The second algorithm (Theorem 7.5.3) does not need to prepare the
state |w⟩, but it requires that ∥w∥1 = 1. We sketch this second algorithm. The first step is
to compute the same set H as before. Next, we load in time O(K) the conditional distribu-
tion

(|wi|
∥wH∥1

)
i∈H , where ∥wH∥1 =

∑
i∈H |wi|, into a classical data structure [Wal77; KP79;

Vos91] (Proposition 7.5.2) that supports fast sampling in time O(1). The complement
distribution

(|wi|
1−∥wH∥1

)
i/∈H will be sampled from differently, by preparing the correspond-

ing quantum state 1√
1−∥wH∥1

∑
i/∈H

√
|wi||i⟩ with the algorithm from Grover [Gro00b]

described before in time O
(√

N ·maxi/∈H |wi|
1−∥wH∥1

)
= O

(√
N

K(1−∥wH∥1)

)
. Each of the K samples

is obtained by first flipping a coin that lands head with probability ∥wH∥1, and then
sampling i ∈ H from the classical data structure (head case) or i /∈ H by quantum state
preparation (tail case). The head case occurs K∥wH∥1 times in expectation. Thus, the
total expected time is O

(
K∥wH∥1 · 1 +K(1− ∥wH∥1) ·

√
N

K(1−∥wH∥1)

)
= O(

√
KN).

7.2 Model of input
We assume for simplicity that N is a power of two in this chapter. The input to the
problem is a non-zero vector w ∈ RN with oracle access to its coordinates. We suppose
that all the real numbers manipulated by our algorithms can be encoded over s bits,
for a fixed value of s. The oracle is represented as a unitary operator Ow such that
Ow(|i⟩|v⟩) = |i⟩|v ⊕ wi⟩ for all i ∈ [N] and v ∈ {0, 1}s. We associate with each vector
w ∈ RN a quantum state |w⟩ and a distribution Dw defined as follows.

Definition 7.2.1. Given a non-zero vector w ∈ RN , define the state |w⟩ =
∑N

i=1

√
|wi|

∥w∥1
|i⟩

and the distribution Dw =
(

|w1|
∥w∥1

, . . . , |wN |
∥w∥1

)
that gives i ∈ [N] with probability |wi|

∥w∥1
.

We use the quantum circuit model over a universal gate set made of the CNOT gate and
of all one-qubit gates. We augment it with a set of arithmetic gates that perform standard
operations over basis states, such as the addition |w1⟩|w2⟩|0⟩ 7→ |w1⟩|w2⟩|w1 + w2⟩. We
also add the three gates described in Figure 7.1. The indicator gate 1H is specified by
a subset H ⊂ [N]. It operates on a Boolean value b and an index i ∈ [N]. The query
gate Ow is specified by the input vector w to the problem. It operates on an index i ∈ [N]
and a real v (encoded over s bits). Finally, the controlled rotation gate Rm is specified
by a real m > 0 and it operates on a Boolean value b and a real v. We refer the reader
to [HRS18; SLSB19] and references therein for efficient implementations of the arithmetic
gates and controlled rotation gates.

7.3 Preliminaries
The next algorithm generalizes the quantum minimum finding [DH96] to finding K largest
entries in a vector w. The algorithm succeeds if it outputs a set H ⊂ [N] of size K such

90

7.4 Preparing K copies of a quantum state

Indicator Gate Query Gate Controlled Rotation Gate

|b⟩
1H

|b⊕ 1i∈H⟩

|i⟩ |i⟩

|i⟩
Ow

|i⟩

|v⟩ |v ⊕ wi⟩

|b⟩
Rm

|χb⟩

|v⟩ |v⟩

Figure 7.1: Three allowed gates. The state |χb⟩ is defined as
√

1− |v|
m |b⟩+(−1)b

√
|v|
m |1−b⟩

if |v| ≤ m, and |b⟩ otherwise.

that for all i /∈ H and j ∈ H we have |wi| ≤ |wj |. There is not necessarily a unique choice
for H since different coordinates of w may be equal.

Proposition 7.3.1 (Top-K maximum finding – Theorem 4.2 in [DHHM06]). There
exists a quantum algorithm with the following properties. Consider two integers 1 ≤ K ≤ N ,
a real δ ∈ (0, 1) and a vector w ∈ RN . Then, the algorithm outputs the positions of K
largest entries in w (in absolute value) with success probability at least 1−δ, and it performs
O(
√
KN log(1/δ)) queries to w.

The next result is a quantum state preparation algorithm from Grover [Gro00b] that
takes as input an upper bound m on the largest coordinate in w. The optimal value
m = maxi∈[N]|wi| can be computed in time O(

√
N) by using the maximum finding

algorithm, in which case the next algorithm uses O(
√
N) queries too. We can measure the

state |w⟩ in the computational basis to obtain one sample from the distribution Dw. The
main contribution of this chapter is to extend this result to the problem of preparing K
copies of |w⟩ and sampling K independent samples from Dw.

Proposition 7.3.2 (State preparation & importance sampling – [Gro00b]). There
is a quantum algorithm with the following properties. Consider an integer N , a non-zero
vector w ∈ RN and a real m such that m ≥ maxi|wi|. Then, the algorithm outputs the
state |w⟩ with probability at least 1− δ. Alternatively, the algorithm can output one sample
from the distribution Dw. The algorithm performs O

(√
Nm
∥w∥1

)
queries to w in expectation.

We present a second state preparation algorithm that requires having an efficient
procedure to compute the value of

∑j
ℓ=i|wℓ| for any 1 ≤ i ≤ j ≤ N .

Proposition 7.3.3 (State preparation by integration – [Zal98; KM01; GR02]).
There is a quantum algorithm with the following properties. Consider an integer N and a
non-zero vector w ∈ RN such that there is a reversible circuit with T gates that computes∑j

ℓ=i|wℓ|
2 given i ≤ j. Then, the algorithm outputs |w⟩ and it uses O(T logN) gates.

7.4 Preparing K copies of a quantum state
We describe our state preparation algorithm for preparing K copies of |w⟩ given oracle
access to w = (w1, . . . , wN). The first step of the algorithm is a preprocessing phase that
constructs a particular circuit C described in Algorithm 7.2.

Proposition 7.4.1 (Preprocessing phase). Consider two integers 1 ≤ K ≤ N , a real
δ ∈ (0, 1) and a non-zero vector w ∈ RN . Then, Algorithm 7.2 outputs with probability at
least 1− δ the description of a unitary circuit C that prepares the state

|ψ⟩ =
√

1− αw|w⊥⟩|0⟩+√αw|w⟩|1⟩

91

Chapter 7 Quantum State Preparation and Importance Sampling

1. Compute a set H ⊂ [N] of the positions of K largest entries in w (in absolute
value) by using the top-K maximum finding algorithm with failure probability δ.

2. Query and store the value of wi for all i ∈ H.

3. Compute m = mini∈H |wi| and W = (N −K)m+
∑

i∈H |wi|.

4. Use the state preparation algorithm of Proposition 7.3.3 to construct a circuit CH
such that, on input |0⟩out, it prepares the state

CH |0⟩out =
∑
i∈H

√
|wi|
W
|i⟩out +

∑
i/∈H

√
m

W
|i⟩out.

5. Construct the following circuit C (explained in the proof of Proposition 7.4.1),

|0⟩ind

1H 1H

|0⟩ind

|0⟩out CH
Ow Ow |ψ⟩

|0⟩rot
Rm

|0⟩qry |0⟩qry

6. Output C.

Algorithm 7.2: Preprocessing phase.

where αw ≥ K/(2N) and |w⊥⟩ is a unit state. The algorithm performs O(
√
KN log(1/δ))

queries to w. The circuit C performs 2 queries to w and it uses O(K logN) gates.

Proof. We assume that the top-K maximum finding algorithm returns a correct set H at
step 1, which is the case with probability at least 1− δ. The circuit C defined at step 5
operates on four registers: ind and rot that contain a Boolean value, out that contains
an integer i ∈ [N], and qry that contains a real v ∈ R. The indicator and CNOT gates
flip the content of rot when the out register contains i ∈ H, whereas the rotation gate
Rm is activated when i /∈ H (the white circle is used to denote the controlled operation
|1⟩⟨1| ⊗ I + |0⟩⟨0| ⊗Rm). The gates 1H and Ow are applied a second time at the end of C
to uncompute the registers ind and qry. A simple calculation shows that the final state is
equal to |0⟩ind|ψ⟩|0⟩qry where

|ψ⟩ =
∑
i∈H

√
|wi|
W
|i⟩out|1⟩rot +

∑
i/∈H

√
m

W
|i⟩out

(√
1− |wi|

m
|0⟩rot +

√
|wi|
m
|1⟩rot

)

=
√

1− ∥w∥1
W
|w⊥⟩out|0⟩rot +

√
∥w∥1
W
|w⟩out|1⟩rot

for some unit state |w⊥⟩out and |w⟩out = 1√
∥w∥1

∑
i∈[N]

√
|wi||i⟩out. In order to lower

bound the coefficient αw = ∥w∥1
W , we first observe that the smallest value m = mini∈H |wi|

92

7.5 Preparing K samples from a discrete distribution

over H must satisfy m ≤ ∥w∥1
K since otherwise

∑
i∈H |wi| would exceed ∥w∥1. Thus,

α−1
w = W

∥w∥1
= (N−K)m+

∑
i∈H |wi|

∥w∥1
≤ N

K + 1. The algorithm performs O(
√
KN log(1/δ))

queries to w at step 1 according to Proposition 7.3.1, and K queries at step 2. Finally,
the circuit CH can be constructed with O(K logN) gates since for any two values i ≤ j
the sum of the squared coefficients in front of the basis states |ℓ⟩out for i ≤ ℓ ≤ j at step 4
is easily obtained as 1

W

(
m · |{i, . . . , j} \H|+

∑
ℓ∈H∩{i,...,j}|wi|

)
.

We use the circuit C constructed during the preprocessing phase, together with the am-
plitude amplification algorithm, to obtain the next state preparation phase that generates
one copy of |w⟩ in time O(

√
N/K).

1. Define the projector Π = I⊗|1⟩⟨1|rot acting on the same registers as the circuit C
constructed by Algorithm 7.2 on input K, δ, w.

2. Compute the state 1
∥ΠC|0⟩∥ΠC|0⟩ by using the sequential amplitude amplification

algorithm Seq-AAmp(C,Π).

3. Output the state contained in the out register of 1
∥ΠC|0⟩∥ΠC|0⟩.

Algorithm 7.3: State preparation phase.

Proposition 7.4.2 (State preparation phase). Consider two integers 1 ≤ K ≤ N , a
real δ ∈ (0, 1) and a non-zero vector w ∈ RN . Let C denote the unitary circuit obtained
with Algorithm 7.2 on input K, δ, w. If C correctly prepares the state |ψ⟩ described in
Proposition 7.4.1, then Algorithm 7.3 outputs the state |w⟩ and it performs O(

√
N/K)

queries to w in expectation.

Proof. If the circuit C prepares the state |ψ⟩ described in Proposition 7.4.1, then ΠC|0⟩ =√
αw|0⟩ind|w⟩out|1⟩rot|0⟩qry. Thus, by Theorem 3.2.3, the sequential amplitude amplification

algorithm outputs the state |0⟩ind|w⟩out|1⟩rot|0⟩qry and it uses O(α−1/2
w) ≤ O(

√
N/K)

applications of C, C−1 and I − 2Π in expectation.

We can finally prepare the state |w⟩⊗K by using the two previous algorithms.

Theorem 7.4.3 (K-fold state preparation). There exists a quantum algorithm with
the following properties. Consider two integers 1 ≤ K ≤ N , a real δ ∈ (0, 1) and a non-zero
vector w ∈ RN . Then, with probability at least 1− δ, the algorithm outputs K copies of
the state |w⟩ and it performs O(

√
KN log(1/δ)) queries to w in expectation.

Proof. The algorithm consists of applying the preprocessing phase described in Proposi-
tion 7.4.1 only once, and then repeating K times the preparation phase of Proposition 7.4.2.
The query complexity is O(

√
KN log(1/δ)) +K ·O(

√
N/K) = O(

√
KN log(1/δ)).

7.5 Preparing K samples from a discrete distribution

We describe two algorithms for generating K independent samples from the distribution Dw.
The first algorithm uses the state preparation of |w⟩⊗K described in the previous section.

93

Chapter 7 Quantum State Preparation and Importance Sampling

Theorem 7.5.1 (K-fold importance sampling). There exists a quantum algorithm
with the following properties. Consider two integers 1 ≤ K ≤ N , a real δ ∈ (0, 1) and a
non-zero vector w ∈ RN . Then, with probability at least 1− δ, the algorithm outputs K
independent samples i1, . . . , iK ∈ [N] from the probability distribution Dw and it performs
O(
√
KN log(1/δ)) queries to w in expectation.

Proof. The algorithm consists of preparingK copies of the state |w⟩ with success probability
at least 1 − δ by using the algorithm of Theorem 7.4.3, and measuring them in the
computational basis.

We describe an alternative algorithm that uses a combination of the standard state
preparation method of Grover (Proposition 7.3.2) with the classical alias method.

Proposition 7.5.2 (Alias method [Wal77; KP79; Vos91]). There exists a two-phase
classical algorithm with the following properties. Given a non-zero vector w ∈ RN , it
constructs a data structure in time O(N) during the preprocessing phase, and it outputs a
sample from the distribution Dw in time O(1) during the sampling phase. The sampling
phase can be repeated any number K of times to obtain K independent samples from Dw.

We assume that the ℓ1-norm of w is known in the next algorithm (in this case, we can
assume without loss of generality that ∥w∥1 = 1). If ∥w∥1 is unknown, a difficulty arises
at step 5.a of Algorithm 7.4 to sample from the Bernoulli distribution of parameter ∥wH∥1

∥w∥1
.

This problem was addressed in [HRRS19] by using the amplitude estimation algorithm,
which resulted in an approximate sampling scheme. We do not present this case here.

1. Compute a set H ⊂ [N] of the positions of K largest entries in w by using the
top-K maximum finding algorithm with failure probability δ.

2. Query and store the value of wi for all i ∈ H.

3. Apply the preprocessing phase of the algorithm of Proposition 7.5.2 to construct
the data structure associated with the vector wH = (wi)i∈H .

4. Compute m = mini∈H |wi| and ∥wH∥1 =
∑

i∈H |wi|.

5. For k = 1, . . . ,K:
a) Sample bk ∈ {0, 1} from the Bernoulli distribution of parameter ∥wH∥1.

b) If bk = 1, sample ik ∼
(

|wi|
∥wH∥1

)
i∈H

by using the data structure built at
step 3 and the sampling phase of the algorithm of Proposition 7.5.2.

c) If bk = 0, sample ik ∼
(

|wi|
1−∥wH∥1

)
i/∈H

by preparing the state |w[N]\H⟩ with
the algorithm of Proposition 7.3.2 on input w[N]\H = (wi)i/∈H and m, and
by measuring it in the computational basis.

6. Output i1, . . . , iK .

Algorithm 7.4: K-fold importance sampling for unit norm input.

94

7.6 Discussion

Theorem 7.5.3. Consider two integers 1 ≤ K ≤ N , a real δ ∈ (0, 1) and a probability
vector w ∈ RN (i.e. ∥w∥1 = 1). Then, with probability at least 1− δ, the output of Algo-
rithm 7.4 consists of K independent samples i1, . . . , iK from the probability distribution Dw,
and the algorithm performs O(

√
KN log(1/δ)) queries to w in expectation.

Proof. We assume that the top-K maximum finding algorithm returns a correct set H
at step 1, which is the case with probability at least 1− δ. The K samples i1, . . . , iK are
distributed according to Dw by a simple conditional probability argument.

Similarly to the proof of Proposition 7.4.1, we have m ≤ 1/K. Each execution of
step 5.b takes time O(1) by Proposition 7.5.2, and each execution of step 5.c uses
O
(√

Nm
1−∥wH∥1

)
queries in expectation by Proposition 7.3.2. Moreover, step 5.b is ex-

ecuted K∥wH∥1 times in expectation, and step 5.c is executed K(1 − ∥wH∥1) times in
expectation. Thus, the expected number of queries used by the algorithm at step 5 is
O
(
K∥wH∥1 +K(1− ∥wH∥1)

√
Nm

1−∥wH∥1

)
≤ O(

√
KN) by linearity of expectation. Finally,

step 1 uses O(
√
KN log(1/δ)) queries and step 2 uses K queries.

We finally show that the above algorithms are optimal (up to a logarithmic factor)
by a simple reduction from the K-Search problem. It implies that the state preparation
algorithm of Theorem 7.4.3 is also optimal.

Proposition 7.5.4. Any bounded-error quantum algorithm that can output K independent
samples from the distribution Dw given oracle access to any non-zero vector w ∈ RN must
perform at least Ω

(√
KN

logK

)
quantum queries.

Proof. The K-Search problem asks to find the positions of K preimages of 1 in an oracle O :
[N]→ {0, 1}. The quantum query complexity of this problem is Θ(

√
KN) [KŠW07] (see

also Section 10.5). By a coupon collector argument, if we sample Θ(K logK) independent
samples from the distribution Dw where w = (O(1), . . . ,O(N)) ∈ {0, 1}N , then we obtain
the positions of at least K different preimages of 1 with constant success probability (if
such preimages exist). It implies that generating Ω(K logK) independent samples from
any distribution Dw requires using at least Ω(

√
KN) quantum queries to w.

7.6 Discussion
In this chapter, we defined the probability vector

(
|w1|
∥w∥1

, . . . , |wN |
∥w∥1

)
by using the ℓ1-norm.

Our results still hold if we replace the absolute value with any function f : R → R≥0

to define the probability vector
(

f(wi)∑
j f(wj)

)
i∈[N]

(assuming the denominator is non-zero).

In particular, we can consider the ℓp-norm giving
(

|w1|p
∥w∥p

p
, . . . , |wN |p

∥w∥p
p

)
. We also restricted

ourselves to preparing states with non-negative real amplitudes. Arbitrary phase factors
can be introduced by using techniques discussed in [KM01; SLSB19].

We did not address the precision errors in our analysis. In particular, it can be relevant
to replace the controlled rotation gate (which requires to calculate the arcsine function)
by the comparison-based circuit defined in [SLSB19] that avoids arithmetic.

Two directions for future work are to consider the case of dynamic weight updates and
to close the logarithmic gap between our lower and upper bounds.

95

8
Applications to Stochastic Optimization

This chapter is based on the following papers:

[HRRS19] Y. Hamoudi, P. Rebentrost, A. Rosmanis, and M. Santha. “Quantum and
Classical Algorithms for Approximate Submodular Function Minimization”.
In: Quantum Information & Computation 19.15&16 (2019), pp. 1325–1349.

[RHR+21] P. Rebentrost, Y. Hamoudi, M. Ray, X. Wang, S. Yang, and M. Santha.
“Quantum Algorithms for Hedging and the Learning of Ising Models”. In:
Physical Review A 103 (2021), p. 012418.

8.1 Introduction

Importance sampling is a commonly used method in stochastic optimization, where the
decisions made by an algorithm to iterate toward a solution are guided by random choices.
The advantage of using a stochastic method over a deterministic one (such as stochastic
gradient descent vs. vanilla gradient descent) is often to reduce the computational time,
with the risk of decreasing the accuracy. Several variance reduction techniques have been
developed to keep the accuracy under control. Among them, importance sampling is
frequently used to bias an iterative process toward the data that are the most significant.
This strategy can be harder to design than data-independent approaches (such as uniform
sampling), but it often leads to better convergence rates [NSW16; ZZ15; ZX17]. In this
chapter, we investigate the use of quantum importance sampling to speed up stochastic
optimization methods.

A quite successful recent trend in quantum computing is to design fast quantum
algorithms for various optimization and machine learning problems [Aar15; BWP+17;
CHI+18; AG19a]. These algorithms are often quantum-classical hybrid, that is partly of
quantum and partly of classical nature, and designed in a modular way so that the quantum
part of the algorithm can be treated as a separate building block. A frequent feature of
these algorithms is that they use a classical iterative method (such as gradient descent),
and they only convey classical information from one iteration to the next. In contrast to
the HHL algorithm [HHL09] for example, the output of these algorithm is often inherently
classical. In most cases, the source of the quantum speedup lies in the use of a quantum
subroutine to perform each iteration faster than it is possible classically. Examples of
such subroutines include the quantum Fourier transform, amplitude amplification and
estimation, and quantum importance sampling. In this chapter, we propose two new and
independent applications of the latter technique to the Hedge algorithm and to submodular
minimization in the quantum oracle model.

97

Chapter 8 Applications to Stochastic Optimization

Hedge algorithm. A paradigmatic algorithm for online learning is the Hedge algorithm
by Freund and Schapire [FS97]. An allocation into different strategies is chosen for multiple
rounds and each round incurs corresponding losses for each strategy. The algorithm obtains
a favorable guarantee for the total losses even in an adversarial situation. In Section 8.2,
we present a quantum algorithm for such online learning in an oracular setting. For T
time steps and N strategies, we exhibit a quantum Hedge algorithm with a run time of
about O(T 2√N) for selecting individual strategies by sampling. The quantum algorithm
inherits the provable learning guarantees from the classical Hedge algorithm and it exhibits
a quadratic speedup in N compared to the run time O(TN) of the classical algorithm.

Submodular function minimization. Submodular functions are set functions mapping
every subset of some ground set of size n into the real numbers and satisfying the di-
minishing returns property. Submodular minimization is an important field in discrete
optimization theory due to its relevance to various branches of mathematics, computer sci-
ence and economics. The current fastest algorithms for submodular minimization [LSW15;
ALS20] are based on a convex relaxation of submodular functions known as the Lovász
extension [Lov82]. In Section 8.3, we present a quantum algorithm for finding an ϵ-additive
error minimizer of a submodular function with range [−1, 1] in time Õ(n5/4/ϵ5/2). Prior
to our work, the best classical algorithm [CLSW17] was running in time Õ(n5/3/ϵ2) and
no quantum algorithm was known. Subsequently to the publication of our work, a better
classical algorithm that runs in time Õ(n/ϵ2) was presented in [ALS20]. Nevertheless,
we believe that our approach, namely the use of quantum importance sampling in the
stochastic subgradient descent method, is general enough to be of independent interest in
other similar applications.

8.1.1 Related work

There is an extensive classical literature on the use of importance sampling in stochastic
optimization. We refer the reader to [Nes12; RT14; SV09; NSW16; ZZ15; ZX17] for some
of the main examples in stochastic descent methods. We give some applications of quantum
importance sampling to stochastic optimization that we are aware of in the quantum
oracle model. Li et al. [LCW19; LWCW21] and van Apeldoorn and Gilyén [AG19b]
studied the problem of solving matrix games. They used a primal-dual approach based on
the multiplicative weight update (MWU) method [GK95; CHW12], where the updates
are obtained by quantum importance sampling of the weight vector. Arunachalam and
Maity [AM20] and Izdebski and de Wolf [IW20] also used the MWU method for the problem
of boosting a weak learner. Their results are adapted from the AdaBoost [FS97] and
SmoothBoost [Ser03] algorithms respectively. Our work on the Hedge algorithm is another
application of the MWU method. The recent line of work on quantum SDP solving [BS17;
AGGW20b; BKL+19; AG19a] builds on the classical Arora-Kale framework [AK16], and
it is based on the matrix MWU method and on Gibbs sampling. Finally, Zhang, Len
and Li [ZLL20] gave a perturbed descent method for escaping saddle points, where the
perturbation is obtained by sampling from a distribution simulated with the Schrödinger
equation.

All the above-mentioned quantum optimization algorithms assume a quantum oracle
access to the input data, as we do in our work. Other related results in the quantum
oracle model include general convex optimization [AGGW20a; CCLW20], fast gradi-
ent computation [Jor05; GAW19; AGGW20a; CCLW20], black-box first-order convex
optimization [GKNS20], and optimization problems on graphs [DHHM06; AW20; AL21].

98

8.2 Hedge algorithm

8.2 Hedge algorithm
Consider a game with T rounds, where we have the chance to play a mixture of N different
strategies in each round and observe the results of our choice in the next round. The setting
is “online” in the sense that the results are unknown ahead of time, which also can be seen
as an idealized version of sports betting or stock market trading. The Hedge algorithm
adaptively changes the mixture of strategies (a probability vector) via multiplicative weight
updates [FS97]. This strategy allows for losses after T rounds that are not much worse than
the minimum achievable “offline” loss. Here, “offline” means that the strategy is picked
in advance without any adaptation. This difference of online and minimum achievable
offline loss is often called “regret”. It can be shown that the regret of the Hedge algorithm
is not worse than

√
2T logN + logN (Proposition 8.2.1). The classical complexity for

this algorithm is O(TN): in each round we have to perform the multiplicative update, an
effort that is proportional to N .

In this section, we provide a quantum algorithm in the online hedging scenario (Algo-
rithm 8.2). Assuming appropriate oracles for the online loss information, we exhibit a
quantum speedup for the active setting, where in each round a single strategy is executed
and incurs a certain loss. We select this strategy by quantum importance sampling. We
obtain a quantum speedup in N while the overall regret remains close to that of the
classical Hedge algorithm with high probability. While T and N are arbitrary, in most
applications when applied in learning theory for example, T is much smaller than N , e.g.
T = O(logN). In this case, the worsening in T provided by our algorithm is acceptable.

Organization of the section. We first present the classical Hedge algorithm [FS97] in
Section 8.2.1 and we recall its main property in Proposition 8.2.1. Next, we describe our
quantum Hedge algorithm in Section 8.2.2. The main result is given in Theorem 8.2.3.

8.2.1 Classical Hedge algorithm

We follow [FS97] for the discussion of the classical Hedge algorithm. We are given N
strategies for a game that takes T rounds. Before each time t ∈ [T], we choose an assignment
of the N strategies. This assignment shall be given by a non-zero weight vector w(t) =
(w(1)

1 , . . . , w
(t)
N) ∈ RN≥0, which form the probability vector Dw(t) =

(
w

(t)
1

∥w(t)∥1
, . . . ,

w
(t)
N

∥w(t)∥1

)
.

The initial allocation is taken to be uniform, i.e., w(1) = (1, . . . , 1). The algorithm
considers an online learning setting, where information arrives over time and the weights
are updated accordingly. Specifically, at each time t ∈ [T], we observe the loss vector
ℓ(t) = (ℓ(t)1 , . . . , ℓ

(t)
N) ∈ [0, 1]N . Algorithmically, we describe this as “Receive loss vector ℓ(t)”,

which means we obtain access to the loss vector. To avoid further complexities, we assume
that each loss ℓ(t)i takes a constant number of bits to specify. The loss at time t is given by

L(t) :=
N∑
i=1

w
(t)
i

∥w(t)∥1
ℓ

(t)
i = Ei∼D

w(t)

[
ℓ

(t)
i

]
∈ [0, 1].

Algorithmically, this loss is taken into account with the statement “Suffer loss L(t)”,
which means we add L(t) to the overall loss amount. A strategy to minimize losses was
shown in [FS97]. Take β ∈ (0, 1). The strategy is based on multiplicative updates to
the weights given the incoming loss information as w(t+1)

i = w
(t)
i βℓ

(t)
i , which for the full

path up to t is w(t)
i = β

∑t−1
t′=1 ℓ

(t′)
i . The original Hedge algorithm is given in Algorithm 8.1.

99

Chapter 8 Applications to Stochastic Optimization

The accumulated loss of this algorithm over T rounds is LH =
∑T

t=1 L
(t). On the other

hand, consider the “offline loss”, Lmin = mini∈[N]
∑T

t=1 ℓ
(t)
i , which gives the minimum loss

achievable when choosing the same single strategy for all rounds of the game. Freund and
Schapire [FS97] proved the next regret bound for the losses of the Hedge algorithm.

1. Set w(1) = (1, . . . , 1) ∈ RN .

2. For t = 1, ..., T :
a) Receive loss vector ℓ(t).

b) Suffer loss L(t) = Ei∼D
w(t)

[
ℓ

(t)
i

]
.

c) Update the weight vector to w(t+1) = w(t) · βℓ(t) .

Algorithm 8.1: Classical Hedge algorithm [FS97].

Proposition 8.2.1 ([FS97]). For any sequence ℓ(1), . . . , ℓ(T) ∈ [0, 1]N of loss vectors,
the Hedge algorithm (Algorithm 8.1) with parameter β = 1

1+
√

2 log(N/T)
incurs a total

loss of LH =
∑T

t=1 L
(t) that satisfies the regret bound LH ≤ Lmin +

√
2T log(N) + logN ,

where Lmin = mini∈[N]
∑T

t=1 ℓ
(t)
i . The algorithm uses O(TN) operations.

This bound is better than the naive one LH ≤ Lmin + T . The run time is O(TN) since
at every step the algorithm updates N numbers and there are T steps overall. In the next
section, we provide a quantum version of this algorithm with a polynomial speedup in N .

8.2.2 Quantum Hedge algorithm
We construct a simple algorithm based on “one-shot” quantum importance sampling
(Proposition 7.3.2) to improve the running time of the Hedge algorithm. We aim at a
sublinear dependence in the number N of strategies, which means that we cannot update
and store the entire weight vector w(t). We resolve this problem by considering the active
setting where in each round the algorithm explicitly chooses a single strategy to play. In
comparison, the classical Hedge algorithm presented in Section 8.2.1 is formulated in the
passive setting, where all N strategies could be played at the same time by investing a
proportion w

(t)
i

∥w(t)∥1
of the available resources in the i-th strategy (think for instance of

allocating a portfolio). We show that playing a single strategy picked according to the
distribution Dw(t) does not significantly increase the regret bound compared to the passive
setting with high probability. We note that a similar approach can be implemented with a
randomized algorithm, but the run time would still be O(TN) since sampling from the
distribution Dw(t) requires N operations classically.

Before describing the quantum Hedge algorithm, we translate the online learning setting
into the quantum domain. The input data for the quantum algorithm are the losses
experienced at every step t. First, we assume T different oracles, where the sequential
access to these oracles embodies the online setting.

Assumption 8.A (Loss oracles). Assume that s = O(1) bits are sufficient to specify
the losses ℓ(t)i and the weights w(t)

i obtained in the Hedge algorithm. For t ∈ [T] and i ∈ [N],
assume query unitaries Oℓ(t) such that Oℓ(t)(|i⟩|v⟩) = |i⟩|v ⊕ ℓ(t)i ⟩ for any v ∈ {0, 1}s.

100

8.2 Hedge algorithm

Given the loss unitaries, we can compute the weights with overhead about O(T).

Fact 8.2.2. Let t ∈ [T], β ∈ (0, 1) and Oℓ(t′) for t′ ∈ [t− 1] be given as in Assumption 8.A.

Then, there is a unitary circuit C such that C(|i⟩|v⟩) = |i⟩|v⊕w(t)
i ⟩ where w(t)

i = β
∑t−1

t′=1 ℓ
(t′)
i .

This computation takes O(t) queries to the data input and O(t+ logN) other gates.

We use these unitaries to perform quantum importance sampling in the quantum Hedge
algorithm given below. The algorithm never fully exhibit the full weight vector but rather
only its coherent encoding |w(t)⟩ over O(logN) qubits, hence the sublinear running time.

1. Let w(1) = (1, . . . , 1) ∈ RN . Set up a circuit C(1) that gives query access to w(1).

2. For t = 1, ..., T :
a) Compute m = ∥w(t)∥∞ with failure probability δ/(2T) by using the maximum

finding algorithm (Proposition 7.3.1) and the query access to w(t) given by C(t).
b) Sample i(t) ∼ Dw(t) by using the importance sampling algorithm (Proposi-

tion 7.3.2) with m and the query access to w(t) given by C(t).
c) Receive access to the loss vector ℓ(t) via the unitary Oℓ(t) of Assumption 8.A.

d) Suffer loss ℓ(t)
i(t) .

e) Use Fact 8.2.2 to set up a circuit C(t) that gives query access to w(t+1) = w(t)·βℓ(t) .

Algorithm 8.2: Quantum Hedge algorithm.

Theorem 8.2.3. For any sequence ℓ(1), . . . , ℓ(T) ∈ [0, 1]N of loss vectors and any real
δ ∈ (0, 1), the quantum Hedge Algorithm (Algorithm 8.2) with parameter β = 1

1+
√

2 log(N/T)
incurs a total loss of LH =

∑T
t=1 ℓ

(t)
i(t) that satisfies the regret bound

LH ≤ Lmin + 2
√
T log(N/δ) + logN

with probability at least 1− δ, where Lmin = mini∈[N]
∑T

t=1 ℓ
(t)
i . It uses O(T 2√N log(T/δ))

quantum queries to the loss vectors and Õ(T 2√N log(1/δ)) other gates.

Proof. Let E denote the event that all calls to the maximum finding algorithm at step 2.a
are successful. We have Pr[E] ≥ δ/2 by a union bound. Conditioned on E , the expected
loss suffered by the algorithm at the t-th iteration is equal to Ei∼D

w(t)

[
ℓ

(t)
i

]
. Thus, the

loss LH satisfies that E[LH | E] =
∑T

t=1 Ei∼D
w(t)

[
ℓ

(t)
i

]
. By Proposition 8.2.1, we have

E[LH | E] ≤ Lmin +
√

2T log(N) + logN.

The loss LH is a sum of T random variables distributed in [0, 1]. Thus, by Hoeffding’s
inequality, Pr

[
LH ≥ E[LH | E] +

√
T log(2/δ)/2

∣∣ E] ≤ δ/2. We conclude that,

LH ≤ Lmin +
√

2T log(N) + logN +
√
T log(2/δ)/2 ≤ Lmin + 2

√
T log(N/δ) + logN

with probability at least (1− δ/2)2. Each circuit C(t) uses O(t) queries to ℓ(1), . . . , ℓ(t−1) to
answer one query to w(t) by Fact 8.2.2. Consequently, at the t-th iteration, the algorithm
uses O(t ·

√
N log(1/δ)) queries in step 2.a by Proposition 7.3.1 and O(t ·

√
N) queries in

step 2.b by Proposition 7.3.2. The total number of queries is O(T 2√N log(1/δ)).

101

Chapter 8 Applications to Stochastic Optimization

8.3 Submodular function minimization

A submodular function F is a function mapping every subset of some finite set V of
size n into the real numbers and satisfying the diminishing returns property: for every
A ⊆ B ⊆ V and for every i ̸∈ B, the inequality F (A ∪ {i})− F (A) ≥ F (B ∪ {i})− F (B)
holds. In other words, given two sets where one of them contains the other, adding a
new item to the smaller set increases the function value at least as much as adding that
element to the bigger set. Many classical functions in mathematics, computer science and
economics are submodular, the most prominent examples include entropy functions, cut
capacity functions, matroid rank functions and utility functions. Submodular functions
show analogies both with concavity and convexity. The diminishing returns property
makes them akin to concave functions, but they have algorithmic properties similar to
convex functions. In particular, while it follows from the NP-hardness of maximum cut
that submodular maximization is NP-hard, submodular minimization can be solved in
polynomial time, in fact even in strongly polynomial time.

The link between submodular functions and convex analysis is made explicit through the
Lovász extension [Lov82]. There are various approaches to solve submodular minimization.
The foundational work of Grötschel, Lovász and Schrijver [GLS81] gave the first polynomial-
time algorithm using the ellipsoid method. The first pseudo-polynomial algorithm using a
combinatorial method appeared in the influential paper of Cunningham [Cun85]. In a later
work Grötschel, Lovász and Schrijver [GLS88] were the first to design a strongly polynomial-
time algorithm, and the first strongly polynomial-time combinatorial algorithms were
given by Schrijver [Sch00] and by Iwata, Fleischer and Fujishige [IFF01]. The current
fastest submodular minimization algorithm is by Lee, Sidford and Wong [LSW15]. Many
of these works assume an access to a query oracle for the function F .

Our work is most closely related to the paper of Chakrabarty et al. [CLSW17] who
gave an ϵ-additive approximation algorithm that runs in time Õ(n5/3/ϵ2) for real-valued
submodular functions with range [−1, 1]. This algorithm was the first to run in subquadratic
time in n. In [HRRS19], we improved this result by giving a classical algorithm that
runs in time Õ(n3/2/ϵ2), and a quantum algorithm that runs in time Õ(n5/4/ϵ5/2). We
present a slightly simpler version of the latter result in this section. Our method consists of
minimizing the Lovász extension of the submodular function under consideration by using
the stochastic subgradient descent algorithm. We differ from [CLSW17] by constructing a
new subgradient estimator that is faster to evaluate with quantum importance sampling.
Axelrod, Liu and Sidford [ALS20] have published subsequently to our work a classical
nearly linear time algorithm that outperforms our result.

Theorem 8.3.17 (Restated). There exists a quantum algorithm such that, given a
submodular function F : 2V → [−1, 1] and a real ϵ ∈ (1

n1/6 , 1), it computes a set S̄ such
that E[F (S̄)] ≤ minS⊆V F (S) + ϵ in time Õ(n5/4/ϵ5/2).

Organization of the section. We first present a high overview of the algorithm in
Section 8.3.1. Next, we introduce the basic definitions and properties of submodular
functions in Section 8.3.2. We analyze in Proposition 8.3.5 a variant of the stochastic
subgradient descent method, where the subgradient estimates need not be unbiased. We
describe the data structures that are needed for our algorithm in Section 8.3.3. The
quantum importance sampling algorithm developed in the previous chapter is used in
Section 8.3.4 to construct two types of subgradient estimates. The final algorithm is
presented in Section 8.3.5.

102

8.3 Submodular function minimization

8.3.1 Proof overview
Submodular minimization can be translated into a convex optimization problem by
considering the so-called Lovász extension f . This makes it possible to apply standard
gradient algorithms. Since f is not differentiable, one can rely on the subgradient descent
method that computes a sequence of iterates x(t) converging to a minimum of f . At
each step, the next iterate x(t+1) is obtained by moving into the negative direction of
a subgradient g(t) at x(t). In the case of submodular functions, there exists a natural
choice for g(t), sometimes called the Lovász subgradient, that requires O(n/ϵ2) steps to
converge to an ϵ-approximate of the minimum. The stochastic subgradient descent method
allows one to replace the subgradient g(t) with a stochastic subgradient, that is a low-
variance estimate g̃(t) satisfying E[g̃(t) | x(t)] = g(t). All the existing works on approximate
submodular minimization [HK12; Bac13; CLSW17; HRRS19; ALS20], including the
present one, rely on computing such an estimate in the most efficient way.

We now explain how we compute a stochastic subgradient g̃(t). We simplify the exposition
by assuming that ϵ is a small constant. One natural choice for g̃(t) is the subgradient
direct estimate ĝ(t) = ∥g(t)∥1 sgn(g(t)

i) · ei where i ∈ [n] is chosen by sampling from the
distribution Dg(t) that gives i with probability |g(t)

i |/∥g(t)∥1, and ei is the basis vector
with a 1 at position i. The ℓ1-norm of the Lovász subgradient being small, this is a valid
low-variance 1-sparse estimate of g(t). The quantum importance sampling algorithm can
be used to compute ĝ(t) in time Õ(

√
n), which already leads to an algorithm with overall

complexity Õ(n3/2). We improve upon this complexity by constructing g̃(t) differently, in
amortized time Õ(n1/4). Similarly to [CLSW17], we construct our subgradient estimate g̃(t)

by combining two kinds of estimates (Proposition 8.3.14). Our construction is reset every
K =

√
n steps of the descent, which turns out to be the optimal resetting time in our

case. We explain how to compute the first K terms g̃(0), . . . , g̃(K−1). First, we obtain K
independent samples ĝ(0,0), · · · , ĝ(0,K−1) from the subgradient direct estimate at x(0)

by using the K-fold importance sampling algorithm (Theorem 7.5.1) in time Õ(
√
nK)

(Proposition 8.3.12). Then, the first subgradient estimate is chosen to be g̃(0) = ĝ(0,0),
and the other ones are obtained at step t by combining ĝ(0,t) with an estimate d̃(t) of the
Lovász subgradient difference d(t) = g(t) − g(0), that is g̃(t) = ĝ(0,t) + d̃(t). Our procedure
for constructing d̃(t) (Proposition 8.3.13) is adapted from [CLSW17] and it uses the “one-
shot” quantum importance sampling algorithm (Proposition 7.3.2) to run in time Õ(

√
t).

Therefore, the first K estimates are obtained in time Õ
(√
nK +

∑K−1
t=1
√
t
)

= Õ(n3/4).
Since the O(n) steps of the subgradient descent are split into O(n/K) batches of length K,
it follows that the total time complexity is Õ(n5/4).

8.3.2 Preliminaries
A submodular function is a set function F : 2V → R such that for every A ⊆ B ⊆ V
and for every i ̸∈ B, the inequality F (A ∪ {i})− F (A) ≥ F (B ∪ {i})− F (B) holds. For
convenience, we assume that V = [n] and F (∅) = 0 (this can be enforced by observing that
S 7→ F (S)− F (∅) is still a submodular function). The Lovász extension f : [0, 1]n → R
is a convex relaxation of F to the hypercube [0, 1]n. Before describing it, we present a
canonical way to associate a permutation P with each point x ∈ [0, 1]n.

Definition 8.3.1. Given a permutation P = (P1, . . . , Pn) of [n], we say that P is consistent
with x ∈ Rn if xP1 ≥ xP2 ≥ · · · ≥ xPn , and Pi+1 > Pi when xPi = xPi+1 for all i. We also
let P [i] = {P1, . . . , Pi} ⊆ [n] denote the set of the first i elements of P , and P [0] = ∅.

For instance, the permutation P consistent with x = (0.3, 0.2, 0.3, 0.1) is P = (1, 3, 2, 4).

103

Chapter 8 Applications to Stochastic Optimization

Definition 8.3.2 (Lovász Extension and Lovász Subgradient). Given a submodular
function F : 2V → R over V = [n], the Lovász extension f : [0, 1]n → R of F is
defined for all x ∈ [0, 1]n by f(x) =

∑
i∈[n](F (P [i]) − F (P [i − 1])) · xPi where P is the

permutation consistent with x. The Lovász subgradient g(x) ∈ Rn at x ∈ [0, 1]n is defined
by g(x)Pi = F (P [i])− F (P [i− 1]) for all i ∈ [n].

We will use the following properties of the Lovász extension [Lov82; Bac13; JB11].

Proposition 8.3.3. The Lovász extension f of a submodular function F is a convex
function. Moreover, given x ∈ [0, 1]n and the permutation P consistent with x, we have

(1) (Subgradient) For all y ∈ [0, 1]n, ⟨g(x), x− y⟩ ≥ f(x)− f(y).

(2) (Minimizers) mini∈[n] F (P [i]) ≤ f(x) and minS⊆V F (S) = miny∈[0,1]n f(y).

(3) (Boundedness) If the range of F is [−1, 1] then ∥g(x)∥2 ≤ ∥g(x)∥1 ≤ 3.

Observe that the second property gives an explicit way to convert any point x̄ ∈ [0, 1]n
such that f(x̄) ≤ minx∈[0,1]n f(x) + ϵ into a set S̄ ⊆ V such that F (S̄) ≤ minS⊆V F (S) + ϵ.
Consequently, we can focus on ϵ-additive minimization of the Lovász extension.

Model of computation. Although the Lovász extension f is a continuous function, the
value of f(x) can be computed by evaluating F on the sets P [1], . . . , P [n] where P is the
permutation consistent with x. Consequently, it is natural to define a query oracle that
given i returns F (P [i]) [CLSW17]. More precisely, given a permutation P stored in a linked
list, we assume that we have access to a unitary OP such that OP (|i⟩|0⟩) = |i⟩|F (P [i])⟩ for
any i ∈ [n], where the second register holds a binary representation of F (P [i]) with some
finite precision. The Lovász extension can be evaluated with O(n) queries and O(n logn)
other operations. The time complexity is measured as the number of uses of OP .

Stochastic subgradient descent. The stochastic subgradient descent method is a
general algorithm for approximating the minimum value of a convex function f that is not
necessarily differentiable (as it is the case for the Lovász extension). It uses the concept of
subgradients (or subderivatives) of f , which is defined as follows.

Definition 8.3.4. Given a convex function f : C → R over a set C ⊆ Rn and a point x ∈ C,
we say that g ∈ Rn is a subgradient of f at x if ⟨g, x− y⟩ ≥ f(x)− f(y) for all y ∈ C. The
set of all subgradients at x is denoted by ∂f(x).

The stochastic subgradient descent method requires computing a sequence (g̃(t))t of
unbiased subgradient estimates at certain points (x(t))t, that is E[g̃(t) | x(t)] ∈ ∂f(x(t)). We
generalize this method to ϵ-noisy estimates such that ∥E[g̃(t) | x(t)]− g(t)∥1 ≤ ϵ for some
g(t) ∈ ∂f(x(t)). In the case ϵ = 0, our analysis recovers the standard error bound [Duc18].

Proposition 8.3.5 (Noisy stochastic subgradient descent). Let f : C → R be
a convex function over a compact convex set C ⊂ Rn, and fix a step size parameter
η > 0. Consider two sequences of random variables (x(t))t and (g̃(t))t such that x(0) =
argminx∈C∥x∥2, x(t+1) = argminx∈C∥x− (x(t) − ηg̃(t))∥2, and∥∥E[g̃(t) ∣∣ x(t)]− g(t)∥∥

1 ≤ ϵ for some g(t) ∈ ∂f(x(t)),

for all t ≥ 0. Fix x⋆ ∈ argminx∈C f(x) and let L2, L∞, B ∈ R be such that ∥x−x⋆∥2 ≤ L2,
∥x− x⋆∥∞ ≤ L∞ and E

[
∥g̃(t)∥22

]
≤ B2, for all x ∈ C and t ≥ 0. Then, for any integer T ,

the average point x̄ = 1
T

∑T−1
t=0 x(t) satisfies E[f(x̄)] ≤ f(x⋆) + L2

2
2ηT + η

2B
2 + ϵL∞.

104

8.3 Submodular function minimization

Proof. Let (g(t))t be such that g(t) ∈ ∂f(x(t)) and ∥E[g̃(t) | x(t)]− g(t)∥1 ≤ ϵ. Then,

∥x(t+1) − x⋆∥22 =
∥∥∥argmin

x∈C
∥x− (x(t) − ηg̃(t))∥2 − x⋆

∥∥∥2

2

≤ ∥x(t) − ηg̃(t) − x⋆∥22 by property of the projection onto C
= ∥x(t) − x⋆∥22 − 2η⟨g̃(t), x(t) − x⋆⟩+ η2∥g̃(t)∥22
= ∥x(t) − x⋆∥22 − 2η⟨g(t), x(t) − x⋆⟩ − 2η⟨g̃(t) − g(t), x(t) − x⋆⟩+ η2∥g̃(t)∥22
≤ ∥x(t) − x⋆∥22 − 2η(f(x(t))− f(x⋆))− 2η⟨g̃(t) − g(t), x(t) − x⋆⟩+ η2∥g̃(t)∥22

where the last line is by definition of a subgradient. We now take the expectation of
the above formula. By the law of total expectation, we have E

[
⟨g̃(t) − g(t), x(t) − x⋆⟩

]
=

E
[
⟨E
[
g̃(t) ∣∣ x(t)]−g(t), x(t)−x⋆⟩

]
and by Hölder’s inequality

∣∣⟨E[g̃(t) ∣∣ x(t)]− g(t), x(t) − x⋆⟩
∣∣

≤ ∥E
[
g̃(t) ∣∣ x(t)]− g(t)∥1 · ∥x(t) − x⋆∥∞ ≤ ϵL∞. Consequently,

E
[
∥x(t+1) − x⋆∥22

]
− E

[
∥x(t) − x⋆∥22

]
≤ −2ηE

[
f(x(t))− f(x⋆)

]
+ 2ηϵL∞ + η2B2.

By reordering this formula, we obtain that E[f(x(t))] ≤ f(x⋆) + 1
2η
(
E
[
∥x(t) − x⋆∥22

]
−

E
[
∥x(t+1) − x⋆∥22

])
+ η

2B
2 + ϵL∞. Finally, we upper bound the expected value of the

function at the average point x̄ as

E[f(x̄)] ≤ 1
T

T−1∑
t=0

E
[
f(x(t))

]
by convexity

≤ f(x⋆) + 1
T

T−1∑
t=0

1
2η

(
E
[
∥x(t) − x⋆∥22

]
− E

[
∥x(t+1) − x⋆∥22

])
+ η

2B
2 + ϵL∞

= f(x⋆) + 1
2ηT

(
E
[
∥x(0) − x⋆∥22

]
− E

[
∥x(T) − x⋆∥22

])
+ η

2B
2 + ϵL∞

≤ f(x⋆) + L2
2

2ηT + η

2B
2 + ϵL∞

where we have used the telescoping property of the sum in the third line.

8.3.3 Data structures and c-covers
In the rest of this chapter, f denotes the Lovász extension and g denotes the Lovász
subgradient (Definition 8.3.2). We describe two data structures D1 and D2 that will be
maintained throughout the algorithm. These data structures are used in Section 8.3.4 to
construct the subgradient estimates needed in the stochastic subgradient descent method.
The first data structure D1(x) provides a fast access to the permutation P consistent with
a point x.

Definition 8.3.6 (Data structure D1). Given x ∈ Rn and the permutation P consistent
with x, we define D1(x) = (Lx, Ax, Tx) to be the data structure made of the following
elements: a doubly linked list Lx storing P , an array Ax storing at position i ∈ [n] the
value xi with a pointer to the corresponding entry in P , and a self-balancing binary search
tree Tx (e.g. a red-black tree [GS78]) with a node for each i ∈ [n] keyed by the value xi
and containing the size of its subtree.

The second data structure D2(x, y, I) requires the following definition of a c-cover
introduced in [CLSW17].

105

Chapter 8 Applications to Stochastic Optimization

Definition 8.3.7 (c-cover). Consider x, y ∈ [0, 1]n and let P and Q be the permutations
consistent with x and y respectively. We say that a partition I = {I1, . . . , Ic} of [n] is a
c-cover of (x, y) if, for each j ∈ [c], the preimage of Ij under both P and Q is a set of
consecutive numbers, and xi = yi for all i ∈ Ij if |Ij | > 1.

1 2 3 4 5 6 7 8 9 10
x 0.85 0.58 0.42 0.53 0.60 0.78 0.12 0.27 0.92 0.31
y 0.85 0.58 0.65 0.53 0.60 0.78 0.90 0.27 0.92 0.31
P 9 1 6 5 2 4 3 10 8 7
Q 9 7 1 6 3 5 2 4 10 8

0.60
I4

0.31
I2

0.12
I3

0.42
I1

0.85
I5

0.92
I6

I1 = {3}, I2 = {10, 8}, I3 = {7}, I4 = {5, 2, 4}, I5 = {1, 6}, I6 = {9}.

Figure 8.3: An illustration of a 6-cover I = {I1, . . . , I6} for some x, y ∈ [0, 1]10 and their
corresponding permutations P,Q. The circled numbers in the array correspond
to the positions where x and y differ (these values must belong to singletons
in the cover). The binary tree corresponds to T I

x in D2(x, y, I).

An example of a 6-cover is given in Figure 8.3. Note that there exists a cover of size at
most 3c+ 1 if the difference vector z = x− y is c-sparse. Later on, we will store a cover
approaching that size. We describe the data structure D2(x, y, I) used to store a c-cover.
Definition 8.3.8 (Data structure D2). Given x, y ∈ Rn and a c-cover I = {I1, . . . , Ic}
of (x, y), we define D2(x, y, I) =

(
D1(x),D1(y), AI

x , A
I
y , T

I
x , T

I
y

)
to be the data structure

made of the following elements: D1(x) and D1(y) (Definition 8.3.6), two dynamic arrays
AI
x and AI

y of size c storing at position j ∈ [c] the pairs (argmaxi∈Ij
xi, argmini∈Ij

xi) and
(argmaxi∈Ij

yi, argmini∈Ij
yi) respectively, two self-balancing binary search trees T I

x and
T I
y with a node for each j ∈ [c] keyed by the value of maxi∈Ij xi and maxi∈Ij yi.
The next lemma is the crucial property established in [CLSW17] about c-covers. It

shows that the coordinates g(y)i− g(x)i of the Lovász subgradient difference have constant
sign over any set Ij of the cover when x ≤ y or x ≥ y. In particular, the ℓ1-norm
∥g(y)Ij − g(x)Ij∥1 is equal to the absolute value of

∑
i∈Ij

g(y)i − g(x)i.

Lemma 8.3.9 ([CLSW17]). Consider x, y ∈ [0, 1]n such that x ≤ y or x ≥ y, and let
{I1, . . . , Ic} be a c-cover of (x, y). Then, for each j ∈ [c], the coordinates g(y)i − g(x)i
have the same sign for all i ∈ Ij. In particular, |

∑
i∈Ij

g(y)i − g(x)i| = ∥g(y)Ij − g(x)Ij∥1.
Proof. Let P and Q denote the permutations consistent with x and y respectively. Consider
j ∈ [c] such that |Ij | > 1 (the result is trivial when |Ij | = 1). By definition of a
c-cover, there exist three integers aj , a′

j , ℓj such that Ij = {Paj , Paj+1, . . . , Paj+ℓj} =
{Qa′

j
, Qa′

j+1, . . . , Qa′
j+ℓj}. Assume that x ≤ y (the case x ≥ y is symmetric). Since xi = yi

for all i ∈ Ij , we must have P [aj−1] ⊆ Q[a′
j−1]. Thus, by the diminishing returns property

of submodular functions, F (P [aj + ℓ])−F (P [aj + ℓ− 1]) ≥ F (Q[a′
j + ℓ])−F (Q[a′

j + ℓ− 1])
for all 0 ≤ ℓ ≤ ℓj . We conclude that g(y)i − g(x)i ≤ 0 for all i ∈ Ij .

Note that the condition x ≤ y or x ≥ y is crucial in the above result, which will
require us to decompose a vector into a positive and a negative part in the final algorithm
(step 3.c of Algorithm 8.6). We now describe three useful operations that can be handled
in logarithmic time by using D2(x, y, I) and the above lemma. The first two operations
originate from the work of [CLSW17], whereas the third one is new to this work.

106

8.3 Submodular function minimization

Proposition 8.3.10. Let x, y ∈ Rn such that x ≤ y or x ≥ y, and let I = {I1, . . . , Ic} be
a c-cover of (x, y). Then, given the data structure D2(x, y, I), the following operations can
be handled with O(1), O(logn) and 0 queries respectively, and O(logn) other operations.

(1) (Subnorm) Given j ∈ [c], output ∥g(y)Ij − g(x)Ij∥1. This operation can also be
performed coherently (meaning that the mapping |j⟩|0⟩ 7→

∣∣j〉∣∣∥g(y)Ij − g(x)Ij∥1
〉

can be implemented with some garbage qubits restored to 0).

(2) (Subsampling) Given j ∈ [c], sample i ∼ Dg(y)Ij
−g(x)Ij

.

(3) (Update) Given a 1-sparse vector z ∈ Rn, update the data structure to D2(x+z, y, I ′)
where I ′ is a cover of (x+ z, y) of size at most c+ 3.

Proof. Let P be the permutation consistent with x. Observe that the rank P−1
i of any

coordinate xi can be computed in O(logn) time by using Tx (since each node in the tree
contains the size of its subtree).

(Subnorm) By definition of a c-cover, there exist aj ≤ bj such that Ij = {Paj , Paj+1, . . . ,

Pbj
}. Thus,

∑
i∈Ij

g(x)i =
∑bj

i=aj
F (P [i])− F (P [i− 1]) = F (P [bj])− F (P [aj − 1]). Since

aj and bj can be obtained in time O(logn) by using D2(x, y, I), this sum can be computed
with 1 query and O(logn) other operations, and similarly for

∑
i∈Ij

g(y)i. According to
Lemma 8.3.9, the difference |

∑
i∈Ij

g(y)i− g(x)i| is equal to the ℓ1-norm of g(y)Ij − g(x)Ij .
(Subsampling) We find the highest node ih ∈ Ij in the tree Tx, and we compute its rank

rj = P−1
ih

in time O(logn). We partition Ij into A = {Paj , Paj+1, . . . , Prj−1}, B = {Prj},
C = {Prj+1, . . . , Pbj

} and we compute the ℓ1-norm of g(y) − g(x) restricted to each set
with O(1) queries. We select A, B or C with probability ∥g(y)A−g(x)A∥1

∥g(y)Ij
−g(x)Ij

∥1
, ∥g(y)B−g(x)B∥1

∥g(y)Ij
−g(x)Ij

∥1

and ∥g(y)C−g(x)C∥1
∥g(y)Ij

−g(x)Ij
∥1

respectively. If we obtain a singleton, we terminate and output the
value it contains, otherwise we sample recursively in the corresponding subtree of Tx.

(Update) We detail the update of the c-cover (the other parts being standard to update).
Let i be the position where zi ̸= 0 (assuming z ̸= 0), and denote r = P−1

i its rank in P
before the update. First, split the set Ij = {Paj , . . . , Pr−1, i, Pr+1, . . . , Pbj

} containing i
into three parts {Paj , Paj+1, Pr−1}, {i} and {Pr+1, . . . , Pbj

}. Then, identify the rank r′

such that xPr′ > xi + zi > xPr′+1 and split the set containing Pr′ into two parts. These
operations can be done in O(logn) time. The size of the cover is increased by at most 3.

8.3.4 Importance sampling for gradient computation
We describe two algorithms for computing a noisy Lovász subgradient and a noisy Lovász
subgradient difference by using the quantum importance sampling algorithm developed in
Chapter 7 and the data structures described in the previous section. We need the next
folklore result for estimating the norm of an n-dimensional vector given query access to it.
Lemma 8.3.11 (Norm estimation). There is a quantum algorithm such that, given a
query oracle to a non-zero vector w ∈ Rn, the value m = ∥w∥∞ and two reals 0 < ϵ, δ < 1,
it outputs a norm estimate γ̃ such that |γ̃ − ∥w∥1| ≤ ϵ∥w∥1 with probability at least 1− δ.
The query complexity of this algorithm is O((

√
n/ϵ) log(1/δ)).

Proof. Consider the real-valued random variable X that takes value n|wi| with probability
1/n for each i ∈ [n]. We have E[X] = ∥w∥1 ≥ m and 0 ≤ X ≤ nm. We use the Bernoulli
estimator BernEst(X, t, 0, b, δ) (Proposition 4.4.1) with t = 2

√
n
ϵ log(1/δ) and b = nm to

obtain an estimate γ̃ such that |γ̃ − ∥w∥1| ≤
√
b∥w∥1 log(1/δ)

t + b log(1/δ)2

t2 ≤ ϵ∥w∥1 with
probability at least 1− δ in time O(t).

107

Chapter 8 Applications to Stochastic Optimization

Our first result is a gradient sampling algorithm GSample that produces a batch of K
estimates of the Lovász subgradient g(x) at any x. This is a simple but expensive procedure
that does not use the properties of the Lovász subgradient, apart from its boundedness.

1. Compute the maximum value m = ∥g(x)∥∞ with failure probability δ/3 by using
the maximum finding algorithm (Proposition 7.3.1).

2. Compute an estimate γ̃ of the norm ∥g(x)∥1 with error ϵ/3 and failure probabil-
ity δ/3 by using m and the norm estimation algorithm (Lemma 8.3.11).

3. Sample i1, . . . , iK ∼ Dg(x) with failure probability δ/3 by using the K-fold
importance sampling algorithm (Theorem 7.5.1).

4. For each k ∈ [K], compute g(x)ik and output ĝk = γ̃ sgn(g(x)ik) · eik .

Algorithm 8.4: Gradient sampling, GSample(x,K, ϵ, δ).

Proposition 8.3.12 (Gradient sampling). Consider a vector x ∈ [0, 1]n stored in the
data structure D1(x). Fix an integer K ≤ n and two reals 0 < ϵ, δ < 1. Then, the algorithm
GSample(x,K, ϵ, δ) (Algorithm 8.4) outputs K vectors ĝ1, . . . , ĝK ∈ Rn such that with
probability at least 1−δ, for all k, (1) ĝk is 1-sparse, (2)

∥∥E[ĝk|ĝ1, . . . , ĝk−1, x]−g(x)
∥∥

1 ≤ ϵ,
(3) ∥ĝk∥2 ≤ 4. The time complexity of the algorithm is O((

√
nK +

√
n/ϵ) log(1/δ)).

Proof. Let E denote the event that the first three steps of Algorithm 8.4 are successful.
We have Pr[E] ≥ 1 − δ by a union bound. For each k ∈ [K], the expected value of
the output is E[ĝk | ĝ1, . . . , ĝk−1, x, E] = E[ĝk | x, E] =

∑
i∈[n]

|g(x)i|
∥g(x)∥1

· γ̃ sgn(g(x)i)ei =
γ̃

∥g(x)∥1
g(x). Thus,

∥∥E[ĝk | ĝ1, . . . , ĝk−1, x, E]− g(x)
∥∥

1 = |γ̃ − ∥g(x)∥1| ≤ (ϵ/3)∥g(x)∥1 ≤ ϵ
by part (3) of Proposition 8.3.3. Moreover, ĝk is 1-sparse by definition of step 4, and
∥ĝk∥2 = γ̃ ≤ (1 + ϵ/3)∥g(x)∥1 ≤ 4. Step 1 takes time O(

√
n log(1/δ)), step 2 takes time

O((
√
n/ϵ) log(1/δ)), step 3 takes time O(

√
nK log(1/δ)), and step 4 takes time O(K).

Our second result is a more subtle gradient difference sampling algorithm GDSample
that estimates the difference g(y)− g(x) between the Lovász subgradients at two points
x, y when x ≤ y or x ≥ y. It uses the data structure described in Section 8.3.3. The time
complexity is only Õ(

√
c/ϵ) when the difference y − x is c-sparse.

Proposition 8.3.13 (Gradient difference sampling). Let c and c′ be two integers
such that c′ ≤ 9c. Consider two vectors x, y ∈ [0, 1]n and a c′-cover I of (x, y) stored in
the data structure D2(x, y, I) such that x−y is c-sparse, and x ≤ y or x ≥ y. Fix two reals
0 < ϵ, δ < 1. Then, the algorithm GDSample(x, y, ϵ, δ) (Algorithm 8.5) outputs a vector d̃
such that with probability at least 1−δ, (1) d̃ is 1-sparse, (2) ∥E[d̃|x, y]−(g(y)−g(x))∥1 ≤ ϵ,
(3) ∥d̃∥2 ≤ 7. The time complexity of the algorithm is Õ(

√
c/ϵ · log(1/δ)).

Proof. Let E denote the event that the first three steps of Algorithm 8.5 are successful.
We have Pr[E] ≥ 1 − δ by a union bound. The output value satisfies E[d̃ | x, y, E] =∑

j∈[c′]
wj

∥w∥1

∑
i∈Ij

|g(y)i−g(x)i|
wj

· γ̃ sgn(g(y)i − g(x)i)ei = γ̃
∥g(y)−g(x)∥1

(g(y) − g(x)) since
∥w∥1 = ∥g(y)− g(x)∥1. Thus,

∥∥E[d̃ | x, y, E]− (g(y)− g(x))
∥∥

1 ≤ (ϵ/6)∥g(y)− g(x)∥1 ≤ ϵ
by part (3) of Proposition 8.3.3. Moreover, ∥d̃∥2 ≤ (1 + ϵ/6)∥g(y)− g(x)∥2 ≤ 7. Finally,

108

8.3 Submodular function minimization

Define the c′-dimensional vector w = (
∥∥g(y)Ij − g(x)Ij

∥∥
1)j∈[c′] ∈ Rc′ to which we

have a quantum oracle access by the subnorm operation of Proposition 8.3.10.

1. Compute the maximum value m = ∥w∥∞ with failure probability δ/2 by using
the maximum finding algorithm (Proposition 7.3.1).

2. Compute an estimate γ̃ of the norm ∥w∥1 with error ϵ/6 and failure probability δ/2
by using m and the norm estimation algorithm (Lemma 8.3.11).

3. Sample j ∼ Dw by using m and the importance sampling algorithm (Proposi-
tion 7.3.2).

4. Sample i ∼ Dg(y)Ij
−g(x)Ij

by using the subsampling operation of Proposi-
tion 8.3.10.

5. Compute g(y)i − g(x)i and output d̃ = γ̃ sgn(g(y)i − g(x)i) · ei.

Algorithm 8.5: Gradient difference sampling, GDSample(x, y, ϵ, δ).

since the subnorm operation runs in time O(logn) (Proposition 8.3.10), step 1 takes time
Õ(
√
c′ log(1/δ)), step 2 takes time O((

√
c′/ϵ) log(1/δ)), step 3 takes time O(

√
c′ log(1/δ)),

and steps 4 and 5 take time Õ(1).

8.3.5 Final algorithm

We combine the two procedures described in the previous section to construct a particular
sequence (g̃(t))t of Lovász subgradient estimates on which we apply the noisy stochastic
subgradient descent method (Algorithm 8.6). The construction depends on a “loop
parameter” K that balances the cost between using GSample and GDSample. Every K
iterations, the procedure GSample returns K estimates ĝ(t,0), . . . , ĝ(t,K−1) of the Lovász
subgradient at the current point x(t). Each value ĝ(t,τ) is combined at time t+ τ , where
0 ≤ τ ≤ K − 1, with an estimate d̃(t+τ) of the subgradient difference g(x(t+τ)) − g(x(t))
computed by GDSample. The sum g̃(t+τ) = ĝ(t,τ) + d̃(t+τ) is our estimate of g(x(t+τ)). The
sparsity of x(t+τ) − x(t) increases linearly in τ , which requires to reuse GSample every K
iterations to restore it to a small value. We show in the next proposition that (g̃(t))t is
indeed a sequence of noisy subgradients.

Proposition 8.3.14. The sequences (g̃(t))t and (x(t))t defined in Algorithm 8.6 satisfy with
probability at least 1− ϵ/4 that (1) ∥E

[
g̃(t) ∣∣ x(t)]− g(x(t))∥1 ≤ ϵ0 + 2ϵ1, (2) ∥g̃(t)∥2 ≤ 18

and (3) x(t+1) = argminx∈[0,1]n∥x− (x(t) − ηg̃(t))∥2.

Proof. Let E denote the event that all calls to GSample and GDSample are successful in
Algorithm 8.6. We have Pr[E] ≥ 1− 2Tδ ≥ 1− ϵ/4 by a union bound. We carry out the
analysis of the algorithm by assuming that E holds. For the ease of notation, we omit to
write the conditioning on E below.

Fix t and τ = (t mod K). According to steps 3.b and 3.c of the algorithm, we have{
g̃(t) = ĝ(t,0) if τ = 0
g̃(t) = ĝ(t−τ,τ) + d̃

(t)
+ + d̃

(t)
− otherwise.

109

Chapter 8 Applications to Stochastic Optimization

1. Set K = ⌈ϵ
√
n⌉, T =

⌈722n
ϵ2

⌉
, ϵ0 = ϵ

4 , ϵ1 = ϵ
8 , η =

√
n

182T and δ = ϵ
8T .

2. Set x(0) = 0n ∈ [0, 1]n.

3. For t = 0, . . . , T :
a) Set τ = (t mod K).

Computation of the subgradient estimate g̃(t):
b) If τ = 0: sample ĝ(t,0), . . . , ĝ(t,K−1) by using the gradient sampling algo-

rithm GSample(x(t),K, ϵ0, δ). Set g̃(t) = ĝ(t,0).

c) If τ ≠ 0: sample d̃
(t)
+ by using the gradient different sampling algo-

rithm GDSample
(
x(t−τ), x(t−τ) + z

(t−1)
≥0 , ϵ1, δ

)
and d̃

(t)
− by using the gradi-

ent different sampling algorithm GDSample
(
x(t−τ) + z

(t−1)
≥0 , x(t), ϵ1, δ

)
. Set

g̃(t) = ĝ(t−τ,τ) + d̃(t) where d̃(t) = d̃
(t)
+ + d̃

(t)
− .

Update of the position to x(t+1):
d) Compute x(t+1) = x(t) + u(t) where for each i ∈ [n],

u
(t)
i =


−x(t)

i if ηg̃(t)
i > x

(t)
i

1− x(t)
i if ηg̃(t)

i < −(1− x(t)
i)

−ηg̃(t)
i otherwise.

Update of the position difference to z(t) = x(t+1) − x(t−τ):
e) If τ = 0, set z(t) = u(t).
f) If τ ̸= 0, set z(t) = z(t−1) + u(t).

4. Output x̄ = 1
T

∑T−1
t=0 x(t).

Algorithm 8.6: Subgradient descent algorithm for the Lovász extension f .

We first study the expectation of the term ĝ(t−τ,τ), which is generated by the GSample
procedure. By the law of total expectation, we have that

E[ĝ(t−τ,τ) | x(t)] = E
[
E[ĝ(t−τ,τ) | (ĝ(t−τ,k))k<τ , x(t−τ), x(t)]

∣∣∣ x(t)
]

= E
[
E[ĝ(t−τ,τ) | (ĝ(t−τ,k))k<τ , x(t−τ)]

∣∣∣ x(t)
]

since x(t) does not convey any information about the output of GSample(x(t−τ),K) when
(ĝ(t−τ,k))k<τ and x(t−τ) are known. Consequently, by using the triangle inequality and
Proposition 8.3.12,∥∥E[ĝ(t−τ,τ) − g(x(t−τ)) | x(t)]

∥∥
1 ≤ E

[∥∥E[ĝ(t−τ,τ) | (ĝ(t−τ,k))k<τ , x(t−τ)]− g(x(t−τ))
∥∥

1

∣∣∣ x(t)
]

≤ ϵ0.

We now study the expectation of the term d̃(t) = d̃
(t)
+ + d̃(t)

− computed with the GDSample

110

8.3 Submodular function minimization

procedure when τ ̸= 0. We have that,

E[d̃(t) | x(t)] = E
[
E[d̃(t)

+ | x(t−τ), z
(t−1)
≥0 , x(t)] + E[d̃(t)

− | x(t−τ) + z
(t−1)
≥0 , z

(t−1)
≤0 , x(t)]

∣∣∣ x(t)
]

= E
[
E[d̃(t)

+ | x(t−τ), z
(t−1)
≥0] + E[d̃(t)

− | x(t−τ) + z
(t−1)
≥0 , z

(t−1)
≤0]

∣∣∣ x(t)
]

where the first line is by the law of total expectation, and the second line is by independence
between random variables. Moreover, by Proposition 8.3.13, ∥E[d̃(t)

+ | x(t−τ), z
(t−1)
≥0] −

(g(x(t−τ) + z
(t−1)
≥0) − g(x(t−τ)))∥1 ≤ ϵ1 and ∥E[d̃(t)

− | x(t−τ) + z
(t−1)
≥0 , z

(t−1)
≤0] − (g(x(t)) −

g(x(t−τ) + z
(t−1)
≥0))∥1 ≤ ϵ1 (where we used that x(t) = x(t−τ) + z

(t−1)
≥0 + z

(t−1)
≤0). Thus, by

the triangle inequality,

∥E[d̃(t) − (g(x(t))− g(x(t−τ))) | x(t)]∥1 ≤ 2ϵ1.

This concludes the proof of the first part of the theorem since ∥E[g̃(t) | x(t)]− g(x(t))∥1 =
∥E[ĝ(t,0) − g(x(t)) | x(t)]∥1 ≤ ϵ0 when τ = 0, and ∥E[g̃(t) | x(t)] − g(x(t))∥1 ≤ ∥E[ĝ(t−τ,τ) −
g(x(t−τ)) |x(t)]∥1 +∥E[d̃(t)− (g(x(t))−g(x(t−τ))) |x(t)]∥1 ≤ ϵ0 +2ϵ1 when τ ̸= 0. The second
part of the proposition is a direct application of the triangle inequality together with
∥ĝ(t−τ,τ)∥2 ≤ 4 and ∥d̃(t)

+ ∥2, ∥d̃
(t)
− ∥2 ≤ 7 (Propositions 8.3.12 and 8.3.13). The last part of

the proposition is obtained by an easy direct calculation showing that argminx∈[0,1]n∥x−
(x(t) − ηg̃(t))∥2 = x(t) + u(t).

The above result shows that Algorithm 8.6 is a (noisy) subgradient descent for the
Lovász extension. Consequently, the result of Proposition 8.3.5 can be applied to the
output x̄ of the algorithm. Since we aim for a subquadratic running time in n, we must
update the vectors x(t), g̃(t), u(t) and z(t) in time less than their dimensions. This is done by
maintaining two instances of the data structure D2, one for the pair (x(t−τ), x(t−τ) + z

(t−1)
≥0)

(needed for d̃(t)
+), and the other one for the pair (x(t−τ) + z

(t−1)
≥0 , x(t)) (needed for d̃(t)

−).
Since the outputs of GSample and GDSample are 1-sparse, most of the coordinates do not
change between two consecutive iterations. Thus, the vectors x(t) and g̃(t) can be stored
in a compact manner and the data structures can be updated at a negligible cost.

Fact 8.3.15. At iteration t of the algorithm: g̃(t) and u(t) are 3-sparse, z(t)
≥0 and z(t)

≤0 are
3(τ + 1)-sparse, if τ ̸= 0 then z

(t−1)
≥0 and z

(t)
≥0 (resp. z

(t−1)
≤0 and z

(t)
≤0) can differ only at

positions where u(t) is non-zero.

Proposition 8.3.16. One can maintain throughout Algorithm 8.6 two data structures
D2(x(t−τ), x(t−τ) +z

(t−1)
≥0 , I) and D2(x(t−τ) +z

(t−1)
≥0 , x(t), I ′), where I and I ′ are two covers

of size at most 9τ and 27τ respectively. The update time at each iteration is O(logn).

Proof. This is a direct consequence of Fact 8.3.15 and Proposition 8.3.10. The update
from z

(t−1)
≥0 to z(t)

≥0 (resp. z(t−1)
≤0 to z(t)

≤0) is 3-sparse, thus each iteration increases the size of
the cover associated with (x(t−τ), x(t−τ) + z

(t−1)
≥0) by 9, and the size of the cover associated

with (x(t−τ) + z
(t−1)
≥0 , x(t)) = (x(t−τ) + z

(t−1)
≥0 , x(t−τ) + z

(t−1)
≥0 + z

(t−1)
≤0) by 27. When τ = 0,

the sizes are reset to at most 9 and 27 respectively.

We execute Algorithm 8.6 with the two data structures given in Proposition 8.3.16
to obtain our final algorithm. The properties of this algorithm are summarized in the
next theorem. For simplicity in the proof, we assume that the error parameter ϵ is larger
than n−1/6. This assumption is removed in [HRRS19].

111

Chapter 8 Applications to Stochastic Optimization

Theorem 8.3.17 (Submodular minimization). There exists a quantum algorithm such
that, given a submodular function F : 2V → [−1, 1] and a real ϵ ∈ (1

n1/6 , 1), it computes a
set S̄ such that E[F (S̄)] ≤ minS⊆V F (S) + ϵ in time Õ(n5/4/ϵ5/2).

Proof. Let E denote the event that Algorithm 8.6 is successful. We have Pr[E] ≥ 1− ϵ/4 by
Proposition 8.3.14. If E holds then (g̃(t))t is a sequence of ϵ-noisy subgradient estimate for
the Lovász extension f , where ϵ = ϵ0 +2ϵ1 and (x(t))t obeys the subgradient descent update
rule x(t+1) = argminx∈[0,1]n∥x− (x(t)−ηg̃(t))∥2. Moreover, ∥x−x⋆∥2 ≤

√
n, ∥x−x⋆∥∞ ≤ 1

for all x ∈ [0, 1]n, and ∥g̃(t)∥2 ≤ 18. Consequently, by property of the noisy stochastic
subgradient descent method (Proposition 8.3.5), we have that

E[f(x̄) | E] ≤ f(x⋆) + 18
√
n/T + ϵ0 + 2ϵ1 ≤ f(x⋆) + 3ϵ/4.

Thus, E[f(x̄)] = Pr[E] ·E[f(x̄) | E] + (1−Pr[E]) ·E[f(x̄) | E] ≤ 1 · (f(x⋆) + 3ϵ/4) + ϵ/4 · 1 ≤
f(x⋆) + ϵ. We can convert x̄ into a set S̄ ⊆ V such that E[F (S̄)] ≤ minS⊆V F (S) + ϵ with
O(n) queries and O(n logn) other operations by using Proposition 8.3.3.

We now analyze the run time of Algorithm 8.6 when the data structures described in
Proposition 8.3.16 are maintained throughout the algorithm. The total run time of steps
3.b and 3.c is Õ

(
T
K (
√
nK+

√
n
ϵ +

∑K
τ=1

√
τ
ϵ)·log(1/δ)

)
= Õ(n5/4/ϵ5/2) by Proposition 8.3.12

and Proposition 8.3.13. The vectors manipulated by the algorithm are stored in the two
data structures described in Proposition 8.3.16 and in a sparse representation whose size is
proportional to the number of non-zero entries. The cost of updating this representation
is O(logn) at each iteration.

8.4 Discussion
We described other results related to the Hedge algorithm in [RHR+21], such as a quantum
analog of the Sparsitron algorithm for learning generalized linear models or Ising models.

We do not know of any quantum algorithm that achieves a quantum speedup over the
best classical algorithms for approximate [ALS20] or exact [LSW15] submodular function
minimization. We do not know either of any nontrivial lower bound for these problems
in the quantum query model. Classically, the best known lower bound is Ω(n/ logn) for
exact minimization [Har08], which is proved by a reduction from the Connectivity problem
with cut queries (the cut function is a submodular function). However, Lee, Santha and
Zhang [LSZ21] recently showed that deciding if a graph is connected requires only O(log6 n)
quantum cut queries. They left as an open problem whether the more general Min-cut
problem is hard to solve with a quantum cut oracle. A related question is to understand
the power of quantum oracles that return global information (e.g. the size of a cut), as
opposed to those that only reveal local information about the input (such as the general
graph model used in Chapter 6). We refer the reader to [LSZ21; MS20; CHL21] for some
recent results in this direction.

112

Part IV

Quantum Algorithms with
Limited Memory

113

9
Frequency Moments and Linear Sketches

in the Data Stream Model

This chapter is based on the following paper:

[HM19] Y. Hamoudi and F. Magniez. “Quantum Chebyshev’s Inequality and Appli-
cations”. In: Proceedings of the 46th International Colloquium on Automata,
Languages, and Programming (ICALP). 2019, 69:1–69:16.

9.1 Introduction
The data stream model addresses the fundamental problem of processing a large set of data
that is not available for direct access, such as network traffic or a remote database. In this
model, the input to a streaming algorithm is represented as a long and uncontrolled stream
of information whose size exceeds the storage capacity of the algorithm. The elements of
the stream must be processed as they arrive, which requires on-the-fly identification of
the information to be kept in memory. The performances of a streaming algorithm are
often measured with respect to three parameters: the memory size S of the algorithm,
the number P of passes that can be made over the stream, and the update time T spent
on each element. The interplay between these three quantities can change drastically if
the streaming algorithm is equipped with a quantum memory. Indeed, the ability to store
information on quantum bits can sometimes decrease the memory size requirement by
a polynomial [Mon16] or an exponential [Gal09; GKK+09; Mon11] factor in the input
length. Such algorithms are of great interest to understand the power of small quantum
computers. Nevertheless, very few quantum algorithmic techniques are known in the data
stream model due to the sequential access to the input. In this chapter, we describe a
new tool for designing quantum streaming algorithms, and we apply it to the problem of
estimating the frequency moments of a stream.

The most studied problems in the streaming literature take place in the turnstile model,
where a vector x that is initially set to 0n is incremented by a stream of updates xi ← xi+λ
described by the pairs (i, λ) ∈ [n]× Z. The goal is to compute some statistics of the final
vector x by using much less memory than it would take to store x entirely. Remarkably,
under certains conditions, one can show [LNW14; AHLW16] that any algorithm in this
setting can be implemented efficiently by maintaining in memory a linear sketch M · x of
the current vector x, for some input-independent matrix M . We raise the question to what
extent such linear sketch algorithms can be used as subroutines of quantum streaming
algorithms. It is well known [Ben73; Ben89] that any classical algorithm can be made
reversible, and therefore implemented by a unitary map U . Nevertheless, as noticed by
Montanaro [Mon16], the standard reversibility techniques may not be space-efficient in the

115

Chapter 9 Frequency Moments and Linear Sketches in the Data Stream Model

data stream model. We exploit the properties of the linear sketch algorithms to circumvent
this problem, and we describe a general quantum streaming algorithm for simulating a
unitary U that encodes the linear sketch, and its inverse U−1, in a space-efficient way.

We apply our simulation result to the problem of estimating the frequency moment
Fk(x) =

∑
i∈[n]|xi|k of order k ≥ 3 with relative error ϵ ∈ (0, 1) in the turnstile model.

This question and its variants have been studied since the early ages of the data stream
model [Mor78; FM85; Fla85; AMS99], and it led to the development of some of the most
fundamental techniques in the streaming literature [AMS99; BJKS04; IW05; MW10]. The
optimal memory size S needed to estimate Fk(x) with P passes in the classical setting is
S = Θ̃(n1−2/k/P) [MW10; WZ12]. We describe a new quantum streaming algorithm that
uses a smaller memory of size S = Õ(n1−2/k/P 2). Our approach is based on a particular
type of streaming algorithms, called the Lp samplers, that received a lot of interest in recent
years [CJ19]. An Lp sampler returns an index i ∈ [n] with a probability that is proportional
to the value of |xi|p. We use our simulation result on a linear sketch L2 sampler [MW10;
AKO10] to construct a q-random variable that estimates the value of Fk(x). We then
adapt the quantum sub-Gaussian estimator of Chapter 4 to the multi-pass data stream
model in order to estimate the expectation of that q-random variable.

9.1.1 Related work

The problem of approximating the frequency moment Fk(x) of order k ≥ 3 has been
studied first in the seminal work of Alon, Matias, and Szegedy [AMS99]. The authors
described a classical single-pass streaming algorithm using O(n1−1/k logn) memory bits
(where we omit the dependence on ϵ) in the positive-update model. A long series of
improvements in the more general turnstile model culminated into the optimal memory
size of Θ(n1−2/k logn) [LW13; Gan15] for classical single-pass algorithms, and the nearly
optimal pass-memory tradeoff of PS = Θ̃(n1−2/k) [MW10; AKO10; WZ12] for classical P -
pass algorithms with memory size S. For completeness, we note that the moments of order
k < 3 can be estimated by single-pass algorithms with logarithmic size memory [AMS99;
KNW10b; KNW10a], whereas estimating F∞ = maxi|xi|k requires a linear amount of
memory [AMS99].

The frequency moments have received little attention in the quantum streaming model.
Montanaro [Mon16] described an algorithm for k ≥ 3 that uses a quantum memory of size
S = O(logn+ log(n1−1/k/ϵ)) and makes P = Õ(n1−1/k/ϵ) passes over the stream. This is
better than the best classical streaming algorithm with the same number of passes when ϵ is
sufficiently small. He also proved a pass-memory lower bound of PS ≥ Ω(1/ϵ+logn) when
ϵ ≥ 1/

√
n. Jain, Radhakrishnan and Sen [JRS03] proved two lower bounds for the L∞ and

the multi-party Set Disjointness problems in the bounded-round quantum communication
model. Their results imply that PS ≥ Ω

(
n1−2/k

P 3n(P −1)/k

)
and PS ≥ Ω

(
n1−2/k

P 2n1/k

)
(where we

omit the dependence on ϵ) by a standard reduction [BJKS04] to the Frequency Moments
problem. Thus, no significant quantum speedup is possible in the single-pass regime.
Finally, the related problem of approximating the frequency moments (or the Rényi
entropy) in the quantum query model has been studied in [Mon16; LW19].

A few other problems have been studied in the quantum streaming model. Le Gall [Gal09]
proved a pass-memory tradeoff of P 2S = Θ̃(n) for a variant of the Disjointness problem,
whereas the best classical streaming algorithm satisfies PS = Θ(n). Similarly, for the
Dyck(2) problem, there is a pass-memory lower bound of P 3S = Ω(

√
n) [NT17] in the

quantum model, and a tradeoff of PS = Θ̃(
√
n) [MMN14; CCKM13; JN14] in the classical

one. Finally, there exist exponential separations [Gal09; GKK+09; Mon11] in memory size

116

9.1 Introduction

between the classical and the quantum single-pass models for some artificial problems.

9.1.2 Contributions and organization

We first present the turnstile variant of the data stream model in Section 9.2, and we define
what a randomized or quantum streaming algorithm is. Next, we introduce the notion
of reversible streaming algorithm in Section 9.3.1 and we prove that the computation
performed by such an algorithm can be represented as a unitary transformation U such
that both U and U−1 can be simulated efficiently by a quantum streaming algorithm
(Proposition 9.3.3). We show in Section 9.3.2 that any linear sketch algorithm can be
turned into a reversible streaming algorithm with a limited overhead on memory.

We apply the above simulation results to the problem of estimating the frequency
moment Fk(x) in Section 9.4. We first describe a classical linear sketch algorithm for
estimating Fk(x) (Proposition 9.4.2) based on an L2 sampler (Proposition 9.4.1). We
then turn this algorithm into a particular quantum streaming algorithm that allows us
to estimate Fk(x) by using the quantum sub-Gaussian estimator of Chapter 4. Our final
result is summarized in the next theorem.

Theorem 9.4.3 (Restated). For any integer P ≥ 1, there exists a P -pass streaming
algorithm with the following properties. Given an input stream in the turnstile model with
non-zero final vector x ∈ Zn, an integer k ≥ 3 and a real ϵ ∈ (10

n , 1), the algorithm uses a
quantum memory of size

Õ

(
n1−2/k

(ϵP)2

)

and it outputs an estimate F̃k such that |F̃k −Fk(x)| ≤ ϵFk(x) with probability at least 3/4.

9.1.3 Proof overview

Our starting point is the following classical streaming algorithm for estimating the
frequency moment Fk(x) =

∑
i∈[n]|xi|k, which is optimal up to a polylogarithmic factor.

Consider the unbiased estimator of Fk(x) that takes value F2(x)|xi|k−2 with probability
|xi|2
F2(x) for each i ∈ [n]. The so-called L2 sampler algorithms [MW10; AKO10; CJ19] can
output one (approximate) sample from this estimator by doing one pass over the input
stream and by using polylogn bits of memory (Proposition 9.4.1). The empirical mean F̃k
of O(n1−2/k/ϵ2) such samples satisfies the objective bound |F̃k − Fk(x)| ≤ ϵFk(x) with
high probability by Chebyshev’s inequality (Proposition 9.4.2). The computation of F̃k can
be distributed over P passes, for any value of P ≥ 1, which leads to a streaming algorithm
with memory size Õ

(
n1−2/k

P

)
(where we omit the dependence on ϵ). In comparison, the

seminal AMS algorithm [AMS99] on which is based Montanaro’s work [Mon16] uses an L1
sampler to obtain F1(x)|xi|k−1 with probability |xi|

F1(x) . The latter estimator is easier to
implement but it has a larger variance.

The quantum sub-Gaussian estimator developed in Chapter 4 (Theorem 4.4.2) can
estimate the expectation of a random variable X quadratically faster than it is possible
with the empirical mean estimator, under certain conditions. The main requirement is to
have access to a unitary transformation U , and its inverse U−1, such that U |0⟩ encodes the
distribution of X in superposition. In order to apply the quantum sub-Gaussian estimator
to the random variable that takes value F2(x)|xi|k−2 with probability |xi|2

F2(x) , we transform
a classical L2 sampler [AKO10] into a unitary algorithm U such that one use of U or U−1

117

Chapter 9 Frequency Moments and Linear Sketches in the Data Stream Model

can be simulated by a quantum streaming algorithm that makes one pass over the input
stream. To this end, it is well known that any classical circuit can be made reversible, and
therefore represented by a unitary map, with a certain overhead on the time and space
complexities [Ben73; Ben89]. Nevertheless, the sequential nature of the data stream model
raises some additional challenges here. First, the use of garbage bits to store the history
of the computation as in [Ben73] can cause the size of the memory to grow linearly with
the length of the stream. The recursive simulation technique described in [Ben89] is space
efficient, but it would require breaking the stream into segments that must be repeated
many times. Secondly, the reverse computation of a reversible circuit is usually done
by running the circuit backward. In the case of a streaming algorithm, it would require
processing the input stream in the reverse direction, which is not permitted by our model.

We address these issues by using the fact that the L2 sampler described in [AKO10] is
a linear sketch algorithm. A linear sketch algorithm (Section 9.2) is a streaming algorithm
with the additional property that the content of the memory depends linearly on the input
stream. In particular, the final memory of a linear sketch algorithm is invariant under
any permutation of the order of arrival of the stream. We prove that any such algorithm
can be made reversible efficiently (Proposition 9.3.5), which allows us to simulate the
related unitary transformation with a quantum streaming algorithm (Proposition 9.3.3).
We finally use the quantum sub-Gaussian estimator on this unitary to estimate Fk(x)
(Theorem 9.4.3). We cannot use the full power of the sub-Gaussian estimator when the
number P of passes is small (since one pass over the stream allows us to perform only one
quantum experiment). In this case, we first decrease the variance of the original random
variable by using the empirical mean estimator (Proposition 9.4.2).

9.2 Data stream model
We refer the reader to [Mut05] for a general introduction to the classical data stream
model. In this chapter, we consider the data stream model with general updates (also
called the turnstile model), where the objective is to compute some function f : Zn → Z of
a vector x ∈ Zn that is described by a stream u(1), u(2), . . . , u(t) of t updates. An update is
a pair (i, λ) ∈ [n]× Z that represents the addition of a value λ to the i-th coordinate of x.
More formally, we denote by x(0) ∈ Zn the all-0 vector, and we define the intermediate
vector x(j) for j ∈ [t] as

x(j) = x(j−1) + λjeij (9.1)

where u(j) = (ij , λj) is the j-th update of the stream and eij ∈ Zn is the indicator vector
with a 1 at position ij . The input to the function f is the final vector x = x(t). We assume
that there exists a universal constant p such that the length t of the stream is at most np,
and the intermediate vectors satisfy x(j) ∈ {−np,−np + 1, . . . , np}n at all times of the
stream. The space bounds are measured in terms of the number of (qu)bits of memory.

Randomized streaming algorithm. We describe a particular type of randomized stream-
ing algorithm, where the random bits are placed in the memory of the algorithm at
the beginning of the computation. Given three integers S, Sseed and Scomp such that
S = Sseed + Scomp, a randomized streaming algorithm with memory size S is defined as
a family A = {Ain

r }r ∪ {A
upd
r,u }r,u ∪ {Aout

r }r of classical deterministic circuits operating
on Scomp bits, where the index r ranges over the set {0, 1}Sseed of random seeds, and the
index u ranges over the set [n] × Z of updates. The memory of A is partitioned into
two parts: a seed register of size Sseed and a computation register of size Scomp. Given

118

9.3 Quantum simulation of classical streaming algorithms

an integer P ≥ 1, the P -pass randomized streaming algorithm A processes a stream
u(1), . . . , u(t) as follows.

1. (Preprocessing) Before the stream arrives, the seed register is filled with a random
string r, the circuit Ain

r is applied to the computation register filled with zeros.

2. (Update) The algorithm receives the t updates of the stream in a chronological order
repeated P times (corresponding to P passes). For each update u, the circuit Aupd

r,u

is applied to the computation register.

3. (Postprocessing) At the end of the stream, the circuit Aout
r is applied to the compu-

tation register. The output is contained in some predetermined bits of the register.

The update time of A is the largest gate complexity of a circuit in the family A (including
the circuits used for the preprocessing and postprocessing steps).

Quantum streaming algorithm. A quantum streaming algorithm with memory size S is
similarly defined as a family Q = {Qin} ∪ {Qupd

u }u ∪ {Qout} of quantum circuits operating
on S qubits (see Figure 9.1). There is no seed register and seed index r since the algorithm
can prepare its own random bits by measuring the |+⟩ state. The input stream is processed
in the same way as in the classical setting. The output is obtained by measuring some
predetermined qubits of the final memory in the computational basis. We say that Q is
a unitary streaming algorithm if all circuits in Q are unitary circuits (i.e. they are only
made of unitary quantum gates, with no intermediate measurements).

.

.

|0⟩⊗S Qin Qupd
u(1) Qupd

u(t) Qupd
u(1) Qout

Stream

First pass

Figure 9.1: An illustration of a multi-pass quantum streaming algorithm with memory
size S. The choice of which update circuits Qupd

u to apply is controlled on the
input stream (represented by the double line).

9.3 Quantum simulation of classical streaming algorithms
We study the simulation of two types of classical streaming algorithms by quantum unitary
streaming algorithms. In this section, we only consider single-pass algorithms.

9.3.1 Reversible streaming algorithms
We first consider the simulation of classical streaming algorithms having reversible prop-
erties. We want both the original algorithm and its inverse to be efficiently simulated
by a unitary streaming algorithm. The inverse will be useful later on to apply quantum
subroutines (such as the quantum sub-Gaussian estimator of Chapter 4). We use the
following definitions regarding classical deterministic circuits.

Definition 9.3.1. We consider the classical counterpart of the quantum circuit model
defined in Section 3.1. Given a deterministic circuit C operating on a memory of size S,

119

Chapter 9 Frequency Moments and Linear Sketches in the Data Stream Model

we let C(m) ∈ {0, 1}S denote the state of the final memory when C is applied to the initial
memory m ∈ {0, 1}S . We say that C is reversible if it only uses reversible elementary gates
(e.g. the Toffoli gate), and we let C−1 denote the inverse circuit obtained by running C
backward. Given two circuits C and C′ operating on the same memory space, we let C ∥ C′

denote the concatenated circuit that runs C first and then C′.

The computation performed by a (single-pass) classical streaming algorithm A with
respect to a stream u(1), . . . , u(t) and a random seed r corresponds to the circuit

Ain
r ∥ A

upd
r,u(1) ∥ · · · ∥ A

upd
r,u(t) ∥ Aout

r . (9.2)

If each circuit in A is reversible, then the reverse circuit of the entire computation is(
Aout
r

)−1 ∥
(
Aupd
r,u(t)

)−1 ∥ · · · ∥
(
Aupd
r,u(1)

)−1 ∥
(
Ain
r

)−1
. (9.3)

It is generally unclear whether such a computation can be implemented efficiently as a
streaming algorithm running on the same input stream u(1), . . . , u(t) (it would be easy if
the stream arrives in the reverse order). This motivates our following notion of reversible
streaming algorithm, where the reverse computation does not require processing the stream
in the reverse order. We include garbage bits in the definition since they are needed in
most reversible simulation techniques. As is standard, these bits must be restored to 0 at
the end of the computation.

Definition 9.3.2 (Reversible streaming algorithm). A classical streaming algo-
rithm A is reversible if it satisfies the following conditions. Let Scomp be the size of the
computation register of A. There exist two integers c, g ≥ 0 such that Scomp = c+ g and,

(1) (Step reversible) Each circuit in A is reversible.

(2) (Garbage restoring) For any circuit C in the family A and any memory m ∈ {0, 1}c,
we have C(m, 0g) = (m′, 0g) for some m′ ∈ {0, 1}c that depends on C and m.

(3) (Order independent) For any two updates u, v, any seed r and any memorym ∈ {0, 1}c,
we have

(
Aupd
r,u ∥ Aupd

r,v

)
(m, 0g) =

(
Aupd
r,v ∥ Aupd

r,u

)
(m, 0g).

The state of a reversible streaming algorithm is invariant under any permutation of the
order of arrival of the stream (if the garbage bits are initially set to 0). Thus, the circuit of
Equation (9.3) computes the same output as

(
Aout
r

)−1∥
(
Aupd
r,u(1)

)−1∥· · ·∥
(
Aupd
r,u(t)

)−1∥
(
Ain
r

)−1

if A is reversible. The latter circuit can be implemented by processing the input stream in
the direct order. As a result, we show that the computation performed by a reversible
streaming algorithm can be represented as a unitary transformation U such that one use of
U or U−1 is simulated by a unitary streaming algorithm making one pass over the stream.

Proposition 9.3.3. Given a reversible streaming algorithm A with memory size S, there
exist two integers q, g ≥ 0 such that S = q + g and two unitary streaming algorithms Q, Q
with memory size S that satisfy the following conditions. For any stream u(1), . . . , u(t)

there is a unitary operator U acting on q qubits such that,

(1) If (U |0q⟩)|0g⟩ is measured in the computational basis, then the measurement outcome
follows the same distribution as the final memory of A when it is run on u(1), . . . , u(t).

(2) If Q is run on the stream u(1), . . . , u(t) with the initial memory being |ψ⟩|0g⟩ ∈ C2S ,
then the state of the memory before applying the final measurement is (U |ψ⟩)|0g⟩.

120

9.3 Quantum simulation of classical streaming algorithms

(3) If Q is run on the stream u(1), . . . , u(t) with the initial memory being |ψ⟩|0g⟩ ∈ C2S ,
then the state of the memory before applying the final measurement is (U−1|ψ⟩)|0g⟩.

Proof. Let A be a reversible streaming algorithm with memory size S. Let Sseed and Scomp
denote the size of the random seed and computation registers respectively. Let c, g ≥ 0 be
the two integers provided by Definition 9.3.2 such that Scomp = c+ g. We set q = Sseed + c.

We define the unitary streaming algorithm Q as follows. First, we extend by linearity the
circuits inA to unitary transformations controlled on a seed register |r⟩. Formally, we define
the quantum circuits Q̂in,Qupd

u ,Qout that act on each basis state |r⟩|m⟩ ∈ C2Sseed ⊗C2Scomp

as follows,

Q̂in(|r⟩|m⟩) = |r⟩|Ain
r (m)⟩, Qupd

u (|r⟩|m⟩) = |r⟩|Aupd
r,u (m)⟩, Qout(|r⟩|m⟩) = |r⟩|Aout

r (m)⟩.

Next, we let Qin denote the quantum circuit that first applies a Hadamard transform
to the first Sseed qubits of the memory, and then that applies Q̂in to the entire memory.
The obtained unitary streaming algorithm Q = Qin ∪ {Qupd

u }u ∪ {Qout} is represented in
Figure 9.2.

. . .

. . .

. . .

. . .

Sseed

c

g

|ψ⟩
H

U |ψ⟩

Ain
r Aupd

r,u(1) Aupd
r,u(t) Aout

r

|0g⟩ |0g⟩

Stream

Qin Qupd
u(1) Qupd

u(t) Qout

Figure 9.2: An illustration of the unitary streaming algorithm Q implementing U .

Given a stream u(1), . . . , u(t), we let U denote the operation applied by the unitary
circuit Qin ∥ Qupd

u(1) ∥ · · · ∥ Q
upd
u(t) ∥ Qout on the first q qubits of the memory when the last g

qubits are initially set to 0. Part (2) of the proposition is a direct consequence of this
definition, and part (1) is obtained by observing that,

(U |0q⟩)|0g⟩ = 1
2Sseed/2

∑
r∈{0,1}2Sseed

|r⟩
∣∣∣(Ain

r ∥ A
upd
r,u(1) ∥ · · · ∥ A

upd
r,u(t) ∥ Aout

r

)(
0Scomp

)〉
.

The unitary streaming algorithm Q is defined by taking Qin = (Qout)−1, Qupd
u = (Qupd

u)−1

and Qout = (Qin)−1. The part (3) of the proposition is deduced from the observation
that Qupd

u (|r⟩|m⟩) = |r⟩|(Aupd
r,u)−1(m)⟩ for any basis state |r⟩|m⟩, and from the order

independent property of the reversible streaming algorithms.

9.3.2 Linear sketch algorithms

A linear sketch algorithm is a particular type of randomized streaming algorithm that
updates its memory according to some linear function. Most of the algorithms known
in the turnstile model are linear sketches [LNW14; AHLW16]. We show that any such
algorithm can be turned into a reversible streaming algorithm with a limited overhead on

121

Chapter 9 Frequency Moments and Linear Sketches in the Data Stream Model

the space complexity. As a result, the computation performed by a linear sketch algorithm
can be efficiently simulated by a unitary streaming algorithm.

We first define what a linear sketch is. Here, we interpret the Scomp bits contained in
the computation register of the algorithm as the binary encoding of an integer-valued
vector m ∈ Zs2w with word size w, where w, s are two fixed integers such that Scomp = ws.

Definition 9.3.4 (Linear sketch). A classical streaming algorithm A with memory size
S = Sseed + Scomp is a linear sketch if there exist two integers w, s such that Scomp = ws
and a family {Mr}r of matrices Mr ∈ Zs×n2w that satisfy the following property. Given a
vector m ∈ Zs2w loaded in the computation register, the result of applying Aupd

r,u to m is

Aupd
r,u (m) = m+Mr · (λei) mod 2w

for any seed r ∈ {0, 1}Sseed and any update u = (i, λ) ∈ [n]× Z.

The use of a preprocessing circuit Ain
r is unnecessary here. By linearity, the state

of the computation register is Mr · x(j) mod 2w after the linear sketch algorithm has
processed the first j updates of the stream (where x(j) is the intermediate vector defined
in Equation (9.1)). We use the linearity property to transform any linear sketch algorithm
into a reversible streaming algorithm.

Proposition 9.3.5. Any linear sketch algorithm with memory size S and update time T
can be converted into a reversible streaming algorithm with memory size O(S log(T)) and
update time O(T 2) that computes the same function as the original algorithm.

Proof. Let A be a linear sketch algorithm with memory size S = Sseed +Scomp and update
time T . Consider the family {Mr}r of matrices Mr ∈ Zs×n2w provided by Definition 9.3.4
with respect to A. Note that the transformation performed by each update circuit Aupd

r,u

is bijective. Thus, we can apply the input-erasing reversibility technique from [Ben89,
Theorem 2] to obtain a new family of reversible circuits Bupd

r,u that operate on a computation
register of size Scomp + g with g = O(S log T) garbage bits such that,

Bupd
r,u (m, 0g) =

(
Aupd
r,u (m) mod 2w, 0g

)
for any m ∈ Zs2w . We have

(
Bupd
r,u ∥ Bupd

r,v

)
(m, 0g) = (m+Mr · (λei + λ′ei′) mod 2w, 0g) for

any two updates u = (i, λ) and v = (i′, λ′) by Definition 9.3.4. The right-hand side of this
expression is unchanged if we permute the updates u and v. Thus, the update circuits
Bupd
r,u satisfy the order independent property of Definition 9.3.2.
The postprocessing circuits Aout

r are not necessarily bijective. Thus, we instead use
the input-saving reversibility technique from [Ben89, Theorem 1] to obtain a family of
reversible circuits Bout

r that operate on a computation register of size 2Scomp + g with
g = O(S log T) garbage bits such that,

Bout
r (m′,m, 0g) =

(
m′ ⊕Aout

r (m) mod 2w,m, 0g
)

for any m,m′ ∈ Zs2w (the original input m is placed in the second coordinate here). We
extend the update circuits Bupd

r,u to act as the identity on the first Scomp bits of that new
computation register, and we take Bin

r,u to be the identity since no preprocessing circuit is
needed for linear sketch algorithms. The streaming algorithm B = {Bin

r }r ∪ {B
upd
r,u }r,u ∪

{Bout
r }r satisfies the conditions of Definition 9.3.2 with q = 2Scomp and g, hence it is

reversible. Moreover, the first Scomp bits of its computation register contain the same
state as that of the original streaming algorithm A at the end of the stream.

122

9.4 Estimation of the frequency moments

9.4 Estimation of the frequency moments
We describe our quantum streaming algorithm for approximating the frequency moment
Fk(x) =

∑
i∈[n]|xi|k of order k ≥ 3 in the turnstile model. The algorithm combines the

quantum sub-Gaussian estimator constructed in Chapter 4 with the following linear sketch
L2 sampler from Andoni, Krauthgamer and Onak [AKO10].

Proposition 9.4.1 (L2 sampler – Theorem 5.1 in [AKO10]). There exists a single-pass
linear sketch algorithm with the following properties. Given a stream of updates with non-
zero final vector x ∈ Zn and two reals ϵ, δ ∈ (0, 1), the algorithm outputs with probability
at least 1− δ a pair (i, f̃i) ∈ [n] such that

∣∣f̃i − |xi|∣∣ ≤ ϵ|xi| and

Pr[i = j] = (1± ϵ) |xi|
2

F2(x) ±
1
n2 for all j ∈ [n],

and it outputs FAIL otherwise. The memory size of the algorithm is O(ϵ−2 log4(n) log(1/δ))
and the update time is Õ(ϵ−1n log(1/δ)).

We convert the above L2 sampler into a single-pass linear sketch algorithm for approx-
imating Fk(x) (Algorithm 9.3) by using the unbiased estimator [MW10; AKO10] that
takes value F2(x)|xi|k−2 with probability |xi|2

F2(x) . The variance of the estimator is traded
off against the memory size of the algorithm by computing several samples in parallel. For
simplicity, we assume that the error parameter is ϵ ≥ Ω(1/n). The second moment F2(x)
needed by the estimator can be efficiently estimated with [AMS99; KNW10b] for instance.

1. Run in parallel C copies of the L2 sampler of Proposition 9.4.1 on the same stream
u(1), . . . , u(t) with input parameters ϵ

20k and δ = ϵ
2 . For each copy j = 1, . . . , C:

a) If the algorithm returns a pair (i, f̃i) then set F (j) = F̃2 · f̃k−2
i .

b) If the algorithm returns FAIL then set F (j) = 0.

2. Output F = 1
C

∑
j∈[C] F

(j).

Algorithm 9.3: Classical frequency moment estimator.

Proposition 9.4.2. There exists a single-pass linear sketch algorithm (Algorithm 9.3)
with the following properties. Let u(1), . . . , u(t) be an input stream with non-zero final
vector x ∈ Zn, and fix as parameters two integers C ≥ 1, k ≥ 3, a real ϵ ∈ (5

n , 1) and
an estimate F̃2 such that |F̃2 − F2(x)| ≤ ϵ

8F2(x). Then, the output of the algorithm is
distributed according to a random variable F such that,

(1) E[F] ∈ [(1− ϵ)Fk(x), (1 + ϵ)Fk(x)] and Var[F] ≤ 2n1−2/kFk(x)2

C .

(2) The memory size is O(Cϵ−2 log4(n) log(1/δ)), the update time is Õ(Cϵ−1n log(1/δ)).

Proof. We first compute the expectation of the random variable F (j) obtained at step 1
for any j. If the L2 sampler does not fail then the expectation of F (j) is in the interval
E[F (j) | ¬FAIL] =

(
1± ϵ

8
)(

1± ϵ
20k
)k−1∑

i F2(x)|xi|k−2
(

|xi|2
F2(x) ±

1
n2

)
by Proposition 9.4.1.

Since F2(x)|xi|k−2 ≤ nFk(x) and ϵ > 5/n, we get that E[F (j) | ¬FAIL] =
(
1± ϵ

2
)
Fk(x).

123

Chapter 9 Frequency Moments and Linear Sketches in the Data Stream Model

The algorithm outputs FAIL with probability at most ϵ
2 , in which case we have F (j) = 0.

Thus, E[F (j)] ≤ E[F (j) | ¬FAIL] and E[F (j)] ≥ (1− ϵ
2)E[F (j) | ¬FAIL] ≥ (1− ϵ)Fk(x). We

conclude that |E[F (j)]− Fk(x)| ≤ ϵFk(x). By linearity of expectation, E[F] = E[F (j)].
The variance is upper bounded in a similar way. For any j ∈ [C] we have, Var[F (j)] ≤

E
[(
F (j))2 ∣∣ ¬FAIL

]
≤ 2F2(x)F2k−2(x) ≤ 2n1−2/kFk(x)2, where the last step is by Hölder’s

inequality. Finally, we have Var[F] = 1
CVar[F (j)] = 2n1−2/kFk(x)2

C by independence.

We finally describe our quantum streaming algorithm for estimating the frequency
moments. We trade off the number P of passes against the memory size of the algorithm
by using the quantum sub-Gaussian estimator (Theorem 4.4.2) on a q-random variable
derived from Proposition 9.4.2. The algorithm uses Proposition 9.3.5 and Proposition 9.3.3
to perform one quantum experiment at each pass on the input stream.

Theorem 9.4.3 (Frequency moment estimation). For any integer P ≥ 1, there exists
a P -pass streaming algorithm with the following properties. Given an input stream in the
turnstile model with non-zero final vector x ∈ Zn, an integer k ≥ 3 and a real ϵ ∈ (10

n , 1),
the algorithm uses a quantum memory of size Õ

(
n1−2/k

(ϵP)2

)
and it outputs an estimate F̃k

such that |F̃k − Fk(x)| ≤ ϵFk(x) with probability at least 3/4.

Proof. We can assume in the proof that P is larger than some universal constant. If it
is not the case, then we can instead use any optimal one-pass classical algorithm (such
as [LW13; Gan15]) for estimating Fk(x) directly with memory size Õ

(
n1−2/k).

Our algorithm consists of first making one pass over the stream to compute an estimate F̃2
such that |F̃2 − F2(x)| ≤ ϵ

16F2(x) with success probability at least 9/10 by using a
classical streaming algorithm [AMS99; KNW10b] with memory size O(log(n)/ϵ2). For
the subsequent passes, let us set C = n1−2/k

(ϵP)2 d
2 log4(P) for a sufficiently large constant d

that will be defined later on. We apply Proposition 9.3.5 and Proposition 9.3.3 to
the single-pass linear sketch algorithm presented in Proposition 9.4.2 with parameters
C, k, ϵ/2, F̃2. We obtain that there exist a q-random variable F and two quantum streaming
algorithms Q and Q with memory size Õ

(
n1−2/k

(ϵP)2

)
such that |E[F] − Fk(x)| ≤ ϵ

2Fk(x),

Var[F] ≤ 2(ϵPFk(x))2

d2 log4(P) and one quantum experiment with respect to F can be performed
by one pass of Q or Q on the input stream. Consequently, we can construct a quantum
streaming algorithm that runs the quantum sub-Gaussian estimator SubGaussEst(F, t, 1/10)
with parameter t = P 2

√
2 log(10)

d log2(P) by doing d′t log3/2(t) log log(t) passes over the stream for
some universal constant d′ (Theorem 4.4.2). We choose d such that d′t log3/2(t) log log(t) ≤
P − 1. The estimate F̃k returned by this estimator satisfies,

|F̃k − Fk(x)| ≤ |F̃k − E[F]|+ |E[F]− Fk(x)| ≤
√

Var[F] log(10)
t

+ ϵ

2Fk(x) ≤ ϵFk(x)

with probability at least 9/10, where the first inequality is the triangle inequality and the
second one is by Theorem 4.4.2. The memory size used by the quantum sub-Gaussian
estimator (Algorithm 4.2) is of the same order of magnitude as that used by Q and Q.

9.5 Discussion
We conjecture that any P -pass quantum streaming algorithm for approximating the
frequency moment Fk(x) must use a memory of size S ≥ Ω

(
n1−2/k

P 2

)
, meaning that the

124

9.5 Discussion

algorithm of Theorem 9.4.3 is (nearly) optimal. One way to answer this problem is to
improve the lower bounds given by Jain, Radhakrishnan and Sen [JRS03] for the L∞
or the multi-party Set Disjointness (see the discussion in Section 9.1.1). In the L∞
problem, Alice and Bob are given two vectors X,Y ∈ {0, 1, . . . ,m}n with the promise
that either |Xi − Yi| ≤ 1 for all i ∈ [n], or there exists an i ∈ [n] such that |Xi − Yi| = m.
[JRS03] showed that the two-party r-round quantum communication complexity of L∞ is
Ω(n/(r3mr+1)). It may be possible to improve this lower bound to Ω(n/(rm2) + r) by
using the techniques developed in [BGK+18], which would solve our conjecture.

125

10
Time-Space Tradeoffs by Recording Queries

This chapter is based on the following paper:

[HM21b] Y. Hamoudi and F. Magniez. “Quantum Time-Space Tradeoff for Finding
Multiple Collision Pairs”. In: Proceedings of the 16th Conference on the
Theory of Quantum Computation, Communication and Cryptography (TQC).
2021, 1:1–1:21.

10.1 Introduction
Time-space tradeoffs aim at connecting the study of the time complexity, measured in this
chapter as the number T of queries to an oracle, and the space complexity, which is the
memory size S needed to execute an algorithm. The development of quantum computing
asks the question of how the access to quantum operations and quantum memories modifies
the tradeoff between these two computational resources. In some cases [BHT98b; Amb07;
LZ19a], the only known ways to obtain a quantum speedup (in terms of time complexity)
come at the cost of a dramatic increase in the space requirement. This raises the question
to what extent can we combine time and space efficiency in the quantum setting. In
this chapter, we approach this problem from the perspective of time-space tradeoff lower
bounds, where the goal is to quantify how much the time to solve a given problem must
increase when the available space decreases.

Our main object of study is the problem of finding K collision pairs in a uniformly
random function f : [N]→ [N]. This task plays a central role in cryptography with the
meet-in-the-middle type of attacks [OW99; Din20; Wag02; JL09; DDKS12; DEM19]. The
celebrated algorithm of Brassard, Høyer and Tapp [BHT98b] paved the way to quantum
speedups for solving this problem and its variants [CNS17; LZ19a; HSTX20]. Nevertheless,
the space usage of these algorithms is much larger than that of the classical Pollard’s
rho method [Pol75; OW99]. A time-space tradeoff lower bound is of great interest here
to assess the security level of cryptographic schemes that are prone to collision attacks
[Wie04; Ber05; Ber09]. We give the first evidence that the time complexity required to
find K collision pairs must increase when the size of the available quantum memory is
limited. More precisely, we show that any quantum algorithm using S qubits of memory
must perform a number T of queries that satisfies the tradeoff TS1/3 ≥ Ω(KN1/3) for
finding K collision pairs. This represents a gap of at most Ω̃(K1/3) (when S = O(logN))
with the optimal query complexity T = Θ(K2/3N1/3) in the unlimited memory setting.

The main technique for studying time-space tradeoffs is the time-segmentation method
[BFK+81; KŠW07] that converts a time lower bound proved in the exponentially small
success probability regime into a time-space tradeoff lower bound. We develop a new
approach for addressing the small success probability regime, based on a novel application

127

Chapter 10 Time-Space Tradeoffs by Recording Queries

of Zhandry’s recording query technique [Zha19]. This technique consists of keeping track
of the queries made by an algorithm to show that a significant portion of the input must
be guessed randomly at the end of the computation. The “recording” of quantum queries
is a subtle task that requires not to disturb the memory of the algorithm. We simplify the
approach of Zhandry for doing that, and we generalize it to a broader class of problems.
As a first application, we give a precise characterization of the best possible success
probability for finding K collision pairs by using T queries, which leads to our time-space
tradeoff. As a second application, we consider the K-Search problem on a random function
f : [N]→ {0, 1} where f(x) = 1 with probability K/N for each x. We apply the above
machinery to give a simple analysis of the best possible success probability for solving this
problem, and we use our result to reprove a time-space tradeoff for the Sorting problem.

10.1.1 Related work

Time-space tradeoffs have been studied for a long time in the classical branching program
model [BFK+81; Bea91; BFM+87; Yao94; BSSV03; Abr90; MNT93]. The few results
known in the quantum circuit model with oracle gates are for the Sorting problem [KŠW07],
Boolean Matrix-Vector and Matrix-Matrix Multiplication [KŠW07] and Evaluating So-
lutions to Systems of Linear Inequalities [AŠW09]. A different line of works has studied
the “Quantum Random Oracle Model with Auxiliary Input” [NABT15; HXY19; CLQ20;
CGLQ20], where the memory restriction is enforced only on the size S of a precomputed
advice provided to the algorithm. The recording technique has been used in [CGLQ20] to
improve several lower bounds in this model. Apart from our work, all existing quantum
tradeoffs are based on the hardness of Quantum Search.

The quantum recording query technique was invented by Zhandry [Zha19] to give new
security proofs in the quantum random oracle model. It has been used to this end by
many authors [HI19; LZ19b; CMS19; CMSZ19; BHH+19; AMRS20]. Zhandry has also
illustrated its value for proving quantum query complexity lower bounds, by considering
the Grover Search, Collision and k-Sum problems [Zha19]. Later, Liu and Zhandry [LZ19a]
have applied it to the Multi-Collisions Finding problem. The two other main techniques
for proving lower bounds in the quantum query model are the polynomial [BBC+01] and
the adversary [Amb02] methods. Both methods gave results for the exponentially small
success probability regime of the K-Search problem [KŠW07; Amb10a; Špa08] and in
Strong Direct Product Theorems (SDPT) [Amb10a; AŠW09; Špa08; AMRR11; LR13].
An SDPT states that the success probability for solving K instances of a problem with
less than K times the resources needed for one instance is exponentially small in K.

The classical Parallel Collision Search algorithm [OW99] (which generalizes the Pollard’s
rho method [Pol75]) can find K collision pairs with a time-space tradeoff of T 2S = Õ(K2N)
for any amount S of memory between Ω̃(logN) and Õ(K). The optimality of this tradeoff
has been shown recently by Chakrabarti and Chen [CC17] (for 2-to-1 random functions)
and by Dinur [Din20] (for uniformly random functions). The quantum BHT algorithm
[BHT98b] can find a single collision pair in time T = Õ(N1/3) and space S = Õ(N1/3),
which is optimal with respect to the time complexity [AS04; Zha15]. In comparison, the
Pollard’s rho method uses T = Õ(

√
N) and S = Õ(logN). The question of whether a

better quantum time-space tradeoff exists when K = 1 is a long-standing open question,
that we do not settle here. The related Element Distinctness problem asks to find a
collision pair in a random function f : [N] → [N2] (or, more generally, to decide if a
function contains a collision pair). There is some progress in the classical case [BFM+87;
Yao94; BSSV03] toward proving an optimal time-space tradeoff for this problem.

128

10.1 Introduction

10.1.2 Contributions and organization

We recall the quantum query model in Section 10.2.1 and we describe the space-bounded
model used in this chapter in Section 10.2.2. The recording query framework is presented
in Section 10.3. Our formalism is based on a general recording query operator (Defini-
tion 10.3.1) that can replace the standard quantum query operator without being noticed
by the algorithm (Theorem 10.3.3). Next, we apply this framework to the Collision Pairs
Finding problem defined as follows.

Definition 10.1.1. The Collision Pairs Finding problem asks to find a certain number K
of disjoint collision pairs in a random function f : [M]→ [N] where M ≥ N . A collision
pair (or simply collision) is a pair of values x1 ̸= x2 such that f(x1) = f(x2). Two
collisions (x1, x2) and (x3, x4) are disjoint if x1, . . . , x4 are all different.

The requirement for the collisions to be disjoint is made to simplify our proofs later
on. We note that a random function f : [N]→ [N] contains (1− 2/e)N disjoint collisions
on average [FO89]. Our first main result is to show that the optimal success probability
decreases at an exponential rate in K when the number T of queries is smaller than
O(K2/3N1/3). We note that, similarly to [Zha15] for the case K = 1, this bound is
independent of the size M of the domain.

Theorem 10.4.6 (Restated). The success probability of finding K disjoint collisions in
a random function f : [M]→ [N] is at most O(T 3/(K2N))K/2 + 2−K for any algorithm
making T quantum queries to f and any 1 ≤ K ≤ N/8.

Our second main result is the next time-space tradeoff lower bound for the same
problem of finding K collision pairs. As a simple corollary, we obtain that finding almost
all collisions using a memoryless algorithm (i.e. S = O(logN)) requires to use at least
T ≥ Ω(N4/3) quantum queries, whereas T = N classical queries are sufficient when there
is no space restriction.

Theorem 10.6.1 (Restated). Any quantum algorithm for finding K disjoint collisions in
a random function f : [M]→ [N] with success probability 2/3 must satisfy a time-space
tradeoff of T 3S ≥ Ω(K3N), where 1 ≤ K ≤ N/8.

We show in Algorithm 10.2 how to find an arbitrary number K of collisions with a
tradeoff of T 2S ≤ Õ(K2N). For the sake of simplicity in the analysis, we do not require
these collisions to be disjoint. This is the same tradeoff as classically with the Parallel
Collision Search algorithm [OW99], except that the space parameter S can hold larger
values up to Õ(K2/3N1/3), hence the existence of a quantum speedup that matches the
lower bound of Theorem 10.4.6 when there is no memory constraint.

Proposition 10.6.7 (Restated). For any integers 1 ≤ K ≤ O(N) and Ω̃(logN) ≤ S ≤
Õ(K2/3N1/3), there exists a bounded-error quantum algorithm that can find K collisions
in a random function f : [N] → [N] by making T = Õ(K

√
N/S) queries and using S

qubits of memory.

We summarize the classical and quantum time-space tradeoffs known for the Collision
Pairs Finding problem in Table 10.1. We note that the tradeoff T 2S ≥ Ω(K2N) is always
stronger than T 3S ≥ Ω(K3N) since T ≥ K. We further show that any improvement to our
time-space tradeoff lower bound would imply a breakthrough for the Element Distinctness
problem, by showing the next reduction.

129

Chapter 10 Time-Space Tradeoffs by Recording Queries

Classical complexity Quantum complexity

Upper bound: T 2S ≤ Õ(K2N) T 2S ≤ Õ(K2N)
when Ω̃(logN) ≤ S ≤ Õ(K) when Ω̃(logN) ≤ S ≤ Õ(K2/3N1/3)
Parallel Collision Search [OW99] Proposition 10.6.7

Lower bound: T 2S ≥ Ω(K2N) T 3S ≥ Ω(K3N)
[Din20] Theorem 10.6.1

Table 10.1: Complexity to find K disjoint collisions in a random function f : [M]→ [N].

Corollary 10.6.5 (Restated). Suppose that there exists ϵ ∈ (0, 1) such that any quantum
algorithm for finding Ω̃(N) disjoint collisions in a random function f : [10N] → [N]
must satisfy a time-space tradeoff of TS1/3 ≥ Ω̃(N4/3+ϵ). Then, any quantum algorithm
for solving Element Distinctness on domain size N must satisfy a time-space tradeoff
of TS1/3 ≥ Ω̃(N2/3+2ϵ).

We point out that TS1/3 ≥ Ω(N2/3) can already be deduced from the query complexity
of Element Distinctness [AS04]. We conjecture that our current tradeoff for finding K
collisions can be improved to T 2S ≥ Ω(K2N), which would imply T 2S ≥ Ω̃(N2) for
Element Distinctness (Corollary 10.6.6). This result would be optimal [Amb07].

Finally, we adapt the machinery developed in this chapter to study the K-Search
problem, which consists of finding K preimages of 1 in a random function f : [M]→ {0, 1}
where f(x) = 1 with probability K/N independently for each x ∈ [M].

Theorem 10.5.1 (Restated). The success probability of finding K ≤ N/8 preimages
of 1 in a random function f : [M] → {0, 1} where f(x) = 1 with probability K/N for
each x ∈ [M] is at most O(T 2/(KN))K/2 + 2−K for any algorithm using T quantum
queries to f .

As an application, we reprove in Theorem 10.6.8 the quantum time-space tradeoff for
sorting N numbers first obtained in [KŠW07].

Theorem 10.6.8 (Restated). Any quantum algorithm for sorting a function f : [N]→
{0, 1, 2} with success probability 2/3 must satisfy a time-space tradeoff of T 2S ≥ Ω(N3).

10.1.3 Proof overview
Recording query technique. We use the recording query framework of Zhandry [Zha19]
to upper bound the success probability of a query-bounded algorithm in finding K collision
pairs. This method intends to reproduce the classical strategy where the queries made by
an algorithm are recorded and answered with on-the-fly simulation of the oracle. Zhandry
brought this technique to the quantum random oracle model by showing that, for the
uniform input distribution, one can record in superposition the queries made by a quantum
algorithm. Our first technical contribution (Section 10.3) is to simplify the analysis of
Zhandry’s technique and, as a byproduct, to generalize it to any product distribution on
the input. We notice that there has been other independent work on extending Zhandry’s
recording technique [HI19; CMSZ19; CMS19]. Our approach is based on defining a
“recording query operator” that is specific to the distribution under consideration. This
operator can replace the standard quantum query operator without changing the success

130

10.1 Introduction

probability of the algorithm, but with the effect of “recording” the quantum queries in an
additional register. We detail two recording query operators corresponding to the uniform
distribution (Lemma 10.4.2) and to the product of Bernoulli distributions (Lemma 10.5.3).

Finding collisions with time-bounded algorithms. Our application of the recording
technique to the Collision Pairs Finding problem has two stages. We first bound the
probability that the algorithm has forced the recording of many collisions after T queries.
Namely, we show that the norm of the quantum state that records a new collision at the
t-th query is on the order of

√
t/N (Proposition 10.4.4). This is related to the probability

that a new random value collides with one of the at most t previously recorded queries.
The reason why the collisions have to be disjoint is to avoid the recording of more than
one new collision in one query. By solving a simple recurrence relation, one gets that the
amplitude of the basis states that have recorded at least K/2 collisions after T queries is
at most O(T 3/2/(K

√
N))K/2. We note that Liu and Zhandry [LZ19a, Theorem 5] carried

out a similar analysis for the Multi-Collision Finding problem, where they obtained a
similar bound of O(T 3/2/

√
N)K/2. The second stage of our proof relates the probability

of having recorded many collisions to the actual success probability of the algorithm. If
we used previous approaches (notably [Zha19, Lemma 5]), this step would degrade the
upper bound on the success probability by adding a term that is polynomial in K/N . We
preserve the exponentially small dependence on K by doing a more careful analysis of the
relation between the recording and the standard query models (Proposition 10.4.5). We
adopt a similar approach for the K-Search problem in Section 10.5.

Finding collisions with time-space bounded algorithms. We convert the above time-
only bound into a time-space tradeoff by using the time-segmentation method [BFK+81;
KŠW07]. Given a quantum circuit that solves the Collision Pairs Finding problem in time T
and space S, we slice it into T/(S2/3N1/3) consecutive subcircuits, each of them using
S2/3N1/3 queries. If no slice can output more than Ω(S) collisions with high probability
then there must be at least Ω(K/S) slices in total, thus proving the desired tradeoff. Our
previous lower bound implies that it is impossible to find Ω(S) collisions with probability
larger than 4−S in time S2/3N1/3. We must take into account that the initial memory at
the beginning of each slice carries out information from previous stages. As in previous
work [Aar05; KŠW07], we can “eliminate” this memory by replacing it with the completely
mixed state while decreasing the success probability by a factor of 2−S . Thus, if a slice
outputs Ω(S) collisions then it can be used to contradict the lower bound proved before.

Element Distinctness. We connect the Collision Pairs Finding and Element Distinctness
problems by showing how to transform a low-space algorithm for the latter into one for
the former (Proposition 10.6.3). If there exists a time-T̄ space-S̄ algorithm for Element
Distinctness on domain size

√
N then we can find Ω̃(N) collisions in a random function

f : [N] → [N] by repeatedly sampling a subset H ⊂ [N] of size
√
N and using that

algorithm on the function f restricted to the domain H. Among other things, we must
ensure that the same collision does not occur many times and that storing the set H
does not use too much memory (it turns out that 4-wise independence is sufficient for our
purpose). We end up with an algorithm with time T = O(NT̄) and space S = O(S̄) for
finding Ω̃(N) collisions. Consequently, if the Element Distinctness problem on domain
size
√
N can be solved with a time-space tradeoff of T̄ S̄1/3 ≤ O(N1/3+ϵ), then there is an

algorithm for finding Ω̃(N) collisions that satisfies a tradeoff of TS1/3 ≤ O(N4/3+ϵ).

131

Chapter 10 Time-Space Tradeoffs by Recording Queries

10.2 Models of computation
We first present the standard model of quantum query complexity in Section 10.2.1. This
model is used for investigating the time complexity of the Collision Pairs Finding problem
in Section 10.4, and of the K-Search problem in Section 10.5. Then, we describe the more
general circuit model that also captures the space complexity in Section 10.2.2. It is used
in Section 10.6 for studying time-space tradeoffs.

10.2.1 Query model
The (standard) model of quantum query complexity [BW02] measures the number of
quantum queries an algorithm (also called an “attacker”) needs to make on an input
function f : [M]→ [N] to find an output z satisfying some predetermined relation R(f, z).
We present this model in more detail below.

Quantum Query Algorithm. A T -query quantum algorithm is specified by a sequence
U0, . . . , UT of unitary transformations acting on the algorithm’s memory. The state |ψ⟩ of
the algorithm is made of three registers Q, P ,W where the query register Q holds x ∈ [M],
the phase register P holds p ∈ [N] and the working register W holds some value w. We
represent a basis state in the corresponding Hilbert space as |x, p, w⟩QPW . We may drop
the subscript QPW when it is clear from the context. The state |ψft ⟩ of the algorithm
after t ≤ T queries to some input function f : [M]→ [N] is

|ψft ⟩ = UtOfUt−1 · · ·U1OfU0|0⟩

where the oracle Of is defined by

Of |x, p, w⟩ = ω
pf(x)
N |x, p, w⟩ and ωN = e

2iπ
N .

The output of the algorithm is written on a substring z of the value w. The success
probability σf of the quantum algorithm on f is the probability that the output value z
obtained by measuring the working register of |ψfT ⟩ in the computational basis satisfies
the relation R(f, z). In other words, if we let Πf

succ be the projector whose support
consists of all basis states |x, p, w⟩ such that the output substring z of w satisfies R(f, z),
then σf =

∥∥Πf
succ|ψfT ⟩

∥∥2.

Oracle’s Register. Here, we describe the variant used in the adversary method
[Amb02] and in Zhandry’s work [Zha19]. It is represented as an interaction between an
algorithm that aims at finding a correct output z, and a superposition of oracle’s inputs
that respond to the queries from the algorithm.

The memory of the oracle is made of an input register F holding the description of a
function f : [M]→ [N]. This register is divided into M subregisters F1, . . . ,FM where Fx
holds f(x) ∈ [N] for each x ∈ [M]. The basis states in the corresponding Hilbert space
are |f⟩F = ⊗x∈[M]|f(x)⟩Fx . Given an input distribution D on the set of functions [N]M ,
the oracle’s initial state is the state |init⟩F =

∑
f∈[N]M

√
Pr[f ← D]|f⟩.

The query operator O is a unitary transformation acting on the memory of the algorithm
and the oracle. Its action is defined on each basis state by

O|x, p, w⟩|f⟩ = (Of |x, p, w⟩)|f⟩.

The joint state |ψt⟩ of the algorithm and the oracle after t queries is equal to |ψt⟩ =
UtOUt−1 · · ·U1OU0(|0⟩|init⟩) =

∑
f∈[N]M

√
Pr[f ← D]|ψft ⟩|f⟩, where the unitaries Ui have

132

10.3 Recording model

been extended to act as the identity on F . The success probability σ of a quantum algorithm
on an input distribution D is the probability that the output value z and the input f
obtained by measuring the working and input registers of the final state |ψT ⟩ satisfy the
relation R(f, z). In other words, if we let Πsucc be the projector whose support consists
of all basis states |x, p, w⟩|f⟩ such that the output substring z of w satisfies R(f, z),
then σ = ∥Πsucc|ψT ⟩∥2.

10.2.2 Space-bounded model

Our model of space-bounded computation is identical to the one described in [KŠW07;
AŠW09]. We use the quantum circuit model (presented in Section 3.1) augmented with
the oracle gates of the query model defined in the previous section. The time complexity,
denoted by T , is the number of gates in the circuit. In practice, we lower bound it by
the number of oracle gates only. The space complexity, denoted by S, is the number of
qubits on which the circuit is operating. The result of the computation is written on some
dedicated output qubits that may not be used later on, and that are not counted toward
the space bound. In particular, the size of the output can be larger than S. Furthermore,
we assume that the output qubits are updated at some predefined output gates in the
circuit.

We notice that, by the deferred measurement principle, any space-bounded computation
that uses T queries can be transformed into a T -query unitary algorithm as defined in
Section 10.2.1. Thus, any lower bound on the query complexity of a problem is also a
lower bound on the time complexity of that problem in the space-bounded model. This
explains our use of the query model in Section 10.4 and Section 10.5.

10.3 Recording model

The quantum recording query model is a modification of the standard query model defined
in Section 10.2.1 that is unnoticeable by the algorithm, but that allows us to track more
easily the progress made toward solving the problem under consideration. The original
recording model was formulated by Zhandry in [Zha19]. Here, we propose a simplified and
more general version of this framework that only requires the initial oracle’s state |init⟩F
to be a product state ⊗x∈[M]|initx⟩Fx (instead of the uniform distribution over all basis
states as in [Zha19]).

Construction. The range [N] is augmented with a new symbol ⊥. The input register F
of the oracle can now contain f : [M] → [N] ∪ {⊥}, where f(x) = ⊥ represents the
absence of knowledge from the algorithm about the image of x. Unlike in the standard
query model, the oracle’s initial state is independent of the input distribution and is fixed
to be |⊥M ⟩F (which represents the fact that the algorithm knows nothing about the input
initially). We extend the query operator O defined in the standard query model by setting

O|x, p, w⟩|f⟩ = |x, p, w⟩|f⟩ when f(x) = ⊥.

Given a product input distribution D = D1 ⊗ · · · ⊗DM on the set [N]M , the oracle’s
initial state in the standard query model can be decomposed as the product state |init⟩F =
⊗x∈[M]|initx⟩Fx where |initx⟩Fx :=

∑
y∈[N]

√
Pr[y ← Dx]|y⟩Fx . The “recording query

operator” R is defined with respect to a family (Sx)x∈[M] of unitary operators satisfying
Sx|⊥⟩Fx = |initx⟩Fx for all x as follows.

133

Chapter 10 Time-Space Tradeoffs by Recording Queries

Definition 10.3.1. Given M unitary operators S1, . . . ,SM acting on F1, . . . ,FM respec-
tively, consider the operator S acting on all the registers QPWF such that,

S =
∑
x∈[M]

|x⟩⟨x|Q ⊗ IPWF1...Fx−1 ⊗ Sx ⊗ IFx+1...FM
.

Then, the recording query operator R with respect to (Sx)x∈[M] is defined as R = S†OS.

Later in this chapter, we describe two recording query operators related to the uniform
distribution (Lemma 10.4.2) and to the product of Bernoulli distributions (Lemma 10.5.3).

Indistinguishability. The joint state of the algorithm and the oracle after t queries
in the recording query model is defined as |ϕt⟩ = UtRUt−1 · · ·U1RU0

(
|0⟩|⊥M ⟩

)
. Notice

that the query operator R can only change the value of f(x′) (contained in the register
Fx′) when it is applied to a state |x, p, w⟩|f⟩ such that x = x′. As a result, we have the
following simple fact.

Fact 10.3.2. The state |ϕt⟩ is a linear combination of basis states |x, p, w⟩|f⟩ where f
contains at most t entries different from ⊥.

The entries of f that are different from ⊥ represent what the oracle has learned (or
“recorded”) from the algorithm’s queries so far. In the next theorem, we show that |ϕt⟩ is
related to the state |ψt⟩ (defined in Section 10.2.1) by |ψt⟩ =

(
IQPW ⊗x∈[M] Sx

)
|ϕt⟩. In

particular, the states |ψt⟩ and |ϕt⟩ cannot be distinguished by the algorithm since the
reduced states on the algorithm’s registers are identical.

Theorem 10.3.3. Let (U0, . . . , UT) be a T -query quantum algorithm. Given M unitary
operators S1, . . . ,SM acting on the oracle’s registers F1, . . . ,FM respectively, let R denote
the recording query operator associated with (Sx)x∈[M], and define the initial state |init⟩F =(
⊗x∈[M]Sx

)
|⊥M ⟩. Then, the states |ψt⟩ = UtOUt−1 · · ·U1OU0

(
|0⟩|init⟩

)
|ϕt⟩ = UtRUt−1 · · ·U1RU0

(
|0⟩|⊥M ⟩

)
after t ≤ T queries in the standard and recording query models respectively satisfy

|ψt⟩ = T |ϕt⟩ where T = IQPW
⊗
x∈[M]

Sx.

Proof. We start by introducing the intermediate operator R̄ = T †OT . Observe that for
any basis state |x, p, w⟩|f⟩ the operators R̄ and R act the same way on the registers QPFx
and they do not depend on the other registers. Thus, we have R̄ = R. We further observe
that Ui and T commute for all i since they depend on disjoint registers. Consequently, we
have that

|ψt⟩ = UtOUt−1O · · ·U1OU0 · T
(
|0⟩|⊥M ⟩

)
since T

(
|0⟩|⊥M ⟩

)
= |0⟩|init⟩

= T T †UtO · T T †Ut−1O · · · T T †U1O · T T †U0 · T
(
|0⟩|⊥M ⟩

)
since T T † = I

= T UtT † · O · T Ut−1T † · O · · · T U1T † · O · T U0
(
|0⟩|⊥M ⟩

)
by commutation

= T UtR̄Ut−1 · · ·U1R̄U0
(
|0⟩|⊥M ⟩

)
by definition of R̄

= T UtRUt−1 · · ·U1RU0
(
|0⟩|⊥M ⟩

)
since R̄ = R

= T |ϕt⟩ by definition of |ϕt⟩.

134

10.4 Time lower bound for Collision Pairs Finding

10.4 Time lower bound for Collision Pairs Finding
In this section, we upper bound the success probability of finding K disjoint collisions in
the query-bounded model of Section 10.2.1. The proof uses the recording query model of
Section 10.3. We first describe in Section 10.4.1 the recording query framework associated
with this problem. In Section 10.4.2, we study the probability that an algorithm has
recorded at least k ≤ K collisions after t ≤ T queries. We prove by induction on t and k
that this quantity is exponentially small in k when t ≤ O(k2/3N1/3) (Proposition 10.4.4).
Finally, in Section 10.4.3, we relate this progress measure to the actual success probability
(Proposition 10.4.5), and we conclude that the latter quantity is exponentially small in K
after T ≤ O(K2/3N1/3) queries (Theorem 10.4.6).

10.4.1 Recording query operator
We describe a recording operator that corresponds to the uniform distribution on the
set of functions f : [M] → [N]. In the standard query model, the oracle’s initial state
is |init⟩F = ⊗x∈[M]

(1√
N

∑
y∈[N]|y⟩Fx

)
. Consequently, in the recording query model, we

choose the unitary transformations S1, · · · ,SM to be defined as follows.

Definition 10.4.1. For any x ∈ [M], we define the unitary Sx acting on the register Fx
to be

Sx :


|⊥⟩Fx 7−→ 1√

N

∑
y∈[N]|y⟩Fx

1√
N

∑
y∈[N]|y⟩Fx 7−→ |⊥⟩Fx

1√
N

∑
y∈[N] ω

py
N |y⟩Fx 7−→ 1√

N

∑
y∈[N] ω

py
N |y⟩Fx for p = 1, . . . , N − 1.

These unitaries verify T |⊥M ⟩ = |init⟩ where T = ⊗x∈[M]Sx, as required by Theo-
rem 10.3.3. The recording query operator is R = SOS (Definition 10.3.1) since S† = S.
The next lemma gives an explicit characterization of the action of R on a basis state.

Lemma 10.4.2. If the recording query operator R associated with Definition 10.4.1 is
applied to a basis state |x, p, w⟩|f⟩ where p ̸= 0 then the register |f(x)⟩Fx is mapped to

∑
y∈[N]

ωpy
N√
N
|y⟩ if f(x) = ⊥

ω
pf(x)
N
N |⊥⟩+ 1+ωpf(x)

N (N−2)
N |f(x)⟩+

∑
y∈[N]\{f(x)}

1−ωpy
N −ωpf(x)

N
N |y⟩ otherwise

and the other registers are unchanged. If p = 0 then none of the registers are changed.

Proof. By definition, the unitary Sx maps |⊥⟩Fx 7→ 1√
N

∑
y∈[N]|y⟩ and |y⟩Fx 7→ 1√

N
|⊥⟩+

1√
N

∑
p′∈[N]\{0} ω

−p′y
N |p̂′⟩ where y ∈ [N] and |p̂′⟩ := 1√

N

∑
y∈[N] ω

p′y
N |y⟩. Thus, the action

on the register Fx is:

• If f(x) = ⊥ then |f(x)⟩Fx

S7−→ 1√
N

∑
y∈[N]

|y⟩ O7−→ 1√
N

∑
y∈[N]

ωpyN |y⟩
S7−→ 1√

N

∑
y∈[N]

ωpyN |y⟩.

• If f(x) ∈ [N] then |f(x)⟩Fx = 1√
N

∑
p′∈[N]

ω
−p′f(x)
N |p̂′⟩ S7−→ 1√

N
|⊥⟩+ 1√

N

∑
p′∈[N]\{0}

ω
−p′f(x)
N

|p̂′⟩ O7−→ 1√
N
|⊥⟩+ 1√

N

∑
p′∈[N]\{0}

ω
−p′f(x)
N |p̂+ p′⟩ = 1√

N
|⊥⟩+ ω

pf(x)
N√
N

∑
p′∈[N]\{p}

ω
−p′f(x)
N |p̂′⟩

135

Chapter 10 Time-Space Tradeoffs by Recording Queries

S7−→ 1
N

∑
y∈[N]

|y⟩ + ω
pf(x)
N√
N
|⊥⟩ + ω

pf(x)
N√
N

∑
p′∈[N]\{0,p}

ω
−p′f(x)
N |p̂′⟩ = ω

pf(x)
N
N |⊥⟩ + 1+ωpf(x)

N (N−2)
N

|f(x)⟩+
∑

y∈[N]\{f(x)}

1−ωpy
N −ωpf(x)

N
N |y⟩.

We note that the recording operator R is close to the mapping |⊥⟩Fx 7→
∑

y∈[N]
ωpy

N√
N
|y⟩

and |f(x)⟩Fx 7→ ω
pf(x)
N |f(x)⟩ (if f(x) ̸= ⊥) up to lower-order terms of amplitude O(1/N).

This is analogous to a “lazy” classical oracle that would choose the value of f(x) uniformly
at random the first time it is queried.

10.4.2 Analysis of the recording progress
We define a measure of progress based on the number of disjoint collisions contained in
the oracle’s register of the recording query model. We first give some projectors related to
this quantity.

Definition 10.4.3. We define the following projectors by giving the basis states on which
they project:

• Π≤k, Π=k and Π≥k: all basis states |x, p, w⟩|f⟩ such that f contains respectively at
most, exactly or at least k disjoint collisions (the entries with ⊥ are not considered
as collisions).

• Π=k,⊥ and Π=k,y for y ∈ [N]: all basis states |x, p, w⟩|f⟩ such that (1) f contains
exactly k disjoint collisions, (2) the phase multiplier p is nonzero and (3) f(x) = ⊥
or f(x) = y respectively.

We can now define the measure of progress qt,k for t queries and k collisions as

qt,k = ∥Π≥k|ϕt⟩∥

where |ϕt⟩ is the state after t queries in the recording query model. The main result of
this section is the following bound on the growth of qt,k.

Proposition 10.4.4. For all t and k, we have that qt,k ≤
(
t
k

)(4
√
t√
N

)k
.

Proof. First, q0,0 = 1 and q0,k = 0 for all k ≥ 1 since the initial state is |ϕ0⟩ = |0⟩|⊥M ⟩.
Then, we prove that qt,k satisfies the following recurrence relation

qt+1,k+1 ≤ qt,k+1 + 4
√

t

N
qt,k. (10.1)

From this result, it is trivial to conclude that qt,k ≤
(
t
k

)(4
√
t√
N

)k
. In order to prove

Equation (10.1), we first observe that qt+1,k+1 = ∥Π≥k+1Ut+1R|ϕt⟩∥ = ∥Π≥k+1R|ϕt⟩∥
since the unitary Ut+1 applied by the algorithm at time t+ 1 does not modify the oracle’s
memory. Then, on any basis state |x, p, w⟩|f⟩, the recording query operator R acts as the
identity on the registers Fx′ for x′ ̸= x. Consequently, the basis states |x, p, w⟩|f⟩ in |ϕt⟩
that may contribute to qt+1,k+1 must either already contain k + 1 disjoint collisions in f ,
or exactly k disjoint collisions in f and p ̸= 0. This implies that

qt+1,k+1 ≤ qt,k+1 + ∥Π≥k+1RΠ=k,⊥|ϕt⟩∥+
∑
y∈[N]

∥Π≥k+1RΠ=k,y|ϕt⟩∥.

136

10.4 Time lower bound for Collision Pairs Finding

We first bound the term ∥Π≥k+1RΠ=k,⊥|ϕt⟩∥. Consider any basis state |x, p, w⟩|f⟩ in
the support of Π=k,⊥ and |ϕt⟩. The function f must contain at most t entries different
from ⊥ by Fact 10.3.2. By Lemma 10.4.2, we have R|x, p, w⟩|f⟩ =

∑
y∈[N]

ωpy
N√
N
|x, p, w⟩|y⟩Fx

⊗x′ ̸=x|f(x′)⟩Fx′ . Since there are at most t entries in f that can collide with the value
contained in the register Fx, we have ∥Π≥k+1R|x, p, w⟩|f⟩∥ ≤

√
t/N . Finally, since any

two basis states in the support of Π=k,⊥ remain orthogonal after Π≥k+1R is applied, we
obtain that ∥Π≥k+1RΠ=k,⊥|ϕt⟩∥ ≤

√
t/N∥Π=k,⊥|ϕt⟩∥ ≤

√
t/Nqt,k.

We now consider the term ∥Π≥k+1RΠ=k,y|ϕt⟩∥ for any y ∈ [N]. Again, we consider any
basis state |x, p, w⟩|f⟩ in the support of Π=k,y where f has at most t entries different from ⊥.
According to Lemma 10.4.2, we have R|x, p, w⟩|f⟩ = ω

pf(x)
N
N |⊥⟩ + 1+ωpf(x)

N (N−2)
N |f(x)⟩ +∑

y′ ̸=f(x)
1−ωpy′

N −ωpf(x)
N

N |x, p, w⟩|y′⟩Fx ⊗x′ ̸=x|f(x′)⟩Fx′ . As before, there are at most t terms
in this sum that can be in the support of Π≥k+1. Consequently, ∥Π≥k+1R|x, p, w⟩|f⟩∥ ≤
3
√
t/N and ∥Π≥k+1RΠ=k,y|ϕt⟩∥ ≤ 3

√
t/N∥Π=k,y|ϕt⟩∥.

We conclude that qt+1,k+1 ≤ qt,k+1 +
√
t/Nqt,k +

∑
y∈[N] 3

√
t/N∥Π=k,y|ϕt⟩∥ ≤ qt,k+1 +√

t/Nqt,k + 3
√
t/N

√∑
y∈[N]∥Π=k,y|ϕt⟩∥2 ≤ qt,k+1 +

√
t/Nqt,k + 3

√
t/Nqt,k, where the

second step is by Cauchy-Schwarz’ inequality.

10.4.3 From the recording progress to the success probability
We connect the success probability σ = ∥Πsucc|ψT ⟩∥2 in the standard query model to
the final progress qT,k in the recording query model after T queries. We show that if
the algorithm has made no significant progress for recording k ≥ K/2 collisions then it
needs to “guess” the positions of K − k other collisions. Classically, the probability to find
the values of K − k collisions that have not been queried would be at most (1/N2)K−k.
Here, we show similarly that if a unit state contains at most k collisions in the quantum
recording model, then after mapping it to the standard query model (by applying the
operator T of Theorem 10.3.3) the probability that the output register contains the correct
positions of K collisions is at most N2(4K2/N2)K−k.

Proposition 10.4.5. For any state |ϕ⟩, we have ∥ΠsuccT Π≤k|ϕ⟩∥ ≤ N
(2K
N

)K−k∥Π≤k|ϕ⟩∥.

Proof. We assume that the output of the algorithm also contains the image of each collision
pair under f . Namely, the output z is represented as a list of K triples (x1, x2, y1), . . . ,
(x2K−1, x2K , yK) ∈ [M]2 × ([N] ∪ {⊥}). It is correct if the input function f : [M]→ [N]
(in the standard query model) satisfies f(x2i−1) = f(x2i) = yi ̸= ⊥ for all 1 ≤ i ≤ K, and
the values x1, x2, . . . , x2K are all different. By definition, the support of Πsucc consists of
all basis states |x, p, w⟩|f⟩ such that the output substring z of w satisfies these conditions.

We define a new family of projectors Π̃a,b, where 0 ≤ a+ b ≤ 2K, whose supports consist
of all basis states |x, p, w⟩|f⟩ satisfying the following conditions:

(A) The output substring z is made of K triples (x1, x2, y1), . . . , (x2K−1, x2K , yK) where
the xi are all different.

(B) There are exactly a indices i ∈ [2K] such that f(xi) = ⊥.

(C) There are exactly b indices i ∈ [2K] such that f(xi) ̸= ⊥ and f(xi) ̸= y⌈i/2⌉.

For any state |x, p, w⟩|f⟩ in the support of Π̃a,b, we claim that

∥ΠsuccT |x, p, w⟩|f⟩∥ ≤
(

1√
N

)a(1
N

)b
. (10.2)

137

Chapter 10 Time-Space Tradeoffs by Recording Queries

Indeed, we have T = ⊗x′∈[M]Sx′ and by Definition 10.4.1 the action of Sxi on the register
|f(xi)⟩Fxi

is |f(xi)⟩ 7→ 1√
N

∑
y∈[N]|y⟩ if f(xi) = ⊥, and |f(xi)⟩ 7→ 1√

N
|⊥⟩+(1− 1

N)|f(xi)⟩−
1
N

∑
y∈[N]\f(xi)|y⟩ otherwise. The projector Πsucc only keeps the term |y⌈i/2⌉⟩ in these

sums, which implies Equation (10.2).
Let us now consider any linear combination |φ⟩ =

∑
x,p,w,f αx,p,w,f |x, p, w⟩|f⟩ of basis

states that are in the support of Π̃a,b. We claim that

∥ΠsuccT |φ⟩∥ ≤
(√

2K
N

)a+b
∥|φ⟩∥. (10.3)

First, given two states |x, p, w⟩|f⟩ and |x̄, p̄, w̄⟩|f̄⟩ where z = ((x1, x2, y1), . . . , (x2K−1,
x2K , yK)) is the output substring of w, if the tuples

(
x, p, w, (f(x′))x′ /∈{x1,...,x2K}

)
and(

x̄, p̄, w̄, (f̄(x′))x′ /∈{x1,...,x2K}
)

are different then the state ΠsuccT |x, p, w⟩|f⟩ must be or-
thogonal to ΠsuccT |x̄, p̄, w̄⟩|f̄⟩. Moreover, for any z = ((x1, x2, y1), . . . , (x2K−1, x2K , yK))
that satisfies condition (A), there are

(2K
a

)(2K−a
b

)
(N − 1)b ≤ (2K)a+bN b different ways to

choose (f(xi))i∈[2K] that satisfy conditions (B) and (C). Let us write wx⃗ = {x1, . . . , x2K}
when the output substring z of w contains x1, . . . , x2K . Then, by using the Cauchy-Schwarz
inequality and Equation (10.2), we get that

∥ΠsuccT |φ⟩∥2 =
∑

x,p,w,(f(x′))x′ /∈wx⃗

∥∥∥ ∑
(f(x′))x′∈wx⃗

αx,p,w,fΠsuccT |x, p, w⟩|f⟩
∥∥∥2

≤
∑

x,p,w,(f(x′))x′ /∈wx⃗

(∑
(f(x′))x′∈wx⃗

|αx,p,w,f |2
)(∑

(f(x′))x′∈wx⃗

∥ΠsuccT |x, p, w⟩|f⟩∥2
)

≤ ∥|φ⟩∥2 · (2K)a+bN b

(
1
N

)a(1
N2

)b
=
(

2K
N

)a+b
∥|φ⟩∥2,

which proves Equation (10.3). Observe now that the support of Π≤k is contained into
the union of the supports of Π̃a,b for a + b ≥ 2(K − k). Thus, by the triangle in-
equality, ∥ΠsuccT Π≤k|ϕ⟩∥ ≤

∑
a+b≥2(K−k)∥ΠsuccT Π̃a,bΠ≤k|ϕ⟩∥. This quantity is at most∑

a+b≥2(K−k)

(√
2K
N

)a+b
∥Π̃a,bΠ≤k|ϕ⟩∥ by Equation (10.3). Finally, by Cauchy-Schwarz’

inequality and the fact that the supports of the projectors Π̃a,b are disjoint, we have
∥ΠsuccT Π≤k|ϕ⟩∥ ≤

√∑
a+b≥2(K−k)

(2K
N

)a+b
√∑

a,b∥Π̃a,bΠ≤k|ϕ⟩∥2 ≤ N
(2K
N

)K−k∥Π≤k|ϕ⟩∥.

We can now conclude the proof of the main result of this section.
Theorem 10.4.6. The success probability of finding K disjoint collisions in a random
function f : [M]→ [N] is at most O(T 3/(K2N))K/2 + 2−K for any algorithm making T
quantum queries to f and any 1 ≤ K ≤ N/8.
Proof. Let |ψT ⟩ (resp. |ϕT ⟩) denote the state of the algorithm after T queries in the
standard (resp. recording) query model. We recall that |ψT ⟩ = T |ϕT ⟩ (Theorem 10.3.3).
Thus, by the triangle inequality, the success probability σ = ∥Πsucc|ψT ⟩∥2 satisfies

√
σ ≤

∥ΠsuccT Π≥K/2|ϕT ⟩∥+ ∥ΠsuccT Π≤K/2|ϕT ⟩∥ ≤ ∥Π≥K/2|ϕT ⟩∥+ ∥ΠsuccT Π≤K/2|ϕT ⟩∥. Using
Propositions 10.4.4 and 10.4.5, we have that

√
σ ≤

(
T
K/2
)(

4
√
T/N

)K/2 +N(2K/N)K/2 ≤
O(T 3/2/(K

√
N))K/2+2−K/2−1. Finally, the upper bound on σ is derived from the standard

inequality (u+ v)2 ≤ 2u2 + 2v2.

138

10.5 Time lower bound for K-Search

10.5 Time lower bound for K-Search
In this section, we illustrate the use of the recording query model to upper bound the
success probability of a query-bounded algorithm on a non-uniform input distribution.
Theorem 10.5.1. The success probability of finding K ≤ N/8 preimages of 1 in a random
function f : [M] → {0, 1} where f(x) = 1 with probability K/N for each x ∈ [M] is at
most O(T 2/(KN))K/2 + 2−K for any algorithm using T quantum queries to f .

We show that, similarly to the classical setting where a query can reveal a 1 with
probability K/N , the amplitude of the basis states that record a new 1 increases by a
factor of

√
K/N after each query (Proposition 10.5.5). Thus, the amplitude of the basis

states that have recorded at least K/2 ones after T queries is at most O(T/
√
KN)K/2.

This implies that any algorithm with T < O(
√
KN) queries is likely to output at least K/2

ones at positions that have not been recorded. These outputs can only be correct with
probability O(K/N)K/2 (Proposition 10.5.6).

10.5.1 Recording query operator
We describe a recording operator that encodes the distribution that gives f : [M]→ [N]
where f(x) = 1 with probability K/N independently for each x ∈ [M]. In the standard
query model, the oracle’s initial state is |init⟩ = ⊗x∈[M]

(√
1−K/N |0⟩Fx +

√
K/N |1⟩Fx

)
for this distribution. Consequently, we instantiate the recording query model as follows.
Definition 10.5.2. For any x ∈ [M], define the unitary Sx acting on the register Fx to be

Sx|⊥⟩Fx = |+⟩Fx , Sx|+⟩Fx = |⊥⟩Fx , Sx|−⟩Fx = |−⟩Fx

where α =
√

1−K/N , β =
√
K/N and |+⟩Fx = α|0⟩Fx +β|1⟩Fx , |−⟩Fx = β|0⟩Fx−α|1⟩Fx .

We have T |⊥M ⟩ = |init⟩ when T = ⊗x∈[M]Sx as required by Theorem 10.3.3. The
recording query operator is R = SOS since S† = S, and it satisfies the next equations.
Lemma 10.5.3. If the recording query operator R associated with Definition 10.5.2 is
applied to a basis state |x, p, w⟩|f⟩ where p = 1 then the register |f(x)⟩Fx is mapped to

(1− 2β2)|⊥⟩ + 2αβ2|0⟩ − 2α2β|1⟩ if f(x) = ⊥
2αβ2|⊥⟩ + (1− 2α2β2)|0⟩ + 2α3β|1⟩ if f(x) = 0
−2α2β|⊥⟩ + 2α3β|0⟩ + (1− 2α4)|1⟩ if f(x) = 1

and the other registers are unchanged. If p = 0 then none of the registers are changed.
Proof. By definition, the unitary Sx maps |⊥⟩Fx 7→ |+⟩, |0⟩Fx 7→ α|⊥⟩+ β|−⟩, |1⟩Fx 7→
β|⊥⟩ − α|−⟩. Thus, the action on the register Fx is

• If f(x) = ⊥ then |f(x)⟩Fx

S7−→ |+⟩ O7−→ α|0⟩ − β|1⟩ S7−→ (α2 − β2)|⊥⟩+ 2αβ|−⟩.

• If f(x) = 0 then |f(x)⟩Fx

S7−→ α|⊥⟩+ β|−⟩ O7−→ α|⊥⟩+ β(β|0⟩+ α|1⟩) S7−→ 2αβ2|⊥⟩+
(1− 2α2β2)|0⟩+ 2α3β|1⟩.

• If f(x) = 1 then |f(x)⟩Fx

S7−→ β|⊥⟩ − α|−⟩ O7−→ β|⊥⟩ − β(β|0⟩+ α|1⟩) S7−→ −2α2β|⊥⟩+
2α3β|0⟩+ (1− 2α4)|1⟩.

If α≫ β, the above lemma shows that R is close to the mapping |⊥⟩Fx 7→ |⊥⟩ − 2β|1⟩,
|0⟩Fx 7→ |0⟩+2β|1⟩, |1⟩Fx 7→ −|1⟩+2β(|0⟩−|⊥⟩) up to lower order terms of amplitude O(β2).

139

Chapter 10 Time-Space Tradeoffs by Recording Queries

10.5.2 Analysis of the recording progress
The measure of progress is based on the number of ones contained in the oracle’s register.
We first give some projectors related to this quantity.

Definition 10.5.4. We define the following projectors by giving the basis states on which
they project:

• Π≤k, Π=k and Π≥k: all basis states |x, p, w⟩|f⟩ such that f contains respectively at
most, exactly or at least k coordinates equal to 1.

• Π=k,⊥ and Π=k,0: all basis states |x, p, w⟩|f⟩ such that (1) f contains exactly k
coordinates equal to 1, (2) the phase multiplier is p = 1 and (3) f(x) = ⊥ or
f(x) = 0 respectively.

We can now define the measure of progress qt,k for t queries and k ones as

qt,k = ∥Π≥k|ϕt⟩∥

where |ϕt⟩ is the state after t queries in the recording query model. The main result of
this section is the following bound on the growth of qt,k.

Proposition 10.5.5. For all t and k, we have that qt,k ≤
(
t
k

)(4
√
K√
N

)k
.

Proof. First, q0,0 = 1 and q0,k = 0 for all k ≥ 1 since the initial state is |ϕ0⟩ = |0⟩|⊥M ⟩.
Then, we prove that qt,k satisfies the following recurrence relation

qt+1,k+1 ≤ qt,k+1 + 4
√
K

N
qt,k. (10.4)

From this result, it is trivial to conclude that qt,k ≤
(
t
k

)(4
√
K√
N

)k
. In order to prove

Equation (10.4), we first observe that qt+1,k+1 = ∥Π≥k+1Ut+1R|ϕt⟩∥ = ∥Π≥k+1R|ϕt⟩∥
where Ut+1 is the unitary applied by the algorithm at time t+ 1. Then, on a basis state
|x, p, w⟩|f⟩, the recording query operator R acts as the identity on the registers Fx′ for
x′ ̸= x. Consequently, the basis states |x, p, w⟩|f⟩ in |ϕt⟩ that may contribute to qt+1,k+1
must either already contain k + 1 ones in f , or exactly k ones in f and f(x) ̸= 1, p = 1.
This implies that

qt+1,k+1 ≤ qt,k+1 + ∥Π≥k+1RΠ=k,⊥|ϕt⟩∥+ ∥Π≥k+1RΠ=k,0|ϕt⟩∥.

We first bound the term ∥Π≥k+1RΠ=k,⊥|ϕt⟩∥. Consider any state |x, p, w⟩|f⟩ in the
support of Π=k,⊥. By Lemma 10.5.3, we have Π≥k+1R|x, p, w⟩|f⟩ = −2α2β|x, p, w⟩|1⟩Fx

⊗x′ ̸=x|f(x′)⟩Fx′ . Since any two basis states in the support of Π=k,⊥ remain orthogonal
after Π≥k+1R is applied, we obtain that ∥Π≥k+1RΠ=k,⊥|ϕt⟩∥ = 2α2β∥Π=k,⊥|ϕt⟩∥ ≤
2
√
K/N(1−K/N)qt,k.

Similarly, for |x, p, w⟩|f⟩ in the support of Π=k,0 we have ∥Π≥k+1R|x, p, w⟩|f⟩∥ = 2α3β
by Lemma 10.5.3. Consequently, ∥Π≥k+1RΠ=k,0|ϕt⟩∥ = 2α3β∥Π=k,0|ϕt⟩∥ ≤ 2

√
K/N(1−

K/N)3/2qt,k. We can now conclude the proof,

qt+1,k+1 ≤ qt,k+1 + 2
√
K

N

(
1− K

N

)
qt,k + 2

√
K

N

(
1− K

N

)3/2
qt,k ≤ qt,k+1 + 4

√
K

N
qt,k.

140

10.5 Time lower bound for K-Search

10.5.3 From the recording progress to the success probability
We connect the success probability σ = ∥Πsucc|ψT ⟩∥2 in the standard query model to the
final progress qT,k in the recording query model after T queries. We show that if the
algorithm has made no significant progress for k ≥ K/2 then it needs to “guess” that
f(x) = 1 for about K − k positions where the Fx register does not contain 1. Classically,
the probability to find K − k preimages of 1 at positions that have not been queried would
be (K/N)K−k. Here, we show similarly that if a unit state contains at most k ones in the
quantum recording model, then after mapping it to the standard query model (by applying
the operator T of Theorem 10.3.3) the probability that the output register contains the
correct positions of K preimages of 1 is at most 3K

(
K
N

)K−k.

Proposition 10.5.6. For any |ϕ⟩, we have ∥ΠsuccT Π≤k|ϕ⟩∥ ≤ 3K/2
(√

K
N

)K−k
∥Π≤k|ϕ⟩∥.

Proof. Let |x, p, w⟩|f⟩ be any basis state in the support of Π≤k. The output value z is
a substring of w made of K distinct values x1, . . . , xK ∈ [M] indicating positions where
the input f is supposed to contain ones. By definition of Π≤k, we have f(xi) ̸= 1 for at
least K − k indices i ∈ [K]. For each such index i, after applying T = ⊗x′∈[M]Sx′ , the
amplitude of |1⟩Fxi

is
√

K
N (if f(xi) = ⊥) or

√
K
N

(
1− K

N

)
(if f(xi) = 0) by Definition 10.5.2.

Consequently,

∥ΠsuccT |x, p, w⟩|f⟩∥ ≤

(√
K

N

)K−k

. (10.5)

Fix any state |ϕ⟩ and denote |φ⟩ = Π≤k|ϕ⟩ =
∑

x,p,w,f αx,p,w,f |x, p, w⟩|f⟩. Let us write
wx⃗ = {x1, . . . , xK} when the output substring z of w contains x1, . . . , xK . For any two basis
states |x, p, w⟩|f⟩ and |x̄, p̄, w̄⟩|f̄⟩, if

(
x, p, w, (f(x′))x′ /∈wx⃗

)
̸=
(
x̄, p̄, w̄, (f̄(x′))x′ /∈wx⃗

)
then

ΠsuccT |x, p, w⟩|f⟩ is orthogonal to ΠsuccT |x̄, p̄, w̄⟩|f̄⟩. There are 3K choices for |x, p, w⟩|f⟩
once we set the value of (x, p, w, (f(x′))x′ /∈wx⃗

) since it remains to choose f(x′) ∈ {⊥, 0, 1}
for x′ ∈ wx⃗. By using the Cauchy–Schwarz inequality and Equation (10.5), we get that

∥ΠsuccT |φ⟩∥2 =
∑

x,p,w,(f(x′))x′ /∈wx⃗

∥∥∥∥ ∑
(f(x′))x′∈wx⃗

αx,p,w,fΠsuccT |x, p, w⟩|f⟩
∥∥∥∥2

≤
∑

x,p,w,(f(x′))x′ /∈wx⃗

(∑
(f(x′))x′∈wx⃗

|αx,p,w,f |2
)(∑

(f(x′))x′∈wx⃗

∥ΠsuccT |x, p, w⟩|f⟩∥2
)

≤ ∥|φ⟩∥2 · 3K
(
K

N

)K−k
.

We can now conclude the proof of the main result.

Proof of Theorem 10.5.1. Let |ψT ⟩ (resp. |ϕT ⟩) denote the state of the algorithm af-
ter T queries in the standard (resp. recording) query model. According to Theo-
rem 10.3.3, we have |ψT ⟩ = T |ϕT ⟩. Thus, by the triangle inequality, the success prob-
ability σ = ∥Πsucc|ψT ⟩∥2 satisfies

√
σ ≤ ∥ΠsuccT Π≥K/2|ϕT ⟩∥ + ∥ΠsuccT Π≤K/2|ϕT ⟩∥ ≤

∥Π≥K/2|ϕT ⟩∥+ ∥ΠsuccT Π≤K/2|ϕT ⟩∥. Using Propositions 10.5.5 and 10.5.6, we have that
√
σ ≤

(
T
K/2
)(

4
√
K/N

)K/2 + 3K/2(√K/N)K/2 ≤ O(T/
√
KN)K/2 + 2−K/2−1. Finally, the

upper bound on σ is derived from the standard inequality (u+ v)2 ≤ 2u2 + 2v2.

141

Chapter 10 Time-Space Tradeoffs by Recording Queries

10.6 Time-space tradeoffs
10.6.1 Time-space tradeoff for Collision Pairs Finding
We use the time lower bound obtained in Section 10.4 to derive a new time-space tradeoff
for the problem of finding K disjoint collisions in a random function f : [M]→ [N]. We
recall that the output is produced in an online fashion (Section 10.2.2), meaning that a
collision can be output as soon as it is discovered. The length of the output is not counted
toward the space bound. We allow the same collision to be output several times, but it
contributes only once to the total count.

Theorem 10.6.1. Any quantum algorithm for finding K disjoint collisions in a random
function f : [M]→ [N] with success probability 2/3 must satisfy a time-space tradeoff of
T 3S ≥ Ω(K3N), where 1 ≤ K ≤ N/8.

Proof. Our proof relies on the time-segmentation method for large-output problems used
in [BFK+81; KŠW07] for instance. Fix any quantum circuit C in the space-bounded
model of Section 10.2.2 running in time T and using S > Ω(logN) qubits of memory. The
circuit C is partitioned into L = T/T ′ consecutive sub-circuits C1 ∥C2 ∥ · · ·∥CL each running
in time T ′ = S2/3N1/3, where Cj takes as input the output memory of Cj−1 for each
j ∈ [L]. Define Xj to be the random variable that counts the number of (mutually) disjoint
collisions that C outputs between time (j−1)T ′ and jT ′ (i.e. in the sub-circuit Cj) when the
input is a random function f : [M]→ [N]. The algorithm must satisfy

∑L
j=1 E[Xj] ≥ Ω(K)

to be correct. We claim that the algorithm outputs at most 3S collisions in expectation in
each segment of the computation. Assume by contradiction that E[Xj] ≥ 3S for some j.
Since Xj is bounded between 0 and N we have Pr[Xj > 2S] ≥ S/N . Consequently, by
running Cj on the completely mixed state on S qubits we obtain 2S disjoint collisions with
probability at least S/N ·2−S in time T ′ (this is akin to a union bound argument). However,
by Theorem 10.4.6, no quantum algorithm can find more than 2S disjoint collisions in
time T ′ = S2/3N1/3 with success probability larger than 4−S+1. This contradiction implies
that E[Xj] ≤ 3S for all j. Consequently, there must be at least L ≥ Ω(K/S) sub-circuits
in order to have

∑L
j=1 E[Xj] ≥ Ω(K). Since each sub-circuit runs in time S2/3N1/3 the

running time of C is T ≥ Ω(L · S2/3N1/3) ≥ Ω(KN1/3/S1/3).

As an illustration of the above result, we obtain that any quantum algorithm for
finding N/8 disjoint collisions in a random function must satisfy a time-space tradeoff of
TS1/3 ≥ Ω(N4/3). We prove that any improvement to this lower bound would imply a
breakthrough for the Element Distinctness problem.

Definition 10.6.2. The Element Distinctness problem EDN on domain size N consists
of finding a collision in a random function f : [N]→ [N2].

It is well-known that the query complexity of Element Distinctness is T = Θ(N2/3)
[AS04; Amb07]. However, it is a long-standing open problem to find any quantum time-
space lower bound (even classically the question is not completely settled yet [Yao94;
BSSV03]). Here, we show that any improvement to Theorem 10.6.1 would imply a non-
trivial time-space tradeoff for Element Distinctness. This result relies on a reduction
presented in Algorithm 10.1 and analyzed in Proposition 10.6.3 (the constants c0, c1, c2
are chosen in the proof).

Proposition 10.6.3. Let N be a square number. If there is an algorithm solving EDN in
time TN and space SN then Algorithm 10.1 runs in time O(NT√

N) and space O
(
S√

N

)
,

and it finds c1N collisions in any function f : [N]→ [N] containing at least c0N collisions.

142

10.6 Time-space tradeoffs

Input: a function f : [N]→ [N] containing at least c0N collisions.
Output: at least c1N collisions in f (not necessarily disjoint).

1. Repeat c2N times:
a) Sample a 4-wise independent hash function h : [

√
N]→ [N] and store it in

memory.
b) Run an algorithm for ED√

N on input f ◦ h : [
√
N] → [N]. If it finds a

collision (f ◦ h(i), f ◦ h(j)) check if h(i) ̸= h(j) and output the collision
(h(i), h(j)) in this case.

Algorithm 10.1: Finding collisions by using ED√
N .

Proof. We choose c0 = 40, c1 = 1/104 and c2 = 8. We study the probabilities of the
following events to occur in a fixed round of Algorithm 10.1:

• Event A: The hash function h is collision free (i.e. h(i) ̸= h(j) for all i ̸= j).

• Event B: None of the collisions output during the previous rounds is present in the
image of h.

• Event C: The function f ◦ h : [
√
N]→ [N] contains a collision.

• Event D: The algorithm for ED√
N finds a collision at step 2.b.

Algorithm 10.1 succeeds if and only if the event A∧B ∧C ∧D occurs during at least c1N
rounds. We now lower bound the probability of this event happening.

For event A, let us consider the random variable X =
∑

i ̸=j∈[
√
N] 1h(i)=h(j). Using

that h is pairwise independent, we have E[X] =
(√

N
2
) 1
N ≤

1
2 . Thus, by Markov’s inequality,

Pr[A] = 1− Pr[X ≥ 1] ≥ 1
2 .

For event B, let us assume that k < c1N collisions (x1, x2), . . . , (x2k−1, x2k) have
been output so far. For any i ∈ [k], the probability that both x2i−1 and x2i belong to
{h(1), . . . , h(

√
N)} is at most

(√
N
2
) 2
N2 ≤ 1

N since h is pairwise independent. By a union
bound, Pr[B] ≥ 1− k

N ≥ 1− c1.
For event C, let us consider the binary random variables Yi,j = 1f◦h(i)=f◦h(j) for

i ̸= j ∈ [
√
N], and let Y =

∑
i ̸=j Yi,j be twice the number of collisions in f ◦ h. Note that

we may have Yi,j = 1 because h(i) = h(j) (this is taken care of in event A). For each
y ∈ [N], let Ny = |{x : f(x) = y}| denote the number of elements that are mapped to y
by f . Using that h is 4-wise independent, for any i ̸= j ̸= k ̸= ℓ we have,


Pr[Yi,j = 1] =

∑
y∈[N] N

2
y

N2

Pr[Yi,j = 1 ∧ Yi,k = 1] =
∑

y∈[N] N
3
y

N3

Pr[Yi,j = 1 ∧ Yk,ℓ = 1] = Pr[Yi,j = 1] · Pr[Yk,ℓ = 1].

143

Chapter 10 Time-Space Tradeoffs by Recording Queries

Consequently, E[Y] =
(√

N
2
)∑

y∈[N] N
2
y

N2 and

Var[Y] =
∑
{i,j}

Var[Yi,j] +
∑

{i,j}≠{i,k}

Cov[Yi,j , Yi,k] +
∑

{i,j}∩{k,ℓ}=∅

Cov[Yi,j , Yk,ℓ]

≤
∑
{i,j}

E[Y 2
i,j] +

∑
{i,j}≠{i,k}

E[Yi,jYi,k]

=
(√

N

2

)∑
y∈[N]N

2
y

N2 + 3
(√

N

3

)∑
y∈[N]N

3
y

N3

where we have used that Yi,j and Yk,ℓ are independent when i ≠ j ̸= k ̸= ℓ. The
term

∑
y∈[N]N

2
y is equal to the number of pairs (x, x′) ∈ [N]2 such that f(x) = f(x′).

Each collision in f gives two such pairs, and we must also count the pairs (x, x). Thus,∑
y∈[N]N

2
y ≥ (1 + 2c0)N . Moreover,

∑
y∈[N]N

3
y ≤ (

∑
y∈[N]N

2
y)3/2. Consequently,

Var[Y]
E[Y]2 ≤

1 +
√
N

(∑
y∈[N] N

2
y

N2

)1/2

(√
N
2
)∑

y∈[N] N
2
y

N2

≤ 4(1 +
√

1 + 2c0)
1 + 2c0

.

Finally, according to Chebyshev’s inequality, Pr[Y = 0] ≤ Pr[|Y − E[Y]| ≥ E[Y]] ≤ Var[Y]
E[Y]2 .

Thus, Pr[C] = 1− Pr[Y = 0] ≥ 1− 4(1+
√

1+2c0)
1+2c0

.
For event D, we have Pr[D |A ∧B ∧ C] ≥ 2/3 assuming the bounded-error algorithm

for solving ED√
N succeeds with probability 2/3.

The probability of the four events happening together is Pr[A ∧ B ∧ C ∧ D] =
Pr[D | A ∧ B ∧ C] · Pr[A ∧ B ∧ C] ≥ Pr[D | A ∧ B ∧ C] · (Pr[A] + Pr[B] + Pr[C] − 2) ≥
2
3 ·
(

1
2 − c1 − 4(1+

√
1+2c0)

1+2c0

)
≥ 1/250. Let τ be the number of rounds after which c1N colli-

sions have been found (i.e. A∧B ∧C ∧D has occurred c1N times). We have E[τ] ≤ 8c1N ,
and by Markov’s inequality Pr[τ ≥ c2N] ≤ 250c1/c2 ≤ 1/3. Thus, with probability at
least 2/3, Algorithm 10.1 outputs at least c1N collisions in f .

We now use the above reduction to transform any low-space algorithm for Element
Distinctness into one for finding Ω(N/ logN) disjoint collisions in a random function.
Observe that Algorithm 10.1 does not necessarily output collisions that are mutually
disjoint. Nevertheless, there is a small probability that a random function f : [M]→ [N]
contains multi-collisions of size larger than logN when M ≈ N [FO89]. Thus, there is
only a logN loss in the analysis.

Proposition 10.6.4. Suppose that there exists a bounded-error quantum algorithm for
solving Element Distinctness on domain size N that satisfies a time-space tradeoff of
TαSβ ≤ Õ

(
N2(γ−α)) for some constants α, β, γ. Then, there exists a bounded-error

quantum algorithm for finding Ω(N/ logN) disjoint collisions in a random function f :
[10N]→ [N] that satisfies a time-space tradeoff of TαSβ ≤ Õ(Nγ).

Proof. We use the constants c0, c1, c2 specified in the proof of Proposition 10.6.3. First,
we note that a random function f : [10N] → [N] contains c0N collisions and no multi-
collisions of size larger than log(N) with large probability [FO89]. Consequently, any
set of c1N collisions must contain at least c1N/ logN mutually disjoint collisions with
large probability. Assume now that there exists an algorithm solving ED√

10N in time
T√

10N and space S√
10N such that

(
T√

10N
)α
Sβ√10N ≤ Ω̃(Nγ−α). Then, by plugging it

144

10.6 Time-space tradeoffs

into Algorithm 10.1, one can find c1N/ logN disjoint collisions in a random function
f : [10N]→ [N] in time T = O

(
NT√

10N
)

and space S = O
(
S√

10N
)
. We derive from the

above tradeoff that TαSβ ≤ Õ(Nγ).

As an application of Proposition 10.6.4, we obtain the following result regarding the
hardness of finding Ω̃(N) collisions.
Corollary 10.6.5. Suppose that there exists ϵ ∈ (0, 1) such that any quantum algorithm for
finding Ω̃(N) disjoint collisions in a random function f : [10N]→ [N] must satisfy a time-
space tradeoff of TS1/3 ≥ Ω̃(N4/3+ϵ). Then, any quantum algorithm for solving Element
Distinctness on domain size N must satisfy a time-space tradeoff of TS1/3 ≥ Ω̃(N2/3+2ϵ).

We conjecture that the optimal tradeoff for finding K collisions is T 2S = Θ(K2N), which
would imply an optimal time-space tradeoff of T 2S ≥ Ω̃(N2) for Element Distinctness.
Conjecture 1. Any quantum algorithm for finding K disjoint collisions in a random
function f : [M] → [N] with success probability 2/3 must satisfy a time-space tradeoff
of T 2S ≥ Ω(K2N).
Corollary 10.6.6. If Conjecture 1 is true, then any quantum algorithm for solving the
Element Distinctness problem with success probability 2/3 must satisfy a time-space tradeoff
of T 2S ≥ Ω̃(N2).

We describe a quantum algorithm that achieves the tradeoff of T 2S ≤ Õ(K2N). In
order to simplify the analysis, we do not require the collisions to be disjoint.

1. Repeat Õ(K/S) times:
a) Sample a subset G ⊂ [N] of size S uniformly at random.
b) Construct a table containing all pairs (x, f(x)) for x ∈ G. Sort the table

according to the second entry of each pair.
c) Define the function g : [N]\G→ {0, 1} where g(x) = 1 iff there exists x′ ∈ G

such that f(x) = f(x′). Run the Grover search algorithm [BBHT98] on g, by
using the table computed at step 1.b, to find all pairs (x, x′) ∈ G× ([N] \G)
such that f(x) = f(x′). Output all of these pairs.

Algorithm 10.2: Finding K collision pairs in f : [N]→ [N] using a memory of size S.

Proposition 10.6.7. For any 1 ≤ K ≤ O(N) and Ω̃(logN) ≤ S ≤ Õ(K2/3N1/3), there
exists a bounded-error quantum algorithm that can find K collisions in a random function
f : [N]→ [N] by making T = Õ(K

√
N/S) queries and using S qubits of memory.

Proof. We prove that Algorithm 10.2 satisfies the statement of the proposition. For
simplicity, we do not try to tune the hidden factors in the big O notations.

The probability that a fixed pair (x, x′) satisfies (x, x′) ∈ G× ([N] \G) for at least one
iteration of step 1 is Ω(K/S · S/N · (1 − S/N)) = Ω(K/N). Since a random function
f : [N] → [N] contains Ω(N) collisions with high probability, the algorithm encounters
Ω(K) collisions in total. Thus, if the Grover search algorithm never fails we obtain the
desired number of collisions.

The expected number of pre-images of 1 under g is O(S). Consequently, the complexity
of Grover’s search at step 1.c is O(

√
SN). The overall query complexity is T = Õ(K/S ·√

SN) = Õ(K
√
N/S), and the space complexity is Õ(S).

145

Chapter 10 Time-Space Tradeoffs by Recording Queries

10.6.2 Time-space tradeoff for Sorting
We use the time lower bound obtained in Section 10.5 to reprove the time-space tradeoff
for the Sorting problem described in [KŠW07, Theorem 21]. The input to the Sorting
problem is represented as a function f : [N]→ {0, 1, 2} (we do not need to consider a larger
range for the proof). A quantum algorithm for the Sorting problem must output in order
a sequence x1, . . . , xN ∈ [N] of distinct integers such that f(x1) ≥ f(x2) ≥ · · · ≥ f(xN)
with probability at least 2/3.
Theorem 10.6.8. Any quantum algorithm for sorting a function f : [N]→ {0, 1, 2} with
success probability 2/3 must satisfy a time-space tradeoff of T 2S ≥ Ω(N3).
Proof. The proof is a modified version of [KŠW07, Theorem 21] adapted to our version of
the K-Search problem. Given a circuit C that runs in time T and space Ω(logN) ≤ S ≤
N/64, we partition it into L = T/T ′ consecutive sub-circuits C1 ∥ C2 ∥ · · · ∥ CL each running
in time T ′ =

√
SN/4. Assume by contradiction that a circuit Cj outputs the elements of

ranks r, r + 1, . . . , r + 2S − 1 for some r ≤ N/2. We use Cj to solve the K-search problem
for K = 2S as follows. Given an input g : [N/2]→ {0, 1} to the K-search problem where
g(x) = 1 with probability K

N/4 for each x, define the function f : [N]→ {0, 1, 2} where

f(x) =


2 if x < r,
g(x− r + 1) if r ≤ x < r +N/2,
0 if x ≥ r +N/2.

Note that the function g contains at least 2S preimages of 1 with probability at least 2S/N .
Thus, if the circuit C is run on the input f , then the indices output by the sub-circuit Cj
must contain the position of 2S preimages of 1 with probability at least 2/3 · 2S/N .
Consequently, by running Cj on the completely mixed state on S qubits we can find 2S
preimages of 1 under g with probability at least 2/3 · 2S/N · 2−S in time T ′. However, by
Theorem 10.5.1, any such algorithm must succeed with probability at most 4−S+1. This
contradiction implies that there must be at least L ≥ Ω(N/S) sub-circuits in C. Thus, the
running time of C is T ≥ Ω(L ·

√
SN) ≥ Ω(N3/2/

√
S).

The time-space tradeoffs for the Boolean matrix-vector product [KŠW07, Theorem 23]
and the Boolean matrix product [KŠW07, Theorem 25] problems can be reproved in a
similar way.

10.7 Discussion
We investigated the use of the quantum recording technique for proving time-space tradeoff
lower bounds. As in previous work [KŠW07; AŠW09], we reduced this question to
query complexity lower bounds in the exponentially small success probability regime by
using a quantum union-bound argument. This method cannot give a better tradeoff
than T 3S ≥ Ω(K3N) for finding K collision pairs. Indeed, the slicing technique used in
Theorem 10.6.1 also applies to the quantum algorithms that must “compress” their memory
to S qubits every S2/3N1/3 steps of computation, but that can use unlimited memory
inside each slice. There is a simple algorithm in this setting that can find K collision pairs
by using T = Õ(KN1/3/S1/3) quantum queries, which matches our lower bound. This is
in stark contrast with the Sorting problem where having temporary unlimited memory
does not help the computation. In order to improve the above tradeoff, it may be easier to
first consider the comparison-based query model, where a near-optimal classical time-space
tradeoff is known for the Element Distinctness problem [BFM+87; Yao94].

146

Bibliography

[AA05] S. Aaronson and A. Ambainis. “Quantum Search of Spatial Regions”. In:
Theory of Computing 1.4 (2005), pp. 47–79 (cit. on p. 19).

[Aar05] S. Aaronson. “Limitations of Quantum Advice and One-Way Communica-
tion”. In: Theory of Computing 1.1 (2005), pp. 1–28 (cit. on p. 131).

[Aar15] S. Aaronson. “Read the Fine Print”. In: Nature Physics 11.4 (2015), pp. 291–
293 (cit. on pp. 87, 97).

[ABC+20] S. Arunachalam, A. Belovs, A. M. Childs, R. Kothari, A. Rosmanis, and
R. de Wolf. “Quantum Coupon Collector”. In: Proceedings of the 15th
Conference on the Theory of Quantum Computation, Communication and
Cryptography (TQC). 2020, 10:1–10:17 (cit. on p. 31).

[Abr90] K. Abrahamson. “A Time-Space Tradeoff for Boolean Matrix Multiplica-
tion”. In: Proceedings of the 31st Symposium on Foundations of Computer
Science (FOCS). 1990, pp. 412–419 (cit. on p. 128).

[AG19a] J. van Apeldoorn and A. Gilyén. “Improvements in Quantum SDP-Solving
with Applications”. In: Proceedings of the 46th International Colloquium
on Automata, Languages, and Programming (ICALP). 2019, 99:1–99:15
(cit. on pp. 97, 98).

[AG19b] J. van Apeldoorn and A. Gilyén. Quantum Algorithms for Zero-Sum Games.
arXiv:1904.03180 [quant-ph]. 2019 (cit. on p. 98).

[AGGW20a] J. van Apeldoorn, A. Gilyén, S. Gribling, and R. de Wolf. “Convex Opti-
mization Using Quantum Oracles”. In: Quantum 4 (2020), p. 220 (cit. on
p. 98).

[AGGW20b] J. van Apeldoorn, A. Gilyén, S. Gribling, and R. de Wolf. “Quantum SDP-
Solvers: Better Upper and Lower Bounds”. In: Quantum 4 (2020), p. 230
(cit. on pp. 29, 31, 32, 98).

[AHLW16] Y. Ai, W. Hu, Y. Li, and D. P. Woodruff. “New Characterizations in
Turnstile Streams with Applications”. In: Proceedings of the 31st Conference
on Computational Complexity (CCC). 2016 (cit. on pp. 115, 121).

[AHN+20] S. Arunachalam, V. Havlicek, G. Nannicini, K. Temme, and P. Wocjan.
Simpler (Classical) and Faster (Quantum) Algorithms for Gibbs Partition
Functions. arXiv:2009.11270 [quant-ph]. 2020 (cit. on p. 43).

[AK16] S. Arora and S. Kale. “A Combinatorial, Primal-Dual Approach to Semidef-
inite Programs”. In: Journal of the ACM 63.2 (2016), pp. 1–35 (cit. on
p. 98).

[AKN98] D. Aharonov, A. Kitaev, and N. Nisan. “Quantum Circuits with Mixed
States”. In: Proceedings of the 30th Symposium on Theory of Computing
(STOC). 1998, pp. 20–30 (cit. on pp. 7, 17).

147

http://arxiv.org/abs/1904.03180
http://arxiv.org/abs/2009.11270

Bibliography

[AKO10] A. Andoni, R. Krauthgamer, and K. Onak. Streaming Algorithms from
Precision Sampling. arXiv:1011.1263 [cs.DS]. 2010 (cit. on pp. 7, 116–
118, 123).

[AL21] S. Apers and T. Lee. “Quantum Complexity of Minimum Cut”. In: Pro-
ceedings of the 36th Computational Complexity Conference (CCC 2021).
2021, 28:1–28:33 (cit. on p. 98).

[ALS20] B. Axelrod, Y. P. Liu, and A. Sidford. “Near-optimal Approximate Discrete
and Continuous Submodular Function Minimization”. In: Proceedings of
the 31st Symposium on Discrete Algorithms (SODA). 2020, pp. 837–853
(cit. on pp. 98, 102, 103, 112).

[AM20] S. Arunachalam and R. Maity. “Quantum Boosting”. In: Proceedings of
the 37th International Conference on Machine Learning (ICML). 2020,
pp. 377–387 (cit. on p. 98).

[Amb02] A. Ambainis. “Quantum Lower Bounds by Quantum Arguments”. In: Jour-
nal of Computer and System Sciences 64.4 (2002), pp. 750–767 (cit. on
pp. 128, 132).

[Amb07] A. Ambainis. “Quantum Walk Algorithm for Element Distinctness”. In:
SIAM Journal on Computing 37.1 (2007), pp. 210–239 (cit. on pp. 7, 127,
130, 142).

[Amb10a] A. Ambainis. “A New Quantum Lower Bound Method, with an Application
to a Strong Direct Product Theorem for Quantum Search”. In: Theory of
Computing 6.1 (2010), pp. 1–25 (cit. on p. 128).

[Amb10b] A. Ambainis. “Quantum Search with Variable Times”. In: Theory of Com-
puting Systems 47.3 (2010), pp. 786–807 (cit. on p. 46).

[Amb10c] A. Ambainis. Variable Time Amplitude Amplification and a Faster Quan-
tum Algorithm for Solving Systems of Linear Equations. arXiv:1010.4458
[quant-ph]. 2010 (cit. on pp. 46, 47, 49–51, 54).

[Amb12] A. Ambainis. “Variable Time Amplitude Amplification and Quantum Algo-
rithms for Linear Algebra Problems”. In: Proceedings of the 29th Interna-
tional Symposium on Theoretical Aspects of Computer Science (STACS).
2012, pp. 636–647 (cit. on pp. 4, 45–47).

[AMRR11] A. Ambainis, L. Magnin, M. Roetteler, and J. Roland. “Symmetry-Assisted
Adversaries for Quantum State Generation”. In: Proceedings of the 26th
Computational Complexity Conference (CCC). 2011 (cit. on p. 128).

[AMRS20] G. Alagic, C. Majenz, A. Russell, and F. Song. “Quantum-Access-Secure
Message Authentication via Blind-Unforgeability”. In: Proceedings of the
39th International Conference on the Theory and Applications of Crypto-
graphic Techniques (EUROCRYPT). 2020, pp. 788–817 (cit. on p. 128).

[AMS99] N. Alon, Y. Matias, and M. Szegedy. “The Space Complexity of Approx-
imating the Frequency Moments”. In: Journal of Computer and System
Sciences 58.1 (1999), pp. 137–147 (cit. on pp. 3, 7, 25, 116, 117, 123, 124).

[And86] H. L. Anderson. “Metropolis, Monte Carlo, and the MANIAC”. In: Los
Alamos Science 14 (1986), pp. 96–107 (cit. on p. 1).

148

http://arxiv.org/abs/1011.1263
http://arxiv.org/abs/1010.4458

Bibliography

[Ape19] S. Apers. “Quantum Walk Sampling by Growing Seed Sets”. In: Proceedings
of the 27th European Symposium on Algorithms (ESA). 2019, 9:1–9:12
(cit. on p. 88).

[AS04] S. Aaronson and Y. Shi. “Quantum Lower Bounds for the Collision and
the Element Distinctness Problems”. In: Journal of the ACM 51.4 (2004),
pp. 595–605 (cit. on pp. 128, 130, 142).

[AŠW09] A. Ambainis, R. Špalek, and R. de Wolf. “A New Quantum Lower Bound
Method, with Applications to Direct Product Theorems and Time-Space
Tradeoffs”. In: Algorithmica 55.3 (2009), pp. 422–461 (cit. on pp. 7, 128,
133, 146).

[AT07] D. Aharonov and A. Ta-Shma. “Adiabatic Quantum State Generation”. In:
SIAM Journal on Computing 37.1 (2007), pp. 47–82 (cit. on pp. 5, 30, 88).

[AW18] S. Arunachalam and R. de Wolf. “Optimal Quantum Sample Complexity
of Learning Algorithms”. In: Journal of Machine Learning Research 19.1
(2018), pp. 2879–2878 (cit. on pp. 5, 31).

[AW20] S. Apers and R. de Wolf. “Quantum Speedup for Graph Sparsification,
Cut Approximation and Laplacian Solving”. In: Proceedings of the 61st
Symposium on Foundations of Computer Science (FOCS). 2020, pp. 637–
648 (cit. on pp. 62, 98).

[AW99] D. S. Abrams and C. P. Williams. Fast Quantum Algorithms for Numerical
Integrals and Stochastic Processes. arXiv:quant-ph/9908083. 1999 (cit. on
pp. 3, 26).

[Bac13] F. Bach. “Learning with Submodular Functions: A Convex Optimization
Perspective”. In: Foundations and Trends in Machine Learning 6.2-3 (2013),
pp. 145–373 (cit. on pp. 103, 104).

[BBC+01] R. Beals, H. Buhrman, R. Cleve, M. Mosca, and R. de Wolf. “Quantum
Lower Bounds by Polynomials”. In: Journal of the ACM 48.4 (2001),
pp. 778–797 (cit. on p. 128).

[BBHT98] M. Boyer, G. Brassard, P. Høyer, and A. Tapp. “Tight Bounds on Quantum
Searching”. In: Fortschritte der Physik 46.4-5 (1998), pp. 493–505 (cit. on
pp. 19, 20, 145).

[BCL13] S. Bubeck, N. Cesa-Bianchi, and G. Lugosi. “Bandits with Heavy Tail”.
In: IEEE Transactions on Information Theory 59.11 (2013), pp. 7711–7717
(cit. on pp. 26, 28).

[BCW98] H. Buhrman, R. Cleve, and A. Wigderson. “Quantum vs. Classical Com-
munication and Computation”. In: Proceedings of the 30th Symposium on
Theory of Computing (STOC). 1998, pp. 63–68 (cit. on p. 82).

[BCWZ99] H. Buhrman, R. Cleve, R. de Wolf, and C. Zalka. “Bounds for Small-
Error and Zero-Error Quantum Algorithms”. In: Proceedings of the 40th
Symposium on Foundations of Computer Science (FOCS). 1999, pp. 358–
368 (cit. on p. 41).

[BDF+04] A. Berzina, A. Dubrovsky, R. Freivalds, L. Lace, and O. Scegulnaja. “Quan-
tum Query Complexity for Some Graph Problems”. In: Proceedings of the
30th Conference on Current Trends in Theory and Practice of Computer
Science (SOFSEM). 2004, pp. 140–150 (cit. on p. 62).

149

http://arxiv.org/abs/quant-ph/9908083

Bibliography

[BDGT11] G. Brassard, F. Dupuis, S. Gambs, and A. Tapp. An Optimal Quantum
Algorithm to Approximate the Mean and its Application for Approximating
the Median of a Set of Points over an Arbitrary Distance. arXiv:1106.4267
[quant-ph]. 2011 (cit. on pp. 3, 25, 26, 30, 31).

[Bea91] P. Beame. “A General Sequential Time-Space Tradeoff for Finding Unique
Elements”. In: SIAM Journal on Computing 20.2 (1991), pp. 270–277 (cit.
on p. 128).

[Bel12] A. Belovs. “Span Programs for Functions with Constant-Sized 1-Certificates:
Extended Abstract”. In: Proceedings of the 44th Symposium on Theory of
Computing (STOC). 2012, pp. 77–84 (cit. on p. 62).

[Bel19] A. Belovs. “Quantum Algorithms for Classical Probability Distributions”.
In: Proceedings of the 27th European Symposium on Algorithms (ESA).
2019, 16:1–16:11 (cit. on p. 30).

[Ben73] C. H. Bennett. “Logical Reversibility of Computation”. In: IBM Journal of
Research and Development 17.6 (1973), pp. 525–532 (cit. on pp. 7, 18, 68,
115, 118).

[Ben89] C. H. Bennett. “Time/Space Trade-Offs for Reversible Computation”. In:
SIAM Journal on Computing 18.4 (1989), pp. 766–776 (cit. on pp. 18, 115,
118, 122).

[Ber05] D. J. Bernstein. Understanding Brute Force. ECRYPT STVL Workshop on
Symmetric Key Encryption. 2005 (cit. on p. 127).

[Ber09] D. J. Bernstein. “Cost Analysis of Hash Collisions: Will Quantum Computers
Make SHARCS Obsolete?” In: Proceedings of the 4th Workshop on Special-
purpose Hardware for Attacking Cryptograhic Systems (SHARCS). 2009,
pp. 105–116 (cit. on p. 127).

[Ber14] D. W. Berry. “High-Order Quantum Algorithm for Solving Linear Differen-
tial Equations”. In: Journal of Physics A: Mathematical and Theoretical
47.10 (2014), p. 105301 (cit. on p. 87).

[BFK+81] A. Borodin, M. J. Fischer, D. G. Kirkpatrick, N. A. Lynch, and M. Tompa.
“A Time-Space Tradeoff for Sorting on Non-Oblivious Machines”. In: Journal
of Computer and System Sciences 22.3 (1981), pp. 351–364 (cit. on pp. 127,
128, 131, 142).

[BFM+87] A. Borodin, F. E. Fich, F. Meyer auf der Heide, E. Upfal, and A. Wigderson.
“A Time-Space Tradeoff for Element Distinctness”. In: SIAM Journal on
Computing 16.1 (1987), pp. 97–99 (cit. on pp. 128, 146).

[BFS87] P. Bratley, B. L. Fox, and L. E. Schrage. A Guide to Simulation. Second.
Springer-Verlag, 1987 (cit. on p. 88).

[BGK+18] M. Braverman, A. Garg, Y. K. Ko, J. Mao, and D. Touchette. “Near-Optimal
Bounds on the Bounded-Round Quantum Communication Complexity of
Disjointness”. In: SIAM Journal on Computing 47.6 (2018), pp. 2277–2314
(cit. on p. 125).

[BHH+19] N. Bindel, M. Hamburg, K. Hövelmanns, A. Hülsing, and E. Persichetti.
“Tighter Proofs of CCA Security in the Quantum Random Oracle Model”.
In: Proceedings of the 17th Conference on Theory of Cryptography (TCC).
2019, pp. 61–90 (cit. on p. 128).

150

http://arxiv.org/abs/1106.4267

Bibliography

[BHH11] S. Bravyi, A. W. Harrow, and A. Hassidim. “Quantum Algorithms for
Testing Properties of Distributions”. In: IEEE Transactions on Information
Theory 57.6 (2011), pp. 3971–3981 (cit. on p. 31).

[BHMT02] G. Brassard, P. Høyer, M. Mosca, and A. Tapp. “Quantum Amplitude
Amplification and Estimation”. In: Contemporary Mathematics 305 (2002),
pp. 53–74 (cit. on pp. 18–20, 25–27, 34).

[BHT98a] G. Brassard, P. Høyer, and A. Tapp. “Quantum Counting”. In: Proceed-
ings of the 25th International Colloquium on Automata, Languages and
Programming (ICALP). 1998, pp. 820–831 (cit. on p. 3).

[BHT98b] G. Brassard, P. Høyer, and A. Tapp. “Quantum Cryptanalysis of Hash and
Claw-Free Functions”. In: Proceedings of the 3rd Latin American Symposium
on Theoretical Informatics (LATIN). 1998, pp. 163–169 (cit. on pp. 7, 127,
128).

[Bic65] P. J. Bickel. “On Some Robust Estimates of Location”. In: The Annals of
Mathematical Statistics 36.3 (1965), pp. 847–858 (cit. on p. 28).

[BIJK18] A. Bhattacharya, D. Issac, R. Jaiswal, and A. Kumar. “Sampling in Space
Restricted Settings”. In: Algorithmica 80.5 (2018), pp. 1439–1458 (cit. on
p. 88).

[BJ99] N. H. Bshouty and J. C. Jackson. “Learning DNF over the Uniform Distribu-
tion Using a Quantum Example Oracle”. In: SIAM Journal on Computing
28.3 (1999), pp. 1136–1153 (cit. on pp. 5, 31).

[BJKS04] Z. Bar-Yossef, T. S. Jayram, R. Kumar, and D. Sivakumar. “An Information
Statistics Approach to Data Stream and Communication Complexity”. In:
Journal of Computer and System Sciences 68.4 (2004), pp. 702–732 (cit. on
p. 116).

[BKL+19] F. G. S. L. Brandão, A. Kalev, T. Li, C. Y.-Y. Lin, K. M. Svore, and X. Wu.
“Quantum SDP Solvers: Large Speed-Ups, Optimality, and Applications to
Quantum Learning”. In: Proceedings of the 46th International Colloquium
on Automata, Languages, and Programming (ICALP). 2019, 27:1–27:14
(cit. on p. 98).

[BL13] K. Bringmann and K. G. Larsen. “Succinct Sampling from Discrete Distri-
butions”. In: Proceedings of the 45th Symposium on Theory of Computing
(STOC). 2013, pp. 775–782 (cit. on p. 88).

[BLM13] S. Boucheron, G. Lugosi, and P. Massart. Concentration Inequalities - A
Nonasymptotic Theory of Independence. Oxford University Press, 2013
(cit. on p. 12).

[BP17] K. Bringmann and K. Panagiotou. “Efficient Sampling Methods for Discrete
Distributions”. In: Algorithmica 79.2 (2017), pp. 484–508 (cit. on p. 88).

[BR12] A. Belovs and B. W. Reichardt. “Span Programs and Quantum Algo-
rithms for st-Connectivity and Claw Detection”. In: Proceedings of the 20th
European Symposium on Algorithms (ESA). 2012, pp. 193–204 (cit. on
p. 62).

[BS17] F. G. S. L. Brandão and K. M. Svore. “Quantum Speed-Ups for Solving
Semidefinite Programs”. In: Proceedings of the 58th Symposium on Founda-
tions of Computer Science (FOCS). 2017, pp. 415–426 (cit. on p. 98).

151

Bibliography

[BSSV03] P. Beame, M. Saks, X. Sun, and E. Vee. “Time-Space Trade-off Lower
Bounds for Randomized Computation of Decision Problems”. In: Journal
of the ACM 50.2 (2003), pp. 154–195 (cit. on pp. 128, 142).

[BV97] E. Bernstein and U. V. Vazirani. “Quantum Complexity Theory”. In: SIAM
Journal on Computing 26.5 (1997), pp. 1411–1473 (cit. on p. 2).

[BW02] H. Buhrman and R. de Wolf. “Complexity Measures and Decision Tree
Complexity: A Survey”. In: Theoretical Computer Science 288.1 (2002),
pp. 21–43 (cit. on p. 132).

[BWP+17] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd.
“Quantum Machine Learning”. In: Nature 549.7671 (2017), pp. 195–202
(cit. on p. 97).

[Cat12] O. Catoni. “Challenging the Empirical Mean and Empirical Variance: A
Deviation Study”. In: Annales de l’Institut Henri Poincaré, Probabilités et
Statistiques 48.4 (2012), pp. 1148–1185 (cit. on pp. 26, 43).

[CC17] A. Chakrabarti and Y. Chen. Time-Space Tradeoffs for the Memory Game.
arXiv:1712.01330 [cs.CC]. 2017 (cit. on p. 128).

[CCH+19] S. Chakrabarti, A. M. Childs, S.-H. Hung, T. Li, C. Wang, and X. Wu.
Quantum Algorithm for Estimating Volumes of Convex Bodies. arXiv:
1908.03903 [quant-ph]. 2019 (cit. on p. 43).

[CCKM13] A. Chakrabarti, G. Cormode, R. Kondapally, and A. McGregor. “Infor-
mation Cost Tradeoffs for Augmented Index and Streaming Language
Recognition”. In: SIAM Journal on Computing 42.1 (2013), pp. 61–83
(cit. on p. 116).

[CCLW20] S. Chakrabarti, A. M. Childs, T. Li, and X. Wu. “Quantum Algorithms
and Lower Bounds for Convex Optimization”. In: Quantum 4 (2020), p. 221
(cit. on p. 98).

[CEG95] R. Canetti, G. Even, and O. Goldreich. “Lower Bounds for Sampling
Algorithms for Estimating the Average”. In: Information Processing Letters
53.1 (1995), pp. 17–25 (cit. on p. 27).

[CFMW10] S. Chakraborty, E. Fischer, A. Matsliah, and R. de Wolf. “New Results
on Quantum Property Testing”. In: Proceedings of the 30th Conference
on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS). 2010, pp. 145–156 (cit. on p. 31).

[CGJ19] S. Chakraborty, A. Gilyén, and S. Jeffery. “The Power of Block-Encoded
Matrix Powers: Improved Regression Techniques via Faster Hamiltonian
Simulation”. In: Proceedings of the 46th International Colloquium on Au-
tomata, Languages, and Programming (ICALP). 2019, 33:1–33:14 (cit. on
pp. 46, 49, 54, 62).

[CGLQ20] K.-M. Chung, S. Guo, Q. Liu, and L. Qian. “Tight Quantum Time-Space
Tradeoffs for Function Inversion”. In: Proceedings of the 61st Symposium
on Foundations of Computer Science (FOCS). 2020, pp. 673–684 (cit. on
p. 128).

[CHI+18] C. Ciliberto, M. Herbster, A. D. Ialongo, M. Pontil, A. Rocchetto, S. Severini,
and L. Wossnig. “Quantum Machine Learning: A Classical Perspective”. In:
Proceedings of the Royal Society A: Mathematical, Physical and Engineering
Sciences 474.2209 (2018), p. 20170551 (cit. on p. 97).

152

http://arxiv.org/abs/1712.01330
http://arxiv.org/abs/1908.03903
http://arxiv.org/abs/1908.03903

Bibliography

[Chi17] A. M. Childs. Lecture Notes on Quantum Algorithms. Available at https:
//www.cs.umd.edu/~amchilds/qa/. 2017 (cit. on p. 15).

[CHL21] A. M. Childs, S.-H. Hung, and T. Li. “Quantum Query Complexity with
Matrix-Vector Products”. In: Proceedings of the 48th International Collo-
quium on Automata, Languages, and Programming (ICALP 2021). 2021,
55:1–55:19 (cit. on p. 112).

[CHW12] K. L. Clarkson, E. Hazan, and D. P. Woodruff. “Sublinear Optimization for
Machine Learning”. In: Journal of the ACM 59.5 (2012), pp. 1–49 (cit. on
p. 98).

[CJ19] G. Cormode and H. Jowhari. “Lp Samplers and Their Applications: A
Survey”. In: ACM Computing Surveys 52.1 (2019), 16:1–16:31 (cit. on
pp. 116, 117).

[CK12] A. M. Childs and R. Kothari. “Quantum Query Complexity of Minor-Closed
Graph Properties”. In: SIAM Journal on Computing 41.6 (2012), pp. 1426–
1450 (cit. on p. 62).

[CKS17] A. M. Childs, R. Kothari, and R. D. Somma. “Quantum Algorithm for
Systems of Linear Equations with Exponentially Improved Dependence on
Precision”. In: SIAM Journal on Computing 46.6 (2017), pp. 1920–1950
(cit. on pp. 46, 49).

[CLM20] T. Carette, M. Laurière, and F. Magniez. “Extended Learning Graphs for
Triangle Finding”. In: Algorithmica 82.4 (2020), pp. 980–1005 (cit. on p. 62).

[CLQ20] K.-M. Chung, T.-N. Liao, and L. Qian. “Lower Bounds for Function In-
version with Quantum Advice”. In: Proceedings of the 1st Conference on
Information-Theoretic Cryptography (ITC). 2020, 8:1–8:15 (cit. on p. 128).

[CLSW17] D. Chakrabarty, Y. T. Lee, A. Sidford, and S. C.-w. Wong. “Subquadratic
Submodular Function Minimization”. In: Proceedings of the 49th Symposium
on Theory of Computing (STOC). 2017, pp. 1220–1231 (cit. on pp. 6, 98,
102–106).

[CMS19] A. Chiesa, P. Manohar, and N. Spooner. “Succinct Arguments in the
Quantum Random Oracle Model”. In: Proceedings of the 17th Conference
on Theory of Cryptography (TCC). 2019, pp. 1–29 (cit. on pp. 128, 130).

[CMSZ19] J. Czajkowski, C. Majenz, C. Schaffner, and S. Zur. Quantum Lazy Sam-
pling and Game-Playing Proofs for Quantum Indifferentiability. arXiv:
1904.11477v1 [quant-ph]. 2019 (cit. on pp. 128, 130).

[CNS17] A. Chailloux, M. Naya-Plasencia, and A. Schrottenloher. “An Efficient
Quantum Collision Search Algorithm and Implications on Symmetric Cryp-
tography”. In: Proceedings of the 23th International Conference on the
Theory and Applications of Cryptology and Information Security (ASI-
ACRYPT). 2017, pp. 211–240 (cit. on p. 127).

[CRT05] B. Chazelle, R. Rubinfeld, and L. Trevisan. “Approximating the Minimum
Spanning Tree Weight in Sublinear Time”. In: SIAM Journal on Computing
34.6 (2005), pp. 1370–1379 (cit. on pp. 62, 83).

[Cun85] W. H. Cunningham. “On Submodular Function Minimization”. In: Combi-
natorica 5.3 (1985), pp. 185–192 (cit. on p. 102).

153

https://www.cs.umd.edu/~amchilds/qa/
https://www.cs.umd.edu/~amchilds/qa/
http://arxiv.org/abs/1904.11477v1
http://arxiv.org/abs/1904.11477v1

Bibliography

[DDKS12] I. Dinur, O. Dunkelman, N. Keller, and A. Shamir. “Efficient Dissection of
Composite Problems, with Applications to Cryptanalysis, Knapsacks, and
Combinatorial Search Problems”. In: Proceedings of the 32th International
Cryptology Conference (CRYPTO). 2012, pp. 719–740 (cit. on p. 127).

[DEM19] C. Delaplace, A. Esser, and A. May. “Improved Low-Memory Subset Sum
and LPN Algorithms via Multiple Collisions”. In: Proceedings of the 17th
IMA International Conference on Cryptography and Coding (IMACC). 2019,
pp. 178–199 (cit. on p. 127).

[Deu85] D. E. Deutsch. “Quantum Theory, the Church-Turing Principle and the
Universal Quantum Computer”. In: Proceedings of the Royal Society of
London Series A 400.1818 (1985), pp. 97–117 (cit. on p. 1).

[Deu89] D. E. Deutsch. “Quantum Computational Networks”. In: Proceedings of
the Royal Society of London Series A 425.1868 (1989), pp. 73–90 (cit. on
pp. 1, 15).

[Dev86] L. Devroye. Non-Uniform Random Variate Generation. Springer-Verlag,
1986 (cit. on p. 88).

[DF91] M. E. Dyer and A. Frieze. “Computing the Volume of Convex Bodies: A
Case where Randomness Provably Helps”. In: Proceedings of the Symposium
on Probabilistic Combinatorics and Its Applications. 1991, pp. 123–170 (cit.
on p. 3).

[DFK91] M. Dyer, A. Frieze, and R. Kannan. “A Random Polynomial-Time Algo-
rithm for Approximating the Volume of Convex Bodies”. In: Journal of the
ACM 38.1 (1991), pp. 1–17 (cit. on p. 3).

[DH96] C. Dürr and P. Høyer. A Quantum Algorithm for Finding the Minimum.
arXiv:quant-ph/9607014. 1996 (cit. on pp. 3, 29, 31, 32, 90).

[DHHM06] C. Dürr, M. Heiligman, P. Høyer, and M. Mhalla. “Quantum Query Com-
plexity of Some Graph Problems”. In: SIAM Journal on Computing 35.6
(2006), pp. 1310–1328 (cit. on pp. 3, 62, 91, 98).

[Din20] I. Dinur. “Tight Time-Space Lower Bounds for Finding Multiple Collision
Pairs and Their Applications”. In: Proceedings of the 39th International
Conference on the Theory and Applications of Cryptographic Techniques
(EUROCRYPT). 2020, pp. 405–434 (cit. on pp. 127, 128, 130).

[DJ92] D. Deutsch and R. Jozsa. “Rapid Solution of Problems by Quantum Com-
putation”. In: Proceedings of the Royal Society of London Series A 439.1907
(1992), pp. 553–558 (cit. on p. 2).

[DKLR00] P. Dagum, R. Karp, M. Luby, and S. Ross. “An Optimal Algorithm for
Monte Carlo Estimation”. In: SIAM Journal on Computing 29.5 (2000),
pp. 1484–1496 (cit. on pp. 26, 27, 29, 37).

[DKW19] K. DeLorenzo, S. Kimmel, and R. T. Witter. “Applications of the Quantum
Algorithm for st-Connectivity”. In: Proceedings of the 14th Conference on
the Theory of Quantum Computation, Communication and Cryptography
(TQC). 2019, 6:1–6:14 (cit. on p. 62).

[DL18] H. Dell and J. Lapinskas. “Fine-Grained Reductions from Approximate
Counting to Decision”. In: Proceedings of the 50th Symposium on Theory
of Computing (STOC). 2018, pp. 281–288 (cit. on p. 62).

154

http://arxiv.org/abs/quant-ph/9607014

Bibliography

[DLLO16] L. Devroye, M. Lerasle, G. Lugosi, and R. I. Oliveira. “Sub-Gaussian Mean
Estimators”. In: The Annals of Statistics 44.6 (2016), pp. 2695–2725 (cit. on
p. 26).

[DLM20] H. Dell, J. Lapinskas, and K. Meeks. “Approximately Counting and Sam-
pling Small Witnesses Using a Colourful Decision Oracle”. In: Proceedings
of the 31st Symposium on Discrete Algorithms (SODA). 2020, pp. 2201–2180
(cit. on p. 62).

[Duc18] J. C. Duchi. “Introductory Lectures on Stochastic Optimization”. In: The
Mathematics of Data. Vol. 25. IAS/Park City Mathematics Series. American
Mathematical Society, 2018, pp. 99–185 (cit. on p. 104).

[Eck87] R. Eckhardt. “Stan Ulam, John von Neumann, and the Monte Carlo
Method”. In: Los Alamos Science 15.30 (1987), pp. 131–136 (cit. on p. 1).

[ELR15] T. Eden, A. Levi, and D. Ron. Approximately Counting Triangles in Sub-
linear Time. ECCC Report: TR15-046. 2015 (cit. on pp. 62, 63, 66, 70,
83).

[ELRS17] T. Eden, A. Levi, D. Ron, and C. Seshadhri. “Approximately Counting
Triangles in Sublinear Time”. In: SIAM Journal on Computing 46.5 (2017),
pp. 1603–1646 (cit. on pp. 4, 61–64, 66, 71, 73, 76, 83).

[ER18] T. Eden and W. Rosenbaum. “Lower Bounds for Approximating Graph Pa-
rameters via Communication Complexity”. In: Proceedings of the Workshop
on Approximation, Randomization, and Combinatorial Optimization: Algo-
rithms and Techniques (APPROX/RANDOM). 2018, 11:1–11:18 (cit. on
pp. 81, 82).

[ERR20] T. Eden, D. Ron, and W. Rosenbaum. Almost Optimal Bounds for Sublinear-
Time Sampling of k-Cliques: Sampling Cliques is Harder Than Counting.
arXiv:2012.04090 [cs.DS]. 2020 (cit. on p. 62).

[ERS20a] T. Eden, D. Ron, and C. Seshadhri. “Faster Sublinear Approximation of
the Number of k-Cliques in Low-Arboricity Graphs”. In: Proceedings of
the 31st Symposium on Discrete Algorithms (SODA). 2020, pp. 1467–1478
(cit. on pp. 61, 62, 83).

[ERS20b] T. Eden, D. Ron, and C. Seshadhri. “On Approximating the Number of
k-Cliques in Sublinear Time”. In: SIAM Journal on Computing 49.4 (2020),
pp. 747–771 (cit. on pp. 61, 62, 83).

[Fei06] U. Feige. “On Sums of Independent Random Variables with Unbounded
Variance and Estimating the Average Degree in a Graph”. In: SIAM Journal
on Computing 35.4 (2006), pp. 964–984 (cit. on pp. 3, 61, 62).

[Fey82] R. P. Feynman. “Simulating Physics with Computers”. In: International
Journal of Theoretical Physics 21.6/7 (1982) (cit. on p. 1).

[Fey86] R. P. Feynman. “Quantum Mechanical Computers”. In: Foundations of
Physics 16.6 (1986), pp. 507–531 (cit. on p. 1).

[FGP20] H. Fichtenberger, M. Gao, and P. Peng. “Sampling Arbitrary Subgraphs
Exactly Uniformly in Sublinear Time”. In: Proceedings of the 47th Interna-
tional Colloquium on Automata, Languages, and Programming (ICALP).
2020, 45:1–45:13 (cit. on p. 62).

155

https://eccc.weizmann.ac.il/report/2015/046
http://arxiv.org/abs/2012.04090

Bibliography

[Fla85] P. Flajolet. “Approximate Counting: A Detailed Analysis”. In: BIT 25.1
(1985), pp. 113–134 (cit. on pp. 6, 116).

[FM85] P. Flajolet and G. N. Martin. “Probabilistic Counting Algorithms for Data
Base Applications”. In: Journal of Computer and System Sciences 31.2
(1985), pp. 182–209 (cit. on p. 116).

[FO89] P. Flajolet and A. M. Odlyzko. “Random Mapping Statistics”. In: Proceed-
ings of the 7th Workshop on the Theory and Application of Cryptographic
Techniques (EUROCRYPT). 1989, pp. 329–354 (cit. on pp. 6, 129, 144).

[FS97] Y. Freund and R. E. Schapire. “A Decision-Theoretic Generalization of
On-Line Learning and an Application to Boosting”. In: Journal of Computer
and System Sciences 55.1 (1997), pp. 119–139 (cit. on pp. 6, 98–100).

[Gal09] F. Le Gall. “Exponential Separation of Quantum and Classical Online Space
Complexity”. In: Theory of Computing Systems 45.2 (2009), pp. 188–202
(cit. on pp. 7, 115, 116).

[Gal14] F. Le Gall. “Improved Quantum Algorithm for Triangle Finding via Combi-
natorial Arguments”. In: Proceedings of the 55th Symposium on Foundations
of Computer Science (FOCS). 2014, pp. 216–225 (cit. on pp. 46, 62).

[Gan15] S. Ganguly. “Taylor Polynomial Estimator for Estimating Frequency Mo-
ments”. In: Proceedings of the 42nd International Colloquium on Automata,
Languages, and Programming (ICALP). 2015, pp. 542–553 (cit. on pp. 116,
124).

[GAW19] A. Gilyén, S. Arunachalam, and N. Wiebe. “Optimizing Quantum Op-
timization Algorithms via Faster Quantum Gradient Computation”. In:
Proceedings of the 30th Symposium on Discrete Algorithms (SODA). 2019,
pp. 1425–1444 (cit. on p. 98).

[GK95] M. D. Grigoriadis and L. G. Khachiyan. “A Sublinear-Time Randomized
Approximation Algorithm for Matrix Games”. In: Operations Research
Letters 18.2 (1995), pp. 53–58 (cit. on p. 98).

[GKK+09] D. Gavinsky, J. Kempe, I. Kerenidis, R. Raz, and R. de Wolf. “Exponential
Separation for One-Way Quantum Communication Complexity, with Ap-
plications to Cryptography”. In: SIAM Journal on Computing 38.5 (2009),
pp. 1695–1708 (cit. on pp. 115, 116).

[GKNS20] A. Garg, R. Kothari, P. Netrapalli, and S. Sherif. No Quantum Speedup over
Gradient Descent for Non-Smooth Convex Optimization. arXiv:2010.01801
[cs.DS]. 2020 (cit. on p. 98).

[GL20] A. Gilyén and T. Li. “Distributional Property Testing in a Quantum World”.
In: Proceedings of the 11th Innovations in Theoretical Computer Science
Conference, (ITCS). 2020, 25:1–25:19 (cit. on p. 30).

[GLS81] M. Grötschel, L. Lovász, and A. Schrijver. “The Ellipsoid Method and
its Consequences in Combinatorial Optimization”. In: Combinatorica 1.2
(1981), pp. 169–197 (cit. on p. 102).

[GLS88] M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and Com-
binatorial Optimization. Vol. 2. Algorithms and Combinatorics. Springer,
1988 (cit. on p. 102).

156

http://arxiv.org/abs/2010.01801

Bibliography

[GN17] F. Le Gall and S. Nakajima. “Quantum Algorithm for Triangle Finding in
Sparse Graphs”. In: Algorithmica 79.3 (2017), pp. 941–959 (cit. on pp. 46,
62).

[GNP13] L. Gajek, W. Niemiro, and P. Pokarowski. “Optimal Monte Carlo Integration
with Fixed Relative Precision”. In: Journal of Complexity 29.1 (2013), pp. 4–
26 (cit. on p. 27).

[Gol17] O. Goldreich. Introduction to Property Testing. Cambridge University Press,
2017 (cit. on pp. 62, 67).

[GR02] L. K. Grover and T. Rudolph. Creating Superpositions that Correspond to
Efficiently Integrable Probability Distributions. arXiv:quant-ph/0208112.
2002 (cit. on pp. 88, 91).

[GR08] O. Goldreich and D. Ron. “Approximating Average Parameters of Graphs”.
In: Random Structures & Algorithms 32.4 (2008), pp. 473–493 (cit. on
pp. 61, 62, 66).

[Gro00a] L. K. Grover. “Rapid Sampling through Quantum Computing”. In: Pro-
ceedings of the 32nd Symposium on Theory of Computing (STOC). 2000,
pp. 618–626 (cit. on p. 88).

[Gro00b] L. K. Grover. “Synthesis of Quantum Superpositions by Quantum Com-
putation”. In: Physical Review Letters 85.6 (2000), pp. 1334–1337 (cit. on
pp. 5, 87–91).

[Gro96a] L. K. Grover. “A Fast Quantum Mechanical Algorithm for Database Search”.
In: Proceedings of the 28th Symposium on Theory of Computing (STOC).
1996, pp. 212–219 (cit. on pp. 2, 18).

[Gro96b] L. K. Grover. A Fast Quantum Mechanical Algorithm for Estimating the
Median. arXiv:quant-ph/9607024. 1996 (cit. on p. 3).

[Gro98] L. K. Grover. “A Framework for Fast Quantum Mechanical Algorithms”.
In: Proceedings of the 30th Symposium on Theory of Computing (STOC).
1998, pp. 53–62 (cit. on pp. 3, 26, 31).

[GRS11] M. Gonen, D. Ron, and Y. Shavitt. “Counting Stars and Other Small
Subgraphs in Sublinear-Time”. In: SIAM Journal on Discrete Mathematics
25.3 (2011), pp. 1365–1411 (cit. on pp. 61, 62, 66).

[GS78] L. J. Guibas and R. Sedgewick. “A Dichromatic Framework for Balanced
Trees”. In: Proceedings of the 19th Symposium on Foundations of Computer
Science (FOCS). 1978, pp. 8–21 (cit. on p. 105).

[Ham21] Y. Hamoudi. “Quantum Sub-Gaussian Mean Estimator”. In: Proceedings of
the 29th European Symposium on Algorithms (ESA). 2021 (cit. on p. 25).

[Ham22] Y. Hamoudi. “Preparing Many Copies of a Quantum Sate in the Black-Box
Model”. In: Physical Review A 105 (2022), p. 062440 (cit. on p. 87).

[Har08] N. J. A. Harvey. “Matchings, Matroids and Submodular Functions”. PhD
thesis. Massachusetts Institute of Technology, 2008 (cit. on p. 112).

[Has70] W. K. Hastings. “Monte Carlo Sampling Methods using Markov Chains
and their Applications”. In: Biometrika 57.1 (1970), pp. 97–109 (cit. on
p. 4).

157

http://arxiv.org/abs/quant-ph/0208112
http://arxiv.org/abs/quant-ph/9607024

Bibliography

[HB14] T. Homem-de-Mello and G. Bayraksan. “Monte Carlo Sampling-Based
Methods for Stochastic Optimization”. In: Surveys in Operations Research
and Management Science 19.1 (2014), pp. 56–85 (cit. on p. 5).

[Hei02] S. Heinrich. “Quantum Summation with an Application to Integration”. In:
Journal of Complexity 18.1 (2002), pp. 1–50 (cit. on pp. 3, 25, 26, 28, 31).

[Hei03] S. Heinrich. “From Monte Carlo to Quantum Computation”. In: Mathe-
matics and Computers in Simulation 62.3–6 (2003), pp. 219–230 (cit. on
p. 26).

[Hel69] C. W. Helstrom. “Quantum Detection and Estimation Theory”. In: Journal
of Statistical Physics 1.2 (1969), pp. 231–252 (cit. on p. 42).

[Hel80] M. Hellman. “A Cryptanalytic Time-Memory Trade-Off”. In: IEEE Trans-
actions on Information Theory 26.4 (1980), pp. 401–406 (cit. on p. 6).

[HHL09] A. W. Harrow, A. Hassidim, and S. Lloyd. “Quantum Algorithm for Linear
Systems of Equations”. In: Physical Review Letters 103.15 (2009), p. 150502
(cit. on pp. 87, 97).

[HI19] A. Hosoyamada and T. Iwata. “4-Round Luby-Rackoff Construction is a
qPRP”. In: Proceedings of the 25th International Conference on the Theory
and Applications of Cryptology and Information Security (ASIACRYPT).
2019, pp. 145–174 (cit. on pp. 128, 130).

[HK12] E. Hazan and S. Kale. “Online Submodular Minimization”. In: Journal of
Machine Learning Research 13.1 (2012), pp. 2903–2922 (cit. on p. 103).

[HM19] Y. Hamoudi and F. Magniez. “Quantum Chebyshev’s Inequality and Appli-
cations”. In: Proceedings of the 46th International Colloquium on Automata,
Languages, and Programming (ICALP). 2019, 69:1–69:16 (cit. on pp. 25–28,
30, 45, 61, 115).

[HM21a] Y. Hamoudi and F. Magniez. “Quantum Approximate Triangle Counting”.
In submission. 2021 (cit. on pp. 45, 61).

[HM21b] Y. Hamoudi and F. Magniez. “Quantum Time-Space Tradeoff for Finding
Multiple Collision Pairs”. In: Proceedings of the 16th Conference on the
Theory of Quantum Computation, Communication and Cryptography (TQC).
2021, 1:1–1:21 (cit. on p. 127).

[HMM93] T. Hagerup, K. Mehlhorn, and J. I. Munro. “Maintaining Discrete Proba-
bility Distributions Optimally”. In: Proceedings of the 20nd International
Colloquium on Automata, Languages, and Programming (ICALP). 1993,
pp. 253–264 (cit. on p. 88).

[Hop20] S. B. Hopkins. “Mean Estimation with Sub-Gaussian Rates in Polynomial
Time”. In: The Annals of Statistics 48.2 (2020), pp. 1193–1213 (cit. on
p. 43).

[HRRS19] Y. Hamoudi, P. Rebentrost, A. Rosmanis, and M. Santha. “Quantum and
Classical Algorithms for Approximate Submodular Function Minimization”.
In: Quantum Information & Computation 19.15&16 (2019), pp. 1325–1349
(cit. on pp. 87, 94, 97, 102, 103, 111).

[HRS18] T. Häner, M. Roetteler, and K. M. Svore. Optimizing Quantum Circuits
for Arithmetic. arXiv:1805.12445 [quant-ph]. 2018 (cit. on p. 90).

158

http://arxiv.org/abs/1805.12445

Bibliography

[HSTX20] A. Hosoyamada, Y. Sasaki, S. Tani, and K. Xagawa. “Quantum Algorithm
for the Multicollision Problem”. In: Theoretical Computer Science 842
(2020), pp. 100–117 (cit. on p. 127).

[Hub19] M. Huber. “An Optimal (ϵ, δ)-Randomized Approximation Scheme for the
Mean of Random Variables with Bounded Relative Variance”. In: Random
Structures & Algorithms 55.2 (2019), pp. 356–370 (cit. on p. 27).

[HW20] A. W. Harrow and A. Y. Wei. “Adaptive Quantum Simulated Annealing
for Bayesian Inference and Estimating Partition Functions”. In: Proceedings
of the 31st Symposium on Discrete Algorithms (SODA). 2020, pp. 193–212
(cit. on pp. 3, 5, 43, 62, 88).

[HXY19] M. Hhan, K. Xagawa, and T. Yamakawa. “Quantum Random Oracle Model
with Auxiliary Input”. In: Proceedings of the 25th International Conference
on the Theory and Applications of Cryptology and Information Security
(ASIACRYPT). 2019, pp. 584–614 (cit. on p. 128).

[IFF01] S. Iwata, L. Fleischer, and S. Fujishige. “A Combinatorial Strongly Polyno-
mial Algorithm for Minimizing Submodular Functions”. In: Journal of the
ACM 48.4 (2001), pp. 761–777 (cit. on p. 102).

[IJ19] T. Ito and S. Jeffery. “Approximate Span Programs”. In: Algorithmica 81.6
(2019), pp. 2158–2195 (cit. on p. 62).

[IW05] P. Indyk and D. P. Woodruff. “Optimal Approximations of the Frequency
Moments of Data Streams”. In: Proceedings of the 37th Symposium on
Theory of Computing (STOC). 2005, pp. 202–208 (cit. on p. 116).

[IW20] A. Izdebski and R. de Wolf. Improved Quantum Boosting. arXiv:2009.
08360 [quant-ph]. 2020 (cit. on p. 98).

[JB11] S. Jegelka and J. A. Bilmes. “Online Submodular Minimization for Combi-
natorial Structures”. In: Proceedings of the 28th International Conference
on Machine Learning (ICML). 2011, pp. 345–352 (cit. on p. 104).

[JJKP18] M. Jarret, S. Jeffery, S. Kimmel, and A. Piedrafita. “Quantum Algorithms
for Connectivity and Related Problems”. In: Proceedings of the 26th Euro-
pean Symposium on Algorithms (ESA). 2018, 49:1–49:13 (cit. on p. 62).

[JL09] A. Joux and S. Lucks. “Improved Generic Algorithms for 3-Collisions”.
In: Proceedings of the 15th International Conference on the Theory and
Applications of Cryptology and Information Security (ASIACRYPT). 2009,
pp. 347–363 (cit. on p. 127).

[JN14] R. Jain and A. Nayak. “The Space Complexity of Recognizing Well-
Parenthesized Expressions in the Streaming Model: The Index Function
Revisited”. In: IEEE Transactions on Information Theory 60.10 (2014),
pp. 6646–6668 (cit. on p. 116).

[Jor05] S. P. Jordan. “Fast Quantum Algorithm for Numerical Gradient Estimation”.
In: Physical Review Letters 95.5 (2005), p. 050501 (cit. on p. 98).

[JRS03] R. Jain, J. Radhakrishnan, and P. Sen. “A Lower Bound for the Bounded
Round Quantum Communication Complexity of Set Disjointness”. In:
Proceedings of the 44th Symposium on Foundations of Computer Science
(FOCS). 2003, pp. 220–229 (cit. on pp. 116, 125).

159

http://arxiv.org/abs/2009.08360
http://arxiv.org/abs/2009.08360

Bibliography

[JSV04] M. Jerrum, A. Sinclair, and E. Vigoda. “A Polynomial-Time Approximation
Algorithm for the Permanent of a Matrix with Nonnegative Entries”. In:
Journal of the ACM 51.4 (2004), pp. 671–697 (cit. on p. 3).

[JVV86] M. R. Jerrum, L. G. Valiant, and V. V. Vazirani. “Random Generation
of Combinatorial Structures from a Uniform Distribution”. In: Theoretical
Computer Science 43 (1986), pp. 169–188 (cit. on pp. 13, 25).

[Kah50a] H. Kahn. “Random Sampling (Monte Carlo) Techniques in Neutron Atten-
uation Problems, I”. In: Nucleonics 6.5 (1950), pp. 27–37 (cit. on p. 4).

[Kah50b] H. Kahn. “Random Sampling (Monte Carlo) Techniques in Neutron Atten-
uation Problems, II”. In: Nucleonics 6.6 (1950), pp. 60–65 (cit. on p. 4).

[KBTB14] D. P. Kroese, T. Brereton, T. Taimre, and Z. I. Botev. “Why the Monte
Carlo Method is so Important Today”. In: WIREs Computational Statistics
6.6 (2014), pp. 386–392 (cit. on p. 1).

[KKR04] T. Kaufman, M. Krivelevich, and D. Ron. “Tight Bounds for Testing
Bipartiteness in General Graphs”. In: SIAM Journal on Computing 33.6
(2004), pp. 1441–1483 (cit. on pp. 62, 67).

[KL83] R. M. Karp and M. Luby. “Monte-Carlo Algorithms for Enumeration and
Reliability Problems”. In: Proceedings of the 24th Symposium on Founda-
tions of Computer Science (FOCS). 1983, pp. 56–64 (cit. on p. 3).

[KLM07] P. Kaye, R. Laflamme, and M. Mosca. An Introduction to Quantum Com-
puting. Oxford University Press, 2007 (cit. on p. 15).

[KLM89] R. M. Karp, M. Luby, and N. Madras. “Monte-Carlo Approximation Algo-
rithms for Enumeration Problems”. In: Journal of Algorithms 10.3 (1989),
pp. 429–448 (cit. on p. 3).

[KM01] P. Kaye and M. Mosca. “Quantum Networks for Generating Arbitrary Quan-
tum States”. In: Proceedings of the International Conference on Quantum
Information (ICQI). 2001, PB28 (cit. on pp. 88, 91, 95).

[Knu98] D. E. Knuth. The Art of Computer Programming, Volume II: Seminumerical
Algorithms. Third. Addison-Wesley, 1998 (cit. on p. 88).

[KNW10a] D. M. Kane, J. Nelson, and D. P. Woodruff. “An Optimal Algorithm for
the Distinct Elements Problem”. In: Proceedings of the 29th Symposium on
Principles of Database Systems (PODS). 2010, pp. 41–52 (cit. on p. 116).

[KNW10b] D. M. Kane, J. Nelson, and D. P. Woodruff. “On the Exact Space Complexity
of Sketching and Streaming Small Norms”. In: Proceedings of the 21st
Symposium on Discrete Algorithms (SODA). 2010, pp. 1161–1178 (cit. on
pp. 116, 123, 124).

[KP79] R. A. Kronmal and A. V. Peterson. “On the Alias Method for Generat-
ing Random Variables from a Discrete Distribution”. In: The American
Statistician 33.4 (1979), pp. 214–218 (cit. on pp. 88, 90, 94).

[KŠW07] H. Klauck, R. Špalek, and R. de Wolf. “Quantum and Classical Strong
Direct Product Theorems and Optimal Time-Space Tradeoffs”. In: SIAM
Journal on Computing 36.5 (2007), pp. 1472–1493 (cit. on pp. 7, 95, 127,
128, 130, 131, 133, 142, 146).

160

Bibliography

[KW09] A. Kitaev and W. A. Webb. Wavefunction Preparation and Resampling
using a Quantum Computer. arXiv:0801.0342 [quant-ph]. 2009 (cit. on
p. 88).

[KY76] D. E. Knuth and A. C.-C. Yao. “The Complexity of Nonuniform Random
Number Generation”. In: Proceedings of the Symposium on Algorithms and
Complexity: New Directions and Recent Results. 1976, pp. 357–428 (cit. on
p. 88).

[LCW19] T. Li, S. Chakrabarti, and X. Wu. “Sublinear Quantum Algorithms for
Training Linear and Kernel-Based Classifiers”. In: Proceedings of the 36th
International Conference on Machine Learning (ICML). 2019, pp. 3815–
3824 (cit. on p. 98).

[LM19] G. Lugosi and S. Mendelson. “Mean Estimation and Regression Under
Heavy-Tailed Distributions: A Survey”. In: Foundations of Computational
Mathematics 19.5 (2019), pp. 1145–1190 (cit. on pp. 25, 26, 28, 43).

[LMS12] T. Lee, F. Magniez, and M. Santha. “Learning Graph Based Quantum Query
Algorithms for Finding Constant-Size Subgraphs”. In: Chicago Journal of
Theoretical Computer Science 2012.10 (2012) (cit. on p. 62).

[LMS17] T. Lee, F. Magniez, and M. Santha. “Improved Quantum Query Algorithms
for Triangle Detection and Associativity Testing”. In: Algorithmica 77.2
(2017), pp. 459–486 (cit. on p. 62).

[LMT00] K.-J. Lange, P. McKenzie, and A. Tapp. “Reversible Space Equals Deter-
ministic Space”. In: Journal of Computer and System Sciences 60.2 (2000),
pp. 354–367 (cit. on p. 18).

[LNW14] Y. Li, H. L. Nguyen, and D. P. Woodruff. “Turnstile Streaming Algorithms
Might as Well Be Linear Sketches”. In: Proceedings of the 46th Symposium
on Theory of Computing (STOC). 2014, pp. 174–183 (cit. on pp. 115, 121).

[Lov82] L. Lovász. “Submodular Functions and Convexity”. In: Proceedings of the
11th International Symposium on Mathematical Programming (ISMP). 1982,
pp. 235–257 (cit. on pp. 98, 102, 104).

[LR13] T. Lee and J. Roland. “A Strong Direct Product Theorem for Quantum
Query Complexity”. In: Computational Complexity 22.2 (2013), pp. 429–462
(cit. on p. 128).

[LR14] R. J. Lipton and K. W. Regan. Quantum Algorithms via Linear Algebra: A
Primer. The MIT Press, 2014 (cit. on p. 15).

[LS90] R. Y. Levine and A. T. Sherman. “A Note on Bennett’s Time-Space Tradeoff
for Reversible Computation”. In: SIAM Journal on Computing 19.4 (1990),
pp. 673–677 (cit. on p. 18).

[LSW15] Y. T. Lee, A. Sidford, and S. C.-w. Wong. “A Faster Cutting Plane Method
and its Implications for Combinatorial and Convex Optimization”. In:
Proceedings of the 56th Symposium on Foundations of Computer Science
(FOCS). 2015, pp. 1049–1065 (cit. on pp. 98, 102, 112).

[LSZ21] T. Lee, M. Santha, and S. Zhang. “Quantum Algorithms for Graph Problems
with Cut Queries”. In: Proceedings of the 32nd Symposium on Discrete
Algorithms (SODA). 2021, pp. 939–958 (cit. on p. 112).

161

http://arxiv.org/abs/0801.0342

Bibliography

[LV20] J. C. H. Lee and P. Valiant. Optimal Sub-Gaussian Mean Estimation in R.
arXiv:2011.08384 [math.ST]. 2020 (cit. on pp. 26, 43).

[LW13] Y. Li and D. P. Woodruff. “A Tight Lower Bound for High Frequency
Moment Estimation with Small Error”. In: Proceedings of the Workshop
on Approximation, Randomization, and Combinatorial Optimization: Algo-
rithms and Techniques (APPROX/RANDOM). 2013, pp. 623–638 (cit. on
pp. 116, 124).

[LW19] T. Li and X. Wu. “Quantum Query Complexity of Entropy Estimation”.
In: IEEE Transactions on Information Theory 65.5 (2019), pp. 2899–2921
(cit. on pp. 31, 43, 116).

[LWCW21] T. Li, C. Wang, S. Chakrabarti, and X. Wu. “Sublinear Classical and
Quantum Algorithms for General Matrix Games”. In: Proceedings of the
35th Conference on Artificial Intelligence (AAAI). 2021, pp. 8465–8473
(cit. on p. 98).

[LYC14] G. H. Low, T. J. Yoder, and I. L. Chuang. “Quantum Inference on Bayesian
Networks”. In: Physical Review A 89 (2014), p. 062315 (cit. on p. 88).

[LZ19a] Q. Liu and M. Zhandry. “On Finding Quantum Multi-collisions”. In: Pro-
ceedings of the 38th International Conference on the Theory and Applications
of Cryptographic Techniques (EUROCRYPT). 2019, pp. 189–218 (cit. on
pp. 7, 127, 128, 131).

[LZ19b] Q. Liu and M. Zhandry. “Revisiting Post-Quantum Fiat-Shamir”. In: Pro-
ceedings of the 39th International Cryptology Conference (CRYPTO). 2019,
pp. 326–355 (cit. on p. 128).

[Met87] N. Metropolis. “The Beginning of the Monte Carlo Method”. In: Los Alamos
Science 15 (1987), pp. 125–130 (cit. on p. 1).

[MMN14] F. Magniez, C. Mathieu, and A. Nayak. “Recognizing Well-Parenthesized
Expressions in the Streaming Model”. In: SIAM Journal on Computing
43.6 (2014), pp. 1880–1905 (cit. on p. 116).

[MNRS11] F. Magniez, A. Nayak, J. Roland, and M. Santha. “Search via Quantum
Walk”. In: SIAM Journal on Computing 40.1 (2011), pp. 142–164 (cit. on
p. 87).

[MNT93] Y. Mansour, N. Nisan, and P. Tiwari. “The Computational Complexity of
Universal Hashing”. In: Theoretical Computer Science 107.1 (1993), pp. 121–
133 (cit. on p. 128).

[Mon11] A. Montanaro. “A New Exponential Separation between Quantum and
Classical One-Way Communication Complexity”. In: Quantum Information
& Computation 11.7&8 (2011), pp. 574–591 (cit. on pp. 115, 116).

[Mon15] A. Montanaro. “Quantum Speedup of Monte Carlo Methods”. In: Pro-
ceedings of the Royal Society A: Mathematical, Physical and Engineering
Sciences 471.2181 (2015), p. 20150301 (cit. on pp. 3, 25–28, 30, 34, 43, 62).

[Mon16] A. Montanaro. “The Quantum Complexity of Approximating the Frequency
Moments”. In: Quantum Information & Computation 16.13&14 (2016),
pp. 1169–1190 (cit. on pp. 115–117).

[Mor78] R. Morris. “Counting Large Numbers of Events in Small Registers”. In:
Communications of the ACM 21.10 (1978), pp. 840–842 (cit. on pp. 6, 116).

162

http://arxiv.org/abs/2011.08384

Bibliography

[MP78] J. I. Munro and M. S. Paterson. “Selection and Sorting with Limited Stor-
age”. In: Proceedings of the 19th Symposium on Foundations of Computer
Science (FOCS). 1978, pp. 253–258 (cit. on p. 6).

[MR95] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge Univer-
sity Press, 1995 (cit. on p. 1).

[MRR+53] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and
E. Teller. “Equation of State Calculations by Fast Computing Machines”.
In: The journal of chemical physics 21.6 (1953), pp. 1087–1092 (cit. on
p. 4).

[MS20] A. Montanaro and C. Shao. Quantum Algorithms for Learning a Hidden
Graph and Beyond. arXiv:2011.08611 [quant-ph]. 2020 (cit. on p. 112).

[MSA08] V. Mnih, C. Szepesvári, and J.-Y. Audibert. “Empirical Bernstein Stopping”.
In: Proceedings of the 25th International Conference on Machine Learning
(ICML). 2008, pp. 672–679 (cit. on p. 27).

[MSS07] F. Magniez, M. Santha, and M. Szegedy. “Quantum Algorithms for the
Triangle Problem”. In: SIAM Journal on Computing 37.2 (2007), pp. 413–
424 (cit. on p. 62).

[MU17] M. Mitzenmacher and E. Upfal. Probability and Computing: Randomiza-
tion and Probabilistic Techniques in Algorithms and Data Analysis. 2nd.
Cambridge University Press, 2017 (cit. on p. 1).

[Mut05] S. Muthukrishnan. “Data Streams: Algorithms and Applications”. In: Foun-
dations and Trends in Theoretical Computer Science 1.2 (2005), pp. 117–236
(cit. on p. 118).

[MVBS05] M. Möttönen, J. J. Vartiainen, V. Bergholm, and M. M. Salomaa. “Trans-
formation of Quantum States Using Uniformly Controlled Rotations”. In:
Quantum Information & Computation 5.6 (2005), pp. 467–473 (cit. on
pp. 87, 88).

[MVN03] Y. Matias, J. S. Vitter, and W.-C. Ni. “Dynamic Generation of Discrete
Random Variates”. In: Theory of Computing Systems 36.4 (2003), pp. 329–
358 (cit. on p. 88).

[MW10] M. Monemizadeh and D. P. Woodruff. “1-pass Relative-error Lp-sampling
with Applications”. In: Proceedings of the 21st Symposium on Discrete
Algorithms (SODA). 2010, pp. 1143–1160 (cit. on pp. 7, 116, 117, 123).

[NABT15] A. Nayebi, S. Aaronson, A. Belovs, and L. Trevisan. “Quantum Lower
Bound for Inverting a Permutation with Advice”. In: Quantum Information
& Computation 15.11&12 (2015), pp. 901–913 (cit. on p. 128).

[Nay99] A. Nayak. “Lower Bounds for Quantum Computation and Communication”.
PhD thesis. University of California, Berkeley, 1999 (cit. on pp. 31, 42).

[NC11] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum
Information: 10th Anniversary Edition. 10th. Cambridge University Press,
2011 (cit. on pp. 15, 17).

[Nes12] Y. Nesterov. “Efficiency of Coordinate Descent Methods on Huge-Scale
Optimization Problems”. In: SIAM Journal on Optimization 22.2 (2012),
pp. 341–362 (cit. on p. 98).

163

http://arxiv.org/abs/2011.08611

Bibliography

[Neu51] J. von Neumann. “Various Techniques Used in Connection with Random
Digits”. In: Monte Carlo Method. Vol. 12. National Bureau of Standards
Applied Mathematics Series. US Government Printing Office, 1951, pp. 36–
38 (cit. on pp. 4, 88).

[NO08] H. N. Nguyen and K. Onak. “Constant-Time Approximation Algorithms
via Local Improvements”. In: Proceedings of the 49th Symposium on Foun-
dations of Computer Science (FOCS). 2008, pp. 327–336 (cit. on pp. 61,
62).

[Nov01] E. Novak. “Quantum Complexity of Integration”. In: Journal of Complexity
17.1 (2001), pp. 2–16 (cit. on pp. 3, 26).

[NSW16] D. Needell, N. Srebro, and R. Ward. “Stochastic Gradient Descent, Weighted
Dampling, and the Randomized Kaczmarz Algorithm”. In: Mathematical
Programming 155.1-2 (2016), pp. 549–573 (cit. on pp. 97, 98).

[NT17] A. Nayak and D. Touchette. “Augmented Index and Quantum Streaming
Algorithms for DYCK(2)”. In: Proceedings of the 32nd Computational
Complexity Conference (CCC). 2017 (cit. on p. 116).

[NW99] A. Nayak and F. Wu. “The Quantum Query Complexity of Approximating
the Median and Related Statistics”. In: Proceedings of the 31st Symposium
on Theory of Computing (STOC). 1999, pp. 384–393 (cit. on pp. 3, 27,
29–31).

[NY83] A. S. Nemirovsky and D. B. Yudin. Problem Complexity and Method
Efficiency in Optimization. John Wiley & Sons, 1983 (cit. on p. 25).

[OBD18] D. Orsucci, H. J. Briegel, and V. Dunjko. “Faster Quantum Mixing for
Slowly Evolving Sequences of Markov Chains”. In: Quantum 2 (2018), p. 105
(cit. on pp. 5, 88).

[ODo15] R. O’Donnell. Lecture Notes on Quantum Computation and Information.
Available at http://www.cs.cmu.edu/~odonnell/quantum15/. 2015
(cit. on p. 15).

[ORR13] M. Ozols, M. Roetteler, and J. Roland. “Quantum Rejection Sampling”. In:
ACM Transactions on Computation Theory 5.3 (2013), 11:1–11:33 (cit. on
pp. 5, 88).

[ORRR12] K. Onak, D. Ron, M. Rosen, and R. Rubinfeld. “A Near-Optimal Sublinear-
Time Algorithm for Approximating the Minimum Vertex Cover Size”. In:
Proceedings of the 23rd Symposium on Discrete Algorithms (SODA). 2012,
pp. 1123–1131 (cit. on p. 61).

[OW99] P. C. van Oorschot and M. J. Wiener. “Parallel Collision Search with
Cryptanalytic Applications”. In: Journal of Cryptology 12.1 (1999), pp. 1–
28 (cit. on pp. 127–130).

[PB11] M. Plesch and v. Brukner. “Quantum-State Preparation with Universal
Gate Decompositions”. In: Physical Review A 83 (2011), p. 032302 (cit. on
pp. 87, 88).

[Pid19] S. Piddock. Quantum Walk Search Algorithms and Effective Resistance.
arXiv:1912.04196 [quant-ph]. 2019 (cit. on p. 62).

[Pol75] J. M. Pollard. “A Monte Carlo Method for Factorization”. In: BIT Numerical
Mathematics 15.3 (1975), pp. 331–334 (cit. on pp. 6, 127, 128).

164

http://www.cs.cmu.edu/~odonnell/quantum15/
http://arxiv.org/abs/1912.04196

Bibliography

[PW09] D. Poulin and P. Wocjan. “Sampling from the Thermal Quantum Gibbs
State and Evaluating Partition Functions with a Quantum Computer”. In:
Physical Review Letters 103.22 (2009), p. 220502 (cit. on p. 3).

[Rab76] M. O. Rabin. “Probabilistic Algorithms”. In: Proceedings of the Symposium
on Algorithms and Complexity: New Directions and Recent Results. 1976,
pp. 21–39 (cit. on p. 1).

[Raz03] A. A. Razborov. “Quantum Communication Complexity of Symmetric
Predicates”. In: Izvestiya: Mathematics 67.1 (2003), pp. 145–159 (cit. on
p. 82).

[Raz18] R. Raz. “Fast Learning Requires Good Memory: A Time-Space Lower
Bound for Parity Learning”. In: Journal of the ACM 66.1 (2018) (cit. on
p. 6).

[RC04] C. P. Robert and G. Casella. Monte Carlo Statistical Methods. 2nd. Springer-
Verlag New York, 2004 (cit. on p. 4).

[RHR+21] P. Rebentrost, Y. Hamoudi, M. Ray, X. Wang, S. Yang, and M. Santha.
“Quantum Algorithms for Hedging and the Learning of Ising Models”. In:
Physical Review A 103 (2021), p. 012418 (cit. on pp. 97, 112).

[RT14] P. Richtárik and M. Takác. “Iteration Complexity of Randomized Block-
Coordinate Descent Methods for Minimizing a Composite Function”. In:
Mathematical Programming 144.1-2 (2014), pp. 1–38 (cit. on p. 98).

[Rus91] K. G. Russell. “Estimating the Value of e by Simulation”. In: The American
Statistician 45.1 (1991), pp. 66–68 (cit. on p. 1).

[SBBK08] R. D. Somma, S. Boixo, H. Barnum, and E. Knill. “Quantum Simulations
of Classical Annealing Processes”. In: Physical Review Letters 101 (2008),
p. 130504 (cit. on pp. 5, 88).

[Sch00] A. Schrijver. “A Combinatorial Algorithm Minimizing Submodular Func-
tions in Strongly Polynomial Time”. In: Journal of Combinatorial Theory
Series B 80.2 (2000), pp. 346–355 (cit. on p. 102).

[Ser03] R. A. Servedio. “Smooth Boosting and Learning with Malicious Noise”. In:
Journal of Machine Learning Research 4 (2003), pp. 633–648 (cit. on p. 98).

[Ses15] C. Seshadhri. A Simpler Sublinear Algorithm for Approximating the Triangle
Count. arXiv:1505.01927 [cs.DS]. 2015 (cit. on pp. 62, 63, 66, 68, 71,
83).

[Shi05] Y. Shi. “Quantum and Classical Tradeoffs”. In: Theoretical Computer
Science 344.2 (2005), pp. 335–345 (cit. on p. 89).

[Sho97] P. W. Shor. “Polynomial-Time Algorithms for Prime Factorization and
Discrete Logarithms on a Quantum Computer”. In: SIAM Journal on
Computing 26.5 (1997), pp. 1484–1509 (cit. on p. 2).

[Sim97] D. R. Simon. “On the Power of Quantum Computation”. In: SIAM Journal
on Computing 26.5 (1997), pp. 1474–1483 (cit. on p. 2).

[SLSB19] Y. R. Sanders, G. H. Low, A. Scherer, and D. W. Berry. “Black-Box
Quantum State Preparation without Arithmetic”. In: Physical Review
Letters 122.2 (2019), p. 020502 (cit. on pp. 88, 90, 95).

165

http://arxiv.org/abs/1505.01927

Bibliography

[Špa08] R. Špalek. “The Multiplicative Quantum Adversary”. In: Proceedings of
the 23rd Computational Complexity Conference (CCC). 2008, pp. 237–248
(cit. on p. 128).

[SS06] A. N. Soklakov and R. Schack. “Efficient State Preparation for a Register of
Quantum Bits”. In: Physical Review A 73 (2006), p. 012307 (cit. on p. 88).

[SV05] L. J. Schulman and V. V. Vazirani. “A Computationally Motivated Def-
inition of Parametric Estimation and its Applications to the Gaussian
Distribution”. In: Combinatorica 25.4 (2005), pp. 465–486 (cit. on p. 26).

[SV09] T. Strohmer and R. Vershynin. “A Randomized Kaczmarz Algorithm with
Exponential Convergence”. In: Journal of Fourier Analysis and Applications
15.2 (2009), pp. 262–278 (cit. on pp. 5, 98).

[SYZ04] X. Sun, A. C.-C. Yao, and S. Zhang. “Graph Properties and Circular
Functions: How Low Can Quantum Query Complexity Go?” In: Proceedings
of the 19th Computational Complexity Conference (CCC). 2004, pp. 286–293
(cit. on p. 62).

[Sze04] M. Szegedy. “Quantum Speed-Up of Markov Chain Based Algorithms”. In:
Proceedings of the 45th Symposium on Foundations of Computer Science
(FOCS). 2004, pp. 32–41 (cit. on p. 5).

[Ter99] B. M. Terhal. “Quantum Algorithms and Quantum Entanglement”. PhD
thesis. University of Amsterdam, 1999 (cit. on pp. 3, 25, 26, 30, 34).

[TS13] A. Ta-Shma. “Inverting Well Conditioned Matrices in Quantum Logspace”.
In: Proceedings of the 45th Symposium on Theory of Computing (STOC).
2013, pp. 881–890 (cit. on p. 7).

[TW02] J. F. Traub and H. Wozniakowski. “Path Integration on a Quantum Com-
puter”. In: Quantum Information Processing 1.5 (2002), pp. 365–388 (cit. on
pp. 3, 26).

[Vos91] M. D. Vose. “A Linear Algorithm for Generating Random Numbers with a
Given Distribution”. In: IEEE Transactions on Software Engineering 17.9
(1991), pp. 972–975 (cit. on pp. 88, 90, 94).

[WA08] P. Wocjan and A. Abeyesinghe. “Speedup via Quantum Sampling”. In:
Physical Review A 78.4 (2008), p. 042336 (cit. on pp. 5, 88).

[Wag02] D. Wagner. “A Generalized Birthday Problem”. In: Proceedings of the 22nd
International Cryptology Conference (CRYPTO). 2002, pp. 288–304 (cit. on
p. 127).

[Wal74] A. J. Walker. “New Fast Method for Generating Discrete Random Numbers
with Arbitrary Frequency Distributions”. In: Electronics Letters 10.8 (1974),
pp. 127–128 (cit. on p. 88).

[Wal77] A. J. Walker. “An Efficient Method for Generating Discrete Random Vari-
ables with General Distributions”. In: ACM Transactions on Mathematical
Software 3.3 (1977), pp. 253–256 (cit. on pp. 88, 90, 94).

[Wan17] G. Wang. “Efficient Quantum Algorithms for Analyzing Large Sparse
Electrical Networks”. In: Quantum Information & Computation 17.11&12
(2017), pp. 987–1026 (cit. on p. 62).

166

Bibliography

[WCNA09] P. Wocjan, C.-F. Chiang, D. Nagaj, and A. Abeyesinghe. “Quantum Algo-
rithm for Approximating Partition Functions”. In: Physical Review A 80.2
(2009), p. 022340 (cit. on p. 3).

[WG17] N. Wiebe and C. Grandade. “Can Small Quantum Systems Learn”. In:
Quantum Information & Computation 17.7&8 (2017), pp. 568–594 (cit. on
p. 88).

[Wie04] M. J. Wiener. “The Full Cost of Cryptanalytic Attacks”. In: Journal of
Cryptology 17.2 (2004), pp. 105–124 (cit. on p. 127).

[Wol19] R. de Wolf. Quantum Computing: Lecture Notes. arXiv:1907.09415
[quant-ph]. 2019 (cit. on p. 15).

[WYLC21] D. Wang, X. You, T. Li, and A. M. Childs. “Quantum Exploration Algo-
rithms for Multi-Armed Bandits”. In: Proceedings of the 35th Conference
on Artificial Intelligence (AAAI). 2021, pp. 10102–10110 (cit. on p. 46).

[WZ12] D. P. Woodruff and Q. Zhang. “Tight Bounds for Distributed Functional
Monitoring”. In: Proceedings of the 44th Symposium on Theory of Computing
(STOC). 2012, pp. 941–960 (cit. on pp. 7, 116).

[Yao93] A. C.-C. Yao. “Quantum Circuit Complexity”. In: Proceedings of the 34th
Symposium on Foundations of Computer Science (FOCS). 1993, pp. 352–361
(cit. on p. 15).

[Yao94] A. C.-C. Yao. “Near-Optimal Time-Space Tradeoff for Element Distinct-
ness”. In: SIAM Journal on Computing 23.5 (1994), pp. 966–975 (cit. on
pp. 128, 142, 146).

[YYI12] Y. Yoshida, M. Yamamoto, and H. Ito. “Improved Constant-Time Ap-
proximation Algorithms for Maximum Matchings and Other Optimization
Problems”. In: SIAM Journal on Computing 41.4 (2012), pp. 1074–1093
(cit. on pp. 61, 62).

[Zal98] C. Zalka. “Simulating Quantum Systems on a Quantum Computer”. In:
Proceedings of the Royal Society A: Mathematical, Physical and Engineering
Sciences 454.1969 (1998), pp. 313–322 (cit. on pp. 88, 91).

[Zha15] M. Zhandry. “A Note on the Quantum Collision and Set Equality Problems”.
In: Quantum Information & Computation 15.7&8 (2015), pp. 557–567 (cit.
on pp. 128, 129).

[Zha19] M. Zhandry. “How to Record Quantum Queries, and Applications to Quan-
tum Indifferentiability”. In: Proceedings of the 39th International Cryptology
Conference (CRYPTO). 2019, pp. 239–268 (cit. on pp. 7, 128, 130–133).

[Zhu12] Y. Zhu. “Quantum Query Complexity of Constant-Sized Subgraph Con-
tainment”. In: International Journal of Quantum Information 10.03 (2012),
p. 1250019 (cit. on p. 62).

[ZLL20] C. Zhang, J. Leng, and T. Li. Quantum Algorithms for Escaping from
Saddle Points. arXiv:2007.10253 [quant-ph]. 2020 (cit. on p. 98).

[ZX17] Y. Zhang and L. Xiao. “Stochastic Primal-Dual Coordinate Method for
Regularized Empirical Risk Minimization”. In: Journal of Machine Learning
Research 18.84 (2017), pp. 1–42 (cit. on pp. 97, 98).

167

http://arxiv.org/abs/1907.09415
http://arxiv.org/abs/2007.10253

Bibliography

[ZZ15] P. Zhao and T. Zhang. “Stochastic Optimization with Importance Sampling
for Regularized Loss Minimization”. In: Proceedings of the 32nd Interna-
tional Conference on Machine Learning (ICML). 2015, pp. 1–9 (cit. on
pp. 97, 98).

168

	Contents
	Introduction
	Preliminaries: algorithmic model
	Quantum algorithms for estimating average values
	Quantum algorithms for optimization with importance sampling
	Quantum algorithms with limited memory

	Preliminaries
	Mathematical Preliminaries
	Linear algebra and notations
	Concentration inequalities

	Algorithmic Preliminaries
	Quantum circuit model
	Amplitude amplification
	Amplitude estimation

	Quantum Algorithms for Estimating Average Values
	Mean Estimation Problem
	Introduction
	Related work
	Contributions and organization
	Proof overview

	Model of input
	Quantile estimation
	Sub-Gaussian estimator
	(epsilon,delta)-Estimators
	Parameter-free estimators
	Parametrization by the coefficient of variation

	Lower bounds
	Sub-Gaussian estimation
	(epsilon,delta)-Estimation
	State-based estimation

	Discussion

	Variable-Time Mean Estimation
	Introduction
	Related work
	Contributions and organization
	Proof overview

	Model of input
	Variable-time amplitude estimation
	Notations
	State generation algorithms
	Main algorithm

	Variable-time mean estimator
	Variable-time Bernoulli estimator
	Variable-time (epsilon,delta)-estimator

	Discussion

	Estimation of Graph Parameters
	Introduction
	Related work
	Contributions and organization
	Proof overview

	Preliminaries
	Edge counting
	Triangle counting
	Assumptions
	Main concepts
	Triangle degree estimator
	Weighted triangle degree estimator
	Final algorithm

	Lower bounds
	Discussion

	Quantum Algorithms for Optimization with Importance Sampling
	Quantum State Preparation and Importance Sampling
	Introduction
	Related work
	Contributions and organization
	Proof overview

	Model of input
	Preliminaries
	Preparing K copies of a quantum state
	Preparing K samples from a discrete distribution
	Discussion

	Applications to Stochastic Optimization
	Introduction
	Related work

	Hedge algorithm
	Classical Hedge algorithm
	Quantum Hedge algorithm

	Submodular function minimization
	Proof overview
	Preliminaries
	Data structures and c-covers
	Importance sampling for gradient computation
	Final algorithm

	Discussion

	Quantum Algorithms with Limited Memory
	Frequency Moments and Linear Sketches in the Data Stream Model
	Introduction
	Related work
	Contributions and organization
	Proof overview

	Data stream model
	Quantum simulation of classical streaming algorithms
	Reversible streaming algorithms
	Linear sketch algorithms

	Estimation of the frequency moments
	Discussion

	Time-Space Tradeoffs by Recording Queries
	Introduction
	Related work
	Contributions and organization
	Proof overview

	Models of computation
	Query model
	Space-bounded model

	Recording model
	Time lower bound for Collision Pairs Finding
	Recording query operator
	Analysis of the recording progress
	From the recording progress to the success probability

	Time lower bound for K-Search
	Recording query operator
	Analysis of the recording progress
	From the recording progress to the success probability

	Time-space tradeoffs
	Time-space tradeoff for Collision Pairs Finding
	Time-space tradeoff for Sorting

	Discussion

	Bibliography

