@ Universite EcoLE DOCTORALE 386 llnsrll'rur| |

de Paris Sciences Mathématiques de Paris Centre :: r»fn?:::::;us

FONDAMENTALE

Université de Paris

These de doctorat en Informatique

Quantum Algorithms for the
Monte Carlo Method

Yassine HAMOUDI

Présentée et soutenue publiquement le 7 juillet 2021.

Directeur de thése : Frédéric MAGNIEZ Directeur de recherche (Université de Paris, CNRS)
Co-directeur de theése : Miklos SANTHA Directeur de recherche (Université de Paris, CNRS)
Rapporteurs : Ashley MONTANARO Professeur (University of Bristol)
Michele Mosca Professeur (University of Waterloo)
Examinateurs : Omar FAwzl Directeur de recherche (ENS de Lyon, Inria)
Stacey JEFFERY Docteure (Centrum Wiskunde & Informatica)

Présidente du jury : Maria NAYA-PLASENCIA Directrice de recherche (Inria de Paris)

Abstract

The Monte Carlo method is a central paradigm of algorithm design that consists of
using statistical analysis and random sampling to solve problems that have a probabilistic
interpretation. This thesis explores the advantages offered by a quantum computer to
speed up this method.

The first part of our work concerns the problem of estimating average values in a time-
efficient way. We develop new quantum algorithms for estimating the mean of a real-valued
random variable obtained as the output of a quantum computation. Our estimators achieve
a near-optimal quadratic speedup over the number of classical samples required to get a
sub-Gaussian error rate or an (¢, d)-approximation guarantee. Furthermore, we describe a
framework that provides a notion of “stopping time” for a quantum process generating
a random variable. We show that the mean estimation problem can be further sped up
when the average stopping time of the underlying process is small. These techniques are
applied to the construction of a near-optimal quantum query algorithm for approximately
counting the number of triangles in a graph.

In the second part, we study the task of importance sampling and its applications to
stochastic optimization. We construct a quantum algorithm for sampling multiple elements
from a finite distribution specified as a probability vector. Our approach solves the more
general problem of preparing multiple copies of a quantum state whose amplitudes are
given by a query oracle. We illustrate the use of this result by constructing two hybrid
quantum-classical algorithms based on the multiplicative weight update and stochastic
gradient descent methods. Our two applications address the problems of online prediction
with expert advice and minimizing a submodular set function.

In the third part, we consider quantum algorithms that operate with limited memory.
We first study the problem of approximating the frequency moments in the data stream
model with multiple passes over the input. We construct a quantum algorithm that uses
less memory than the best possible classical streaming algorithms. Our method combines
the above-mentioned quantum mean estimators with reversible simulation techniques.
Then, we examine the limitations of space-bounded algorithms in the quantum query
model. We develop a new approach for proving time-space tradeoff lower bounds in this
setting, based on a recent technique for recording quantum queries. As an application,
we consider the task of finding multiple collision pairs in a random function. We show
that the quantum query complexity of this problem increases when the available space
decreases.

Keywords: quantum computing, algorithms, Monte Carlo method, mean estimators,
importance sampling, stochastic optimization, space-bounded computation, streaming
algorithms, query complexity.

Résumé

La méthode de Monte Carlo est un paradigme central de I'algorithmique basée sur I’ana-
lyse statistique et sur les techniques d’échantillonnage aléatoire appliquées aux problémes
ayant une interprétation probabiliste. Cette theése explore les avantages qu’offrirait un
ordinateur quantique pour augmenter l'efficacité de cette méthode.

Nous étudions dans un premier temps le probleme d’estimation de valeurs moyennes
par des techniques a temps de calcul minimal. Nous développons de nouveaux algorithmes
quantiques pour estimer ’espérance d’une variable aléatoire réelle produite en sortie d’un
processus quantique. Les estimateurs que nous construisons procurent une accélération
quadratique par rapport au nombre d’échantillons classiques nécessaires pour obtenir une
borne d’erreur sous-gaussienne ou une (€, d)-approximation. Nous décrivons également un
cadre théorique fournissant une notion de «temps d’arrét» pour un processus quantique
générant une variable aléatoire. Nous démontrons que le probleme d’estimation de la
moyenne peut étre résolu plus efficacement lorsque le temps d’arrét moyen du processus
sous-jacent est court. Ces résultats sont appliqués au développement d’un algorithme de
requéte quantique quasi-optimal pour approximer le nombre de triangles dans un graphe.

Dans un second temps, nous étudions le probleme d’échantillonnage préférentiel et ses
applications en optimisation stochastique. Nous construisons un algorithme quantique
pour échantillonner plusieurs éléments d’une distribution finie spécifiée par un vecteur
de probabilité. Notre approche résout le probléeme plus général consistant a préparer
plusieurs copies d’'un état quantique dont les amplitudes sont accessibles via un oracle.
L’utilité de ce résultat est illustrée a travers le développement de deux algorithmes hybrides
quantiques-classiques basés sur la méthode des poids multiplicatifs et sur I'algorithme du
gradient stochastique. Ces deux applications concernent la prédiction en ligne avec conseil
d’experts, et la minimisation des fonctions sous-modulaires.

La derniere partie de cette these est consacrée a 1’étude des algorithmes quantiques a
mémoire limitée. Nous étudions tout d’abord le probleme d’approximation des moments
de fréquence dans le modele de flots de données a passes multiples. Nous construisons un
algorithme quantique qui nécessite une quantité de mémoire moindre que les meilleurs
algorithmes de streaming classiques possible. Notre méthode repose sur les estimateurs
quantiques de moyenne susmentionnés et sur des techniques de simulation de calcul
reversible. Nous explorons ensuite certaines limites des algorithmes a mémoire restreinte
dans le modele de requéte quantique. Nous développons une nouvelle approche pour obtenir
des bornes inférieures temps-mémoire, basée sur une technique récente d’enregistrement
des requétes quantiques. Ce résultat est appliqué au probleme de la recherche de paires
de collisions dans une fonction aléatoire. Nous démontrons que la complexité en requéte
quantique de cette tache augmente lorsque la quantité de mémoire disponible diminue.

Mots clés : calcul quantique, algorithmes, méthode de Monte Carlo, estimateurs de
moyenne, échantillonnage préférentiel, optimisation stochastique, calcul a mémoire res-
treinte, algorithmes de streaming, complexité en requéte.

Acknowledgments

First and foremost, I want to express my deepest gratitude to my supervisors, Frédéric
Magniez and Miklos Santha, for their kindness, trust and support throughout my PhD.
I had the privilege to work in two extraordinary places, the Institut de Recherche en
Informatique Fondamentale in Paris and the Centre for Quantum Technologies in Singapore,
where they always made me feel welcome and valued. I want to thank them especially for
the time they spent sharing their experience and knowledge with me, which helped me
grow as a researcher and as a person.

I am thankful to Anil Ada, Olivier Bournez, Hartmut Klauck, Sophie Laplante and
Roberto Mantaci for hosting me as an intern during my bachelor’s and master’s studies.
They guided my first steps into research and made me feel confident enough to engage in
a PhD. I owe a special thanks to Omar Fawzi, who introduced me to quantum computing
as a teacher, and helped me find my path in the quantum community.

I am grateful to Stacey Jeffery, Patrick Rebentrost, Ansis Rosmanis, Thomas Vidick
and Ronald de Wolf for the enlightening discussions and collaborations we had together. 1
would like to thank Ashley Montanaro and Ashwin Nayak for inviting me to present my
work at the Institute for Quantum Computing and the University of Bristol. I also want
to express my gratitude to Omar Fawzi, Stacey Jeffery, Ashley Montanaro, Michele Mosca
and Maria Naya-Plasencia for being on my thesis committee.

My PhD experience wouldn’t have been complete without colleagues to play board
games, drink coffee and travel with. For that, I want to thank Alessandro, Alex, Alexandre,
Amaury, Anupa, Arjan, Daniel, Etienne, Jonas, Maharshi, Mickaél, Olivier, Sander, Sidi
Mohamed, Simon, Simona, Xavier, Yixin, Zhouningxin, and my other fellow students. I
hope our paths cross again!

Finally, I want to thank my family and friends for their invaluable contributions to
this work. I’d like to give special thanks to Louisa, Amine, Nabil and Zakia for their
hospitality during my stay in Paris, Sarah for sharing her daily stories and ever-growing
cooking skills with me, Marwan and Driss for our too-rare hiking and biking trips, and
Bassem and Thomas for their long-lasting friendship. I dedicate this thesis to my parents,
may it be a blessing to them.

Contents

Introduction 1
1.1 Preliminaries: algorithmic model 2
1.2 Quantum algorithms for estimating average values 3
1.3 Quantum algorithms for optimization with importance sampling 4
1.4 Quantum algorithms with limited memory 6
Preliminaries 9
Mathematical Preliminaries 11
2.1 Linear algebra and notations, 11
2.2 Concentration inequalities 12
Algorithmic Preliminaries 15
3.1 Quantum circuit model o 15
3.2 Amplitude amplification L L. 18
3.3 Amplitude estimation L. 20
Quantum Algorithms for Estimating Average Values 23
Mean Estimation Problem 25
4.1 Introduction e 25
4.1.1 Related work o 26
4.1.2 Contributions and organization 27
4.1.3 Proof overview 28

4.2 Model of input 30
4.3 Quantile estimationo oL 31
4.4 Sub-Gaussian estimatoro 34
45 (e, 6)-Estimatorso oo oo Lo 37
4.5.1 Parameter-free estimators 37
4.5.2 Parametrization by the coefficient of variation 38

4.6 Lower bounds 41
4.6.1 Sub-Gaussian estimation. L. 41
46.2 (e d)-Estimation 0oL 42
4.6.3 State-based estimation oo 42

4.7 Discussion oo 43
Variable-Time Mean Estimation 45
5.1 Introduction L L 45
51.1 Related work 46
5.1.2 Contributions and organization 46
5.1.3 Proofoverview 47

vii

Contents

7

viii

5.2 Model ofinput L L
5.3 Variable-time amplitude estimation
5.3.1 Notations e
5.3.2 State generation algorithms oL
5.3.3 Main algorithm 0 oL
5.4 Variable-time mean estimator L.
5.4.1 Variable-time Bernoulli estimator
5.4.2 Variable-time (e, d)-estimator
5.5 Discussion e e

Estimation of Graph Parameters

6.1 Introduction
6.1.1 Related work L
6.1.2 Contributions and organization
6.1.3 Proof overview

6.2 Preliminaries L

6.3 Edgecounting.

6.4 Triangle counting L Lo o
6.4.1 Assumptions
6.4.2 Main concepts Lo
6.4.3 'Triangle degree estimator
6.4.4 Weighted triangle degree estimator
6.4.5 Final algorithm oL

6.5 Lower bounds

6.6 Discussion e

Quantum Algorithms for Optimization with Importance Sampling

Quantum State Preparation and Importance Sampling

7.1 Introduction e
7.1.1 Related work L
7.1.2 Contributions and organization
7.1.3 Proofoverview

7.2 Modelof input

7.3 Preliminaries e

7.4 Preparing K copies of a quantum state

7.5 Preparing K samples from a discrete distribution

7.6 Discussion L e

Applications to Stochastic Optimization

8.1 Introduction. e e
8.1.1 Related work
8.2 Hedge algorithm L
8.2.1 Classical Hedge algorithm
8.2.2 Quantum Hedge algorithm
8.3 Submodular function minimization
8.3.1 Proofoverview
8.3.2 Preliminaries o
8.3.3 Data structures and c-covers

48
50
50
51
93
55
55
o7
60

61
61
62
62
63
67
68
69
69
71
73
(0]
80
81
83

87
87
88
89
89
90
90
91
93
95

97
97
98
99
99
100
102
103
103
105

Contents

8.3.4 Importance sampling for gradient computation
8.3.5 Final algorithm oL

8.4 Discussion

IV Quantum Algorithms with Limited Memory

9 Frequency Moments and Linear Sketches in the Data Stream Model
9.1 Introduction
9.1.1 Related work
9.1.2 Contributions and organization
9.1.3 Proof overview e
9.2 Datastreammodel Lo
9.3 Quantum simulation of classical streaming algorithms
9.3.1 Reversible streaming algorithms
9.3.2 Linear sketch algorithms
9.4 Estimation of the frequency moments

9.5 Discussion

10 Time-Space Tradeoffs by Recording Queries
10.1 Introduction oL
10.1.1 Related work oL
10.1.2 Contributions and organization
10.1.3 Proof overview
10.2 Models of computation
10.2.1 Query model L
10.2.2 Space-bounded model L.
10.3 Recording model L Lo
10.4 Time lower bound for Collision Pairs Finding
10.4.1 Recording query operator
10.4.2 Analysis of the recording progress
10.4.3 From the recording progress to the success probability
10.5 Time lower bound for K-Search
10.5.1 Recording query operator
10.5.2 Analysis of the recording progress
10.5.3 From the recording progress to the success probability
10.6 Time-space tradeoffs
10.6.1 Time-space tradeoff for Collision Pairs Finding
10.6.2 Time-space tradeoff for Sorting

10.7 Discussion

Bibliography

113

115
115
116
117
117
118
119
119
121
123
124

127
127
128
129
130
132
132
133
133
135
135
136
137
139
139
140
141
142
142
146
146

147

ix

Introduction

The development of the Monte Carlo method went hand in hand with the construction of
the first electronic digital computers in the late 1940s. Ulam and von Neumann rapidly
saw the potential applications of these machines to the field of nuclear physics. This
new computational power, coupled with statistical sampling techniques, was soon used
to study the motions and interactions of neutrons. In a pioneering letter (see [And86;
Met87; Eck87] for a brief history of the Monte Carlo method), von Neumann outlined a
computer program that simulates nuclear chain reactions based on computer-generated
random numbers and statistical analysis. Nowadays, the Monte Carlo method refers to
a broad class of algorithms that use randomness, statistics and approximation methods
to solve computational problems. Its scope of application has expanded from statistical
physics to mathematical finance, operational research, Bayesian statistics, and other
areas (see [KBTB14] for an account of its importance in modern sciences, finance and
engineering). The Monte Carlo method revolves around two fundamental ideas, which
occupy a central place in this thesis. The first one is to use approximation techniques to
estimate a numerical parameter whose exact computation is difficult. The objective here
is to trade off accuracy against efficiency in an optimal way. The second idea is to let an
algorithm be guided by random choices with the goal that it outperforms deterministic
strategies. This requires the design of random processes that can sample from specific
probability distributions. A toy example that illustrates the Monte Carlo method is the
following random experiment for estimating the Euler number e. Sample a sequence of
uniform random numbers x1, zo, ... in the interval [0, 1] until the first time 7" when the
sum Zszl x; is larger than 1. One can show [Rus91] that the value of T" is an unbiased
estimate of e.

About 30 years after the emergence of the Monte Carlo method, in a study of the
Closest Pair of Points problem, Rabin [Rab76] formulated what is often considered one
of the first randomized algorithms. Randomness became a useful resource not only to
simulate physical processes but also to solve purely algorithmic problems. It shaped our
modern conception of algorithm designs, and it is now a central topic in computer science
with a plethora of applications [MR95; MU17]. Another revolution occurred in the 1980s,
driven by the ambition of simulating quantum physics problems. Feynman [Fey82; Fey86]
observed that such simulations tend to require a prohibitive amount of resources when
run on a conventional computer. Together with other physicists, he envisioned a new
model of computation, the quantum computer, that would exploit the laws of quantum
mechanics to surpass these barriers. This hypothetical machine operates on a new unit
of information, the quantum bit (or qubit), and it leverages the principles of quantum
mechanics (superposition, entanglement, etc.) to perform the computation. The theoretical
basis of this model was laid by Deutsch [Deu85; Deu89], who formalized the notions of
quantum Turing machines and quantum circuits. The early quantum algorithms discovered

Chapter 1 Introduction

by Deutsch and Jozsa [DJ92], Simon [Sim97], and Bernstein and Vazirani [BV97] opened a
new path for quantum speedups over classical algorithms. The groundbreaking algorithm
of Shor [Sho97] for integer factorization was the spark that triggered the rapid growth of
this field of research. It was followed by another important algorithm from Grover [Gro96a]
for searching an item in an unordered list. Nowadays, quantum algorithm design has
evolved into a mature topic with applications in linear algebra, Hamiltonian simulation,
optimization, machine learning, etc. In particular, the techniques and motivations behind
the Monte Carlo method are now revisited through the lens of quantum mechanics with
the goal of finding new applications and more efficient algorithms. In this thesis, we
contribute to this line of research by studying the power and limitations of this approach.

1.1 Preliminaries: algorithmic model

Before diving into the description of our contributions, we describe the general features of
the quantum algorithms studied in this thesis. We present the main algorithmic paradigm
employed in our results, and we highlight the general input-output model.

Quantum algorithmic paradigm. There are a few numbers of quantum subroutines
(Quantum Fourier Transform, Phase Estimation, Grover’s Search, etc.) that are part of
most quantum algorithms. In this thesis, our approach is rooted in the use of the Grover
operator described in the seminal work of Grover on quantum search [Gro96a]. The Grover
operator is a unitary transformation that rotates the state vector of a quantum system
in a certain two-dimensional space, and that can be efficiently simulated on a quantum
computer in specific scenarios. In the present work, the Grover operator is embedded
into hybrid quantum-classical algorithms. This approach follows an active line of research
that consists of combining advanced classical algorithms with quantum subroutines to go
beyond the “off-the-shelf” applications of the latter. These methods offer a speedup that
is often polynomial over the best possible randomized algorithms, as is the case in this
thesis.

Input. We work in the black-box model, where the input to a problem is provided by an
oracle whose inner workings are not accessible to the algorithm. An oracle is represented
as a unitary operator that returns a piece of information about the input whenever it is
applied to a state vector. A canonical example is to encode an input Boolean function
f:{0,1}" — {0,1} as a bijective function oracle mapping (z,y) — (z,y ® f(z)). The
way this transformation is implemented is left unspecified (it may be given to us as a
Boolean circuit, for instance). The black-box model is a convenient tool when one wants
to abstract the role of a subroutine (the oracle) and focus only on the number of times
it is invoked (or queried). Most of the known quantum algorithms can be seen as acting
in this setting. For instance, Grover’s search uses 0(2"/ 2) queries to a function oracle to
find a value = such that f(x) = 1. In this thesis, we consider both function oracles and
more general oracles selected from a predefined set of unitaries. We make an exception in
Chapter 9, where we use a non-black-box input model (the data stream model).

Output. Our quantum algorithms return classical results, except in Chapter 7 where we
produce a quantum state. We often look for approximate solutions that do not deviate
significantly from the best possible output. We also allow the algorithms to be incorrect
with a small probability.

1.2 Quantum algorithms for estimating average values

1.2 Quantum algorithms for estimating average values

The problem of finding efficient algorithms to estimate statistics lies at the core of the
Monte Carlo method. A standard approach is to express a parameter of interest as the
expectation of a random variable X (ideally with low variance) and to gather sufficient
samples from X to construct an estimate of E[X]. The challenge here is twofold. First, the
experiment that generates the samples must be efficiently computable. Secondly, one needs
a mean estimator to process the samples and return a high-accuracy estimate of E[X].
This approach is often known as approximate counting in computer science. It is a method
of choice to estimate parameters whose exact computation is #P-hard, such as the number
of satisfying assignments to a DNF [KL83; KLM89], the volume of convex bodies [DFK91;
DF91] or the permanent [JSV04]. More generally, it is used when exact counting is
intractable—for example, in high-dimensional integration, in Bayesian inference, or for
estimating partition functions in statistical physics. In parallel to these works, approximate
counting has been studied in the scenario where the amount of available computational
resources (time, space, etc.) is sublinear in the input size of the problem. In a seminal work,
Feige [Fei06] showed, for instance, that the average degree in a graph can be estimated
with a number of degree queries that is sublinear in the number of vertices. This result
prompted the study of sublinear-time algorithms for subgraph counting problems. In
another pioneering use of this method, Alon, Matias and Szegedy [AMS99] designed an
algorithm to estimate statistics of a stream of data by using an amount of memory that is
sublinear in the stream length. This result popularized the field of streaming algorithms
(we return to the data stream model in Section 1.4).

The first quantum algorithms for estimating statistics were found in the wake of Grover’s
search. Several quantum speedups were obtained to compute the minimum [DH96], the
median [Gro96b; Gro98; NW99] or the k-th smallest element [NW99; DHHMO6] of a list
of N numbers. The task of quantum counting was introduced by Brassard, Hgyer and
Tapp in [BHT98a], with the goal of (approximately) counting the number of ones in a list
of N Boolean values. This result has evolved into more advanced algorithms for numerical
integration [AW99; Nov01; Hei02; TWO02] and estimating partition functions [WCNAQ9;
PWO09; Monl5; HW20]. Nevertheless, the power of quantum computing for solving
approximate counting problems is much less understood than that of classical computing.
This is due in part to the fact that standard mean estimators (such as the empirical mean
or the median-of-means) and concentration inequalities (such as Chebyshev’s inequality)
have no clear equivalent when given “quantum access” to a random variable. There do exist
quantum estimators for estimating the mean of N real numbers [Gro98; Ter99; BDGT11,
Mon15]. However, they are outperformed by classical estimators if the distribution is
heavy tailed, or they require additional information on the input (e.g. the variance).

Our contributions. Part II of this thesis is devoted to estimating average values in a
sample and time-efficient way.

In Chapter 4, we consider the general problem of estimating the mean u of a real-valued
random variable X. We suppose that X is obtained as the output of a separate quantum
computation, and we introduce the concept of quantum experiment to model the task of
getting one sample of information from X. We seek to minimize the number of quantum
experiments needed to estimate p with some prescribed accuracy, under the assumption
that X has a bounded variance o2. In the classical setting, the optimal deviation bound
is achieved by the so-called sub-Gaussian estimators that return an estimate g such that
|t — p| < O(o/log(1/8)/t) with probability at least 1 — §, where ¢ denotes the number of

Chapter 1 Introduction

i.7.d. samples available to the estimator. We present a quantum estimator that achieves
the bound | — u| < O(olog(1/6)/t) while performing only ¢ quantum experiments. This
represents a near-quadratic and optimal speedup over the classical sub-Gaussian estimators.
As an application, we obtain new quantum algorithms for the (e, §)-approximation problem
where the goal is to satisfy | — u| < €|pu| with probability at least 1 — 4.

In Chapter 5, we refine the definition of a quantum experiment to introduce the notion
of stopping time. The stopping time T is a random variable distributed according to the
“variable time” spent by an experiment to perform its computation. The variable time of
a quantum algorithm is a concept introduced by Ambainis [Amb12] in the design of the
variable-time amplitude amplification algorithm. The existing quantum mean estimators
use on the order of N x max(7") operations to perform N quantum experiments. This
contrasts with the classical setting, where N samples are obtained in ezpected time N xE[T].
This difference is explained by the fact that a quantum experiment prepares a coherent
encoding of X, which could be destroyed if a measurement is applied before the completion
time max(7"). We manage to overcome this obstacle by giving a quantum estimator for the
(e, 0)-approximation problem that uses on the order of V x /E[T?] operations, where V
is quadratically smaller than the number of samples needed classically. Our technique is
rooted in the development of a new wvariable-time amplitude estimation algorithm.

In Chapter 6, we use the techniques developed in the two previous chapters to study the
problem of approximating the number of edges and triangles in a graph in sublinear time.
We consider the general graph model where neighbor and vertex-pair quantum queries
are permitted. Given a graph with n vertices, m edges and ¢ triangles, our algorithms
return an edge estimate m such | — m| < em after O(y/n/m'/*) queries (omitting the
dependence on the relative error €), and a triangle estimate t such that |t — t| < et after
O(y/n/tY% 4 m3/4/\/t) queries. This is better than the best possible classical algorithms.
Our algorithms consist of estimating the expectations of carefully chosen random variables.
The latter are generated by using local graph exploration techniques adapted from the
recent classical triangle counting algorithm of Eden, Levi, Ron and Seshadhri [ELRS17].

1.3 Quantum algorithms for optimization with importance
sampling

The Monte Carlo method offers a large variety of techniques for sampling from a so-
phisticated distribution [RC04]. Two paramount examples are rejection sampling and
importance sampling, which resort to proxy distributions. The rejection sampling method
(also called acceptance-rejection sampling) can be found in the work of von Neumann on

random number generations [Neu51]. It simulates a target distribution p(i) by sampling
p(i)
mq(i)
a constant that maintains the ratio below 1). The importance sampling method can be
traced back to the papers of Kahn [Kah50a; Kah50b] on radiation shielding. It consists of
modifying a distribution such that the most important events become more likely to occur.
The canonical example (used in numerical integration, for instance) is to reweight the
expectation Ep[f(i)] of a function f under a distribution p into the expectation Eg | f (z)%]
under a new importance distribution g. The choice of ¢ is made so that it is easy to sample
from it, while lowering the variance. Ideally, g(i) ought to be proportional to the weight
|f(@)|p(i). A major alternative to rejection and importance sampling, which is well suited
for high-dimensional distributions, is the class of Markov Chain Monte Carlo methods,
which have started with the Metropolis—Hastings algorithm [MRR+53; Has70)].

from another distribution ¢(¢) and keeping the result with probability

(where m is

1.3 Quantum algorithms for optimization with importance sampling

The problem of sampling from a distribution is generalized in the quantum model to the
problem of preparing a g-sample. A g-sample is a quantum state that encodes the target
distribution as a coherent superposition over the sample space. There are a few techniques
based on the Monte Carlo method for preparing a g-sample (see [HW20] and references
therein). One of the first algorithms was given by Grover [Gro0Ob], who adapted the
rejection sampling method to transform the amplitudes of a uniform superposition into
that of a target state), y/p(i)|i). Ozols, Roetteler and Roland [ORR13] generalized this
method to start with any prior state >, \/q(7)|7). The theory of quantum walks [Sze04]
has also led to quantum speedups for certain Markov Chain Monte Carlo methods, such
as simulated annealing [SBBK08; WA08; OBD18; HW20]. Understanding the power
and limitations of g-samples is still a largely open question. On one hand, Bshouty and
Jackson [BJ99] and Aharonov and Ta-Shma [AT07] obtained quantum speedups over the
best existing classical algorithms for learning a DNF under the uniform distribution or
solving the problems in the complexity class SZK (such as graph isomorphism). On the
other hand, Arunachalam and de Wolf [AW18] proved that learning a function in the
general PAC model requires as many g-samples as classical samples. This latter result
encourages one to search for quantum speedups at a different stage of the computation
(e.g. when preparing the g-samples that are fed to a quantum learner).

Another use of g-samples is to classically sample from a distribution by preparing
and measuring the relevant quantum state. This approach is particularly well suited
for stochastic optimization, where sampling-based Monte Carlo methods are ubiquitous.
There, the goal is to minimize an objective function ming f(#) guided by a random process.
Homem-de-Mello and Bayraksan [HB14] provided an extensive review of the use of Monte
Carlo sampling-based methods in this setting. Among other advantages, it can reduce
the computational time or help to escape a local optimum. These methods also apply to
deterministic problems for which there is a probabilistic interpretation. A major example
is to rephrase a sum of loss functions f(6) = ZZJ\L 1 fi(0) as a stochastic objective function
f0) = Ey [N fz(H)] under the uniform distribution and to estimate it by importance
sampling. This idea is nicely illustrated by the randomized Kaczmarz algorithm of
Strohmer and Vershynin [SV09] for solving linear systems. It raises the question of how to
balance the effort between sampling from the chosen importance distribution and iterating
toward a minimum.

Our contributions. Part I of this thesis is devoted to the use of quantum state prepa-
ration for importance sampling and stochastic optimization.

In Chapter 7, we study the problem of obtaining multiple i.i.d. samples from an
importance distribution. We consider the case where the input is specified by an arbitrary
weight vector (wy, ..., wy) that can be queried in superposition. The goal is to sample from
the distribution that returns i € [N] with probability |w;|/W, where W is the (unknown)
normalization factor. This setting represents the case where no prior information is known
about the chosen importance distribution. Grover [Gro0Ob] constructed an algorithm
that samples a single element from that distribution in time O(v/N). In fact, he solved
the more general problem of preparing the g-sample |w) := >, \/|w;|/W|i). In practice,
it is reasonable to assume that several samples or copies of |w) are needed for further
use (such a case occurs in Chapter 8). Thus, a natural question is whether the average
preparation cost per state can be made smaller than O(\/N). We answer this question
positively by constructing an optimal algorithm that prepares the K-fold state |w)®X in
time O(VKN) for any K > 1. Our technique uses a refinement of the quantum rejection
sampling method employed by Grover.

Chapter 1 Introduction

In Chapter 8, we use the quantum importance sampling algorithm to develop two
independent hybrid quantum-classical algorithms for stochastic optimization. Our first
algorithm addresses the problem of online prediction with expert advice. Consider a
game with T rounds where we play a mixture of N strategies in each round and observe
the loss incurred by this choice in the next round. The Hedge algorithm by Freund and
Schapire [FS97] guarantees an optimal regret bound by using a multiplicative weight update
method in total time O(T'N). We present a quantum algorithm achieving a quantum
speedup in N while the overall regret remains close to that of the Hedge algorithm with high
probability. Our algorithm is a simple modification of the Hedge algorithm that consists of
choosing the strategy by quantum importance sampling. Our second application is more
involved and concerns the problem of minimizing a submodular set function. Submodular
functions are set functions mapping every subset of some ground set of size n into the real
numbers and satisfying the diminishing returns property. Submodular minimization is an
important field in discrete optimization theory due to its relevance to various branches
of mathematics, computer science and economics. In a recent paper, Chakrabarty et
al. [CLSW17] constructed the first subquadratic algorithm for finding an approximate
minimum with additive error € in time 6(715/ i/ €2). We present a quantum algorithm that
improves upon this result by running in time O(n°/*/€%/2). Our technique consists of using
a stochastic subgradient descent method, where the subgradient directions are obtained
by quantum importance sampling.

1.4 Quantum algorithms with limited memory

The Monte Carlo method is often used to process massive datasets, such as those generated
by experiments in particle physics (e.g. the Large Hadron Collider) or by web traffic. In this
case, the amount of workspace available is much smaller than the size of the inputs, which
motivates the search for algorithms that can operate with limited memory. The study of
space-bounded computations has been carried out in a variety of models. For instance, in
a pioneering work, Munro and Paterson [MP78] studied the amount of working memory
needed by an algorithm that makes a limited number of passes over a one-way read-only
input tape. This was later formalized as the data stream model, where the input arrives as
a long stream of data that cannot fit entirely in memory. Here, the objective is to compute
some relevant statistics about the stream, such as the most frequent element or the median
value. The use of randomness and approximation methods is an essential ingredient to
decrease space usage. As an example, the randomized approximate counting algorithm of
Morris and Flajolet [Mor78; Fla85] can estimate the total number n of elements in a stream
by using only O(loglogn) bits of memory. In cryptography, the statistical properties of
random mappings [FO89] play a central role in reduced memory attacks, such as Pollard’s
rho algorithm for integer factorization [Pol75] or Hellman’s time-memory tradeoff for
function inversion [Hel80]. In many cases, decreasing the memory size comes at the cost
of increasing the use of other computational resources (e.g. the running time, the number
of passes over a stream, etc.). Understanding the inherent tradeoffs between space and
other complexity measures is a far-reaching problem in complexity theory. To name one
recent example, Raz [Raz18] proved that for some learning problems, a small memory
must imply a long learning process.

The storage of information in quantum systems obeys fundamentally different principles
than the storage of information in classical ones (no-cloning, superposition, uncertainty,
etc.). Moreover, memory will be a critical resource in near-term quantum computers. Thus,
it is a major task to understand the properties of space-bounded quantum computations.

1.4 Quantum algorithms with limited memory

There are some examples where quantum mechanics help to use less memory. In the data
stream model, Le Gall [Gal09] described, for instance, an artificial problem for which a
quantum computer would provide exponential savings in memory over the best possible
classical algorithm. Ta-Shma [TS13] identified several tasks (such as matrix inversion) in
the quantum Turing machine model that can be solved in quantum logspace, whereas the
best known classical algorithms use quadratically more memory. Nevertheless, quantum
computation is a mixed blessing with regard to memory. For instance, reversibility is a
core property used in quantum algorithm design, but the standard techniques to make a
computation reversible (such as the deferred measurement principle [AKN98] or Bennett’s
reversible simulation [Ben73]) often require expanding the workspace. For certain problems,
the fastest known quantum algorithms [BHT98b; Amb07; LZ19a] use much more memory
than the classical ones. A central open question is whether a speedup both in terms of
time and space complexities is achievable for such problems.

Our contributions. Part IV of this thesis is devoted to the study of space-bounded
quantum computation in two different models of computation: the data stream model and
the quantum query model.

In Chapter 9, we consider the problem of estimating the frequency moments Fj of a
stream. The frequency moments are important statistics introduced by Alon, Matias and
Szegedy [AMS99] in a pioneering work on the data stream model. The space complexity
of approximating Fy is the object of rich literature that led to the development of major
streaming algorithms. It culminated in the proof that S = ©(n!~2/¥/P) is the optimal
memory size needed for estimating Fj on a length-n input with a classical algorithm
making P passes over a stream [MW10; AKO10; WZ12]. We demonstrate that the use of a
quantum computer can decrease the memory size to S = O(n'~2/¥/P?) while keeping the
number of passes to P. There are very few quantum speedups known in the data stream
model due to the sequential and uncontrolled access to the input. Our results contribute
to giving new quantum algorithmic methods in this model. In particular, we describe a
general reversible simulation technique that applies to a broad class of classical streaming
algorithms known as linear sketches. We combine this technique with the quantum mean
estimator developed in the early parts of this thesis to construct our algorithm.

In Chapter 10, we study time-space tradeoff results to investigate how much time 7T is
needed to solve a particular task when only S qubits of memory are available. We work in
the quantum circuit model with query access to the input. Our main contribution is a
new and simple approach for proving lower bounds in this setting, based on the recent
recording query technique of Zhandry [Zhal9]. The very few existing quantum time-space
tradeoff lower bounds [KSW07; ASW09] require heavy use of the adversary or polynomial
methods. As the first application of our technique, we consider the problem of finding
multiple collision pairs in a random hash function. This question plays a central role in
cryptography, notably for meet-in-the-middle attacks. There is a long-standing conjecture
on the need for a large quantum memory to find one collision pair faster than with the
classical Pollard rho method. We prove that, for the related problem of finding K collision
pairs in a random function f : [N] — [N], one has to perform at least T' > Q(K(N/S)/?)
quantum queries. On the other hand, we show that the optimal algorithm with unlimited
memory uses T = O(K2/3N1/3) queries. These results give the first evidence that limiting
the size S of the available quantum memory makes the problem of finding collisions harder
to solve. As a second application, we give a simpler proof of the time-space tradeoff
T%S > Q(N3) for sorting N numbers on a quantum computer, which was first obtained
by Klauck, Spalek and de Wolf [KSWO07].

Part |

Preliminaries

Mathematical Preliminaries

2.1 Linear algebra and notations

Given the n-dimensional Hilbert space H = C", we let |[¢)) € H denote a vector in ‘H, and
we let (1| denote the conjugate transpose of [¢)). The inner product between two vectors
[1),|¢) € H is represented as (¢ | ¢) € C and the outer product is |1)(¢| € C**™. The
standard basis of H (also called the computational basis) is denoted by (|0),|1),...,|n—1)).
Thus, any vector |¢)) € H can be written as

n—1
) = auli)
=0

where o; = (i|¢) for i = 0,...,n — 1. The norm /3" a2 of) is denoted by
l|)|| or ||v||. The induced matrix norm is the spectral norm, written as ||U| for a
linear operator U : H — H. We let H1 ® Ha, [1)1) ® |[12) and U; ® U, denote the
tensor products of, respectively, two Hilbert spaces H; = C™, Hy = C™, two vectors
|t1) € Hi, [th2) € Ha, and two linear operators Uy : Hy — Hi,Us : Ha — Ha. Note that
(U1 @ U2)(|1) @ |¢2)) = (Ur]r)) @ (Uzlip2)) € Hi ® Ha. The vector |¢1) ® |1ho) is also
denoted by [¢1)|1)2). The standard basis of H1 ® Ha is identified with (|2)|7))o<i<n,0<j<m,
and we equivalently write |i, j) or |ij) for the basis states (the latter notation is often used
when i and j are expressed in base two).

Qubits. We use the standard formalism for describing pure quantum states. A one-qubit
state is represented as a vector |¢) € C? with unit norm ||| = 1. A system made of n
qubits is called an n-bit quantum register and it is described by an n-qubit state, that is
a vector 1) € C%" with unit norm |[1| = 1. The qubit state |0)®" is also denoted by
|0™) or |0) when n is clear from the context. Given two qubit states |¢),|¢) € C2", the
value of (¢ |v) is the amplitude of the state |¢) in |1p). Given a qubit state |¢) € H1 ® Ha
where H1,Ho are two Hilbert spaces, we say that [i) is a product state if there exist
[t1) € Hi, [1h2) € Ha such that) = |[¢1) ® [¢2), and otherwise we say that [¢)) is an
entangled state.

Operators. The identity operator over the Hilbert space H = C" is denoted by I or I,,.
A wnitary operator U is a linear map U : H — #H that satisfies UITU = UUT = I,
where UT is the conjugate transpose of U. Note that the inverse of a unitary operator
is U=! = U'. An (orthogonal) projector II : H — H is a linear operator that satisfies
112 = I = II'. A particular example is the projector |1)(¢|, for 1)) € H, that projects on
the one-dimensional subspace of H spanned by |¢). Two projectors IIj, I, acting on #H are

11

Chapter 2 Mathematical Preliminaries

orthogonal if I1;II, = 0. Finally, a unitary operator U : H — H is a reflection if U? = I.
One can check that I — 2II is a reflection when II is a projector.

General notations. Given an integer n € N, we define [n] = {1,...,n}. The set of all non-
negative (resp. non-positive) real numbers is denoted by R>¢ (resp. R<g). Given z € R,
we define sgn(z) to be 1 if x > 0, and —1 otherwise. We let 1p € {0,1} denote the Boolean
value that equals 1 if and only if the predicate P is true. Given two sets R and D we let RP
denote the set of all functions F' : D — R. We use the asymptotic notation f(n) = O(g(n))
to indicate that f(n) = O(g(n)log® g(n)) for some (not necessarily positive) constant k
independent of n. We similarly define f(n) = Q(g(n)) when f(n) = Q(g(n)log* g(n)), and
#(n) = B(g(n)) when f(n) = O(g(n) log" g(n).

Notations for real-valued vectors. We let ¢; € R™ be the standard basis state with
a 1 at position ¢ € [n] and 0 elsewhere. Given a vector u = (uy,...,u,) € R” and an
integer p > 0, we let [|ull, = (3 ;e |ui|P)!/P denote the £,-norm of u. The largest entry
in u (in absolute value) is denoted by ||ullcc = max;c|,j|ui|. We say that u is k-sparse
if it contains at most £ non-zero entries. We define the non-negative u>¢ € R%, and
the non-positive u<g € RZ parts of u as the vectors with disjoint supports sat_isfying
u = u>p + u<p. Given a set S C [n], we define the vector ug = (u;)ics € RIS, The dot
product of two vectors u,v € R™ is (u,v) = Zie[n] u;v; € R, and the element-wise product
isu-v=(uvi,...,upvy) € R™ If u,v € {0,1}" are two Boolean vectors, then we define
the bitwise XOR of w and v as u ® v = (u; G vy, ..., u, ® vy,) € {0,1}". We consider the
(partial) pointwise order over R™ defined as u > v if and only if u; > v; for all i € [n] (we
similarly define u < v, u > v, etc.). Finally, given a real number 3 # 0, we let 8" denote
the vector (B%,...,3%").

2.2 Concentration inequalities

We describe several concentration inequalities for bounding the tail of a random variable X
in terms of its expectation E[X] and its variance Var[X]. We refer the reader to [BLM13]
for more details and references. First, we present the Markov inequality that gives an
upper bound on the probability that a random variable is larger than some number.

Theorem 2.2.1 (MARKOV’S INEQUALITY). Suppose X is a non-negative random variable.
Then for any a > 0,
E[X]

a

Pr[X >a] <

The next four theorems quantify the deviation of a sum of random variables from its
mean.

Theorem 2.2.2 (CHEBYSHEV’S INEQUALITY). Suppose X1,...,X; are pairwise inde-
pendent random variables with finite variance. Let My = (X1 + - -+ + X3)/t denote their
average value. Then for any 0 € (0,1),

Pr

2
\M; — | > ;’5]35

where i = E[M;] and 0* = %Zle Var[X;].

12

2.2 Concentration inequalities

The Hoeffding inequality provides a better dependence on the failure probability J, but
it does not depend on the variance. Note that the same inequality holds with p — M;
instead of My — u by substituting X; — —X;.

Theorem 2.2.3 (HOEFFDING’S INEQUALITY). Suppose X1,...,X; are independent ran-
dom wvariables such that a < X; < b for alli. Let My = (X1 + -+ Xy)/t denote their
average value. Then for any ¢ € (0,1),

My \/ (b— ”2?%“/‘”] oy

Pr

where p = E[M].

The next multiplicative Chernoff bound offers a better dependence on the mean for
binary random variables and relative error approximation.

Theorem 2.2.4 (CHERNOFF’S BOUND). Suppose X1i,...,X; are independent random
variables taking values in {0,1}. Let My = (X1 + -+ + X;)/t denote their average value.
Then for any 0 < € < 1,

(Multiplicative) Pr[M; — p < —eu] < exp(—“f) and Pr[M; — p > eu] < exp(—%)

(Additive) Pr[M; — pn < —¢] <exp(—2te?) and Pr[M; — p > €] < exp(—2te?)

where p = E[M].

The Chernoff bound is used in the “median trick” (also called the “powering lemma”

[JVV86]) to boost the success probability of an algorithm that outputs some correct real
value with probability u > 1/2. The procedure consists of running several independent
copies of the algorithm and taking the median of the obtained results. If we let X; denote
the binary random variable that equals 1 when the ¢-th run is correct, then the next result
gives an upper bound on the number of repetitions needed to achieve a success probability
of 1 — ¢ for any ¢ € (0,1).

Corollary 2.2.5 (MEDIAN TRICK). Suppose X1, ..., X; are independent random variables
taking values in {0,1} where E[X;] > 1/2+ € for all i and some € > 0. For any § € (0,1),
ift > % then median(Xy, ..., Xy) = 1 with probability at least 1 — §.

Finally, the Bernstein inequality is a refinement of Hoeffding’s inequality that introduces
a dependence on the variance.

Theorem 2.2.6 (BERNSTEIN’S INEQUALITY). Suppose X1, ..., X are independent random
variables such that | X;| < b for all i. Let My = (X1 + --- 4+ Xy)/t denote their average
value. Then for any t > 0,

2
. [Mt_u S\ J2e 1otg(1/5) . 3blo§£1/5)] s

where p = E[M;] and 0* = %Zle Var[X,].

13

Algorithmic Preliminaries

3.1 Quantum circuit model

In this section, we present the standard model of computation used to describe a quantum
algorithm. We highlight the main properties of this model that are needed later in
the thesis. We refer the reader to the books [NC11; KLM07; LR14] and to the lecture
notes [Wol19; ODol5; Chil7] for a more general introduction to quantum computing.

A quantum circuit [Deu89; Yao93] is a sequence of elementary quantum operations (the
quantum gates), that operate in a predefined order on a collection of qubits (the quantum
memory) represented as a state vector |¢) € H in some Hilbert space H. In the graphical
representation of a quantum circuit, each qubit is depicted as a wire that passes through
a series of gates, where the time axis is to be read from left to right. Each gate operates
on the wires that are incident to it according to some predefined rule. The initial state
of the memory is written on the left of the circuit. In most cases, each qubit starts in
the state |0), or in a state |z) where z € {0, 1} encodes an input to the computation. An
example of a quantum circuit is given in Figure 3.1. The computation performed by this
circuit will become clear in the next paragraphs, where we describe the different types of
quantum gates that compose it.

be{0,1}

o -

Figure 3.1: Deutsch’s algorithm that outputs b = 0 when f:{0,1} — {0, 1} is constant.

Universal gate set. The postulates of quantum mechanics imply that the state vector of
a closed quantum system must undergo a unitary transformation. Accordingly, a quantum
gate is defined as a unitary transformation that operates on few qubits (one or two in
general), and that can be composed with other gates to construct more complicated unitary
transformations. As in the classical setting, where any computation can be performed
using AND, OR and NOT gates, some sets of quantum gates are universal in the sense
that they allow to represent any unitary transformation. One such example is the set
made of the controlled negation gate CNOT (acting on two qubits) and of all 1-qubit gates.
The CNOT gate is represented below, both in its graphical and matrix form (expressed
in the standard basis). It negates the value of the second qubit when the first one is

15

Chapter 3 Algorithmic Preliminaries

equal to [1). The set of all 1-qubit gates includes for instance the Hadamard transform H
and the 7/8 gate T' (also represented below). For practical implementation purposes, the
Solovay-Kitaev theorem guarantees that any 1- or 2-qubits gate can be approximated up
to error € (in spectral norm) by using only polylog(1/e) gates from the set {CNOT, H,T'}.

——

&

1000 o

cnoT=| 0 L OO H=|(2 V3 -1 0
0 0 0 1 5 T Oem/4
0010

In this thesis, we make use of a universal gate set together with some ad-hoc quantum
gates (such as the oracle gates defined in the next paragraph) depending on the problem
under consideration. In particular, given a gate U acting on m qubits, we often use the
controlled gate C(U) = [0)(0| ® I + |1)(1| ® U acting on m + 1 qubits that is described
below. The strike symbol is a shortcut for m wires.

|y ———e—— |b) Iom 0
m 6) ifb=0) =
o= U _{Uy¢> ifh=1 0 v

Oracle gate. In many quantum algorithms, the input to the computation is encoded as an
oracle gate that provides coherent access to the data. An oracle gate is a black-boxr whose
internal working is left unspecified. In practice, it may correspond to an auxiliary quantum
circuit generated by a separate process, or it may represent the access to an external
quantum memory. A first type of oracle gate is the query oracle, where given an input
function f: {0,1}" — {0,1}™ the query gate Oy (represented in the picture below) allows
one to evaluate f in a reversible manner. The action of this gate on a computational basis
state |x)|y), where x € {0,1}" and y € {0,1}", is defined as O¢(|x)|y)) = |x)|y & f(x)).
We assume that the controlled gate C(Oy) is also available. This input model is extensively
used in Chapters 68, 10. It can easily be extended to functions that are defined on other
domains and ranges of values. We also give a variant of the query gate in Chapter 10,
where the result of a query is encoded into the phase rather than in a separate quantum
register.

|) —— — |x)
Oy
ly) — — |y & f(x))

A second type of oracle gate, that generalizes the above approach, consists of having
access to an unknown transformation U selected from a predefined set of unitaries. This
transformation needs not be a permutation of the computational basis states, as was the
case with the query gate O defined before. In general, we assume that the inverse Ut
and the controlled versions C(U) and C(U~!) of U are also available as oracle gates. This
model is used in Chapters 4, 5 and in the amplitude amplification and amplitude estimation
algorithms presented in Sections 3.2, 3.3.

16

3.1 Quantum circuit model

Measurement. A measurement provides a way to extract classical information from
a closed quantum system. In this thesis, we use the notion of projective measurement,
described by a family IIy, . .., II; of pairwise orthogonal projectors that sum to the identity.
The effect of performing such a measurement on a state vector [¢) is to observe the value
i € [k] and to collapse the state vector to mﬂi’"@ with probability ||TI;|4)|* (this is
known as the Born rule). We augment the circuit model with a special gate, denoted by a
meter symbol, that represents the use of a projective measurement (see the picture below,
where the measurement outcome is written above the box). Unless otherwise stated, we
use the measurement in the computational basis defined by the family {|7)(i|}o<i<k acting
on a k-qubit state. The measurement operation requires modifying the quantum circuit
formalism [AKN9S8] since it is not a unitary transformation. The state of the quantum
memory, at any time of the computation, is now represented as a probability distribution
over state vectors {py, |¢¢)}e (also known as a mized state), meaning that the system
is in the pure state |1y) with probability p,. The mixed state evolves into {pg, U|¢y) }e
after applying a unitary transformation U, and into {pg||TL;|v)||?, mﬂi‘lbg)}g,i after
performing a measurement {II;};.

Deferred measurement principle. A circuit that performs no measurement is called
a unitary circuit. This property is often a prerequisite for the use of more advanced
quantum algorithms that must run the inverse of the original circuit (see Sections 3.2, 3.3
and Chapters 4, 5). It also allows the application of certain lower bound methods (such
as in Chapter 10) where the quantum memory is assumed to be represented as a single
pure state. The deferred measurement principle (described in [AKN98, Lemma 4] and
in [NC11, Section 4.4]), also called principle of safe storage, allows one to postpone all
the intermediate measurements to the end of a quantum circuit without changing the
outcome of the computation. The unitary part of the resulting circuit can then be used
separately. The process of removing an intermediate measurement is illustrated in the
figure below for the case of the single-qubit measurement {|0)(0|, |1)(1|}. The measured
qubit is entangled with a new qubit, that is left unchanged afterward, by using a CNOT
gate. The new qubit needs not be measured if its value is not part of the output. Each
operation that is classically controlled on the measurement outcome (such as the unitary U
in the left circuit below, which is applied if and only if b = 1) is replaced with a quantum
controlled operation. The box V represents any subsequent computation in the example.
In general, this technique requires increasing the memory size by one qubit each time a
binary measurement is postponed. Thus, it must be used carefully when the memory size
is a concern (as is the case in Part IV).

— |4
be{0,1} .
% - V]

Y]

be{0,1}

[~

o
R
a
YV

17

Chapter 3 Algorithmic Preliminaries

Simulation of classical computation. The simulation of a classical circuit by a quantum
one requires to make the original circuit reversible (such that it can be extended by
linearity to a unitary transformation). The canonical way of doing that is to replace each
classical gate g : {0,1}% — {0,1}" with the reversible gate R, : {0,1}%*® — {0, 1}+?
defined as Ry(z,y) = (x,y ® g(x)). This process often increases the memory size of the
circuit. Bennett [Ben73] showed that any classical circuit that uses T gates and S bits of
memory can be turned into a reversible circuit that uses O(T') gates and O(T + S) bits of
memory. There exist other simulation techniques [Ben89; LS90; LMTO00] that can lower
the memory size of the resulting reversible circuit at the cost of using more gates. For
instance, Bennett [Ben89] described a different construction that uses O(T?) gates and
only O(SlogT) bits of memory.

Measures of complexity. There exist several ways of measuring the performances of a
quantum circuit. We mention three measures that are used throughout this thesis. The
gate complexity of a circuit is defined as its total number of elementary gates. The query
complexity counts only the query gates. These two measures are often used to characterize
the computation time of an algorithm. The space complexity is defined as the number of
qubits on which the circuit is operating.

Circuit notations. If C is a unitary circuit then we represent the corresponding unitary
transformation with the symbol C as well. In particular, C|¢) is the state vector obtained
by running C on an initial state vector |+), and C~! is the inverse unitary transformation.
The transformation C~' can be implemented by running the original circuit C backward,
where each quantum gate is replaced with its inverse. Given two circuits C and C’ operating
on the same quantum register, we let C || C" denote the concatenated circuit that runs C
first and then C’.

3.2 Amplitude amplification

The amplitude amplification algorithm [BHMT02] is a generalization of Grover’s quantum
search [Gro96a] to the problem of boosting the success probability of a unitary quantum
algorithm, quadratically faster than it is possible classically. The main property of this
algorithm is given below. This result corresponds to Equation (8) in [BHMT02].

Theorem 3.2.1 (AMPLITUDE AMPLIFICATION, [BHMTO02]). Let U be a unitary quantum
algorithm and let 11 be a projection operator. Consider the angle 6 € [0,3] and two
unit states |tg),|11) such that sin(0)|yr) = IIU|0) and U|0) = cos(6)|o) + sin(0)|¢1).
Then, for any integer t > 0, the amplitude amplification algorithm implements a unitary
transformation AAmp(U, 11, t) that satisfies

AAmp(U, TL, £)[0) = cos((2t + 1)) o) + sin((2t + 1)0)]4)1).

The algorithm uses t + 1 applications of U, t applications of U, and t applications of the
reflection operator I — 211.

If we let \/p = sin(#) denote the amplitude of the state |+)1) in U|0), then the amplitude
amplification algorithm requires roughly 1/,/p iterations to increase the amplitude of |¢y)
to a constant number (whereas ©(1/,/p) repetitions of the original algorithm would be
necessary classically). We have the following quantitative result (used in Proposition 5.3.2).

18

3.2 Amplitude amplification

Corollary 3.2.2 (Lemma 5.2 in [AA05]). Under the hypothesis and notations of The-
orem 3.2.1, let p = sin%(0) and p' = sin?((2t 4+ 1)0) denote the squared amplitude
of [¢1) in U|0) and AAmp(U, 11, t)|0) respectively. If t < 4MC§T\/I5 — 1 then p' satis-

fies p' > (1 - Mp) (2t +1)%p.

Next, we present a variant of the amplitude amplification algorithm that does not
use a pre-defined number of computation steps. We call it the “sequential amplitude
amplification” algorithm in reference to sequential analysis. The original version of this
algorithm was analyzed in Theorem 3 of [BBHT98; BHMT02], with a bound on the
expected running time E[T]. We complement this result with a lower tail bound on 7.
In order to simplify the analysis, we propose a slightly different version of the algorithm,
where a parameter ¢ is sampled in an interval [A*~1, A’ — 1] instead of [0, \’ — 1]. The next
theorem is used in Lemma 4.3.2 and Proposition 7.4.2.

1. Set £=0and A =6/5.
2. Increase £ by 1 and choose an integer ¢ € [*1, * — 1] uniformly at random.

3. Apply the amplitude amplification algorithm AAmp(U, 11, ¢) to |0) and measure
the state by using the projective measurement {I — II, IT}. If the outcome is “II”
then stop and output the obtained state. Otherwise, go to step 2.

Algorithm 3.2: Sequential amplitude amplification, Seq-AAmp(U, II).

Theorem 3.2.3 (SEQUENTIAL AMPLITUDE AMPLIFICATION). Let U be a unitary quantum
algorithm and let II be a projection operator. Consider the number p € [0,1] and two unit

states |1o), [¢1) such that \/p|lyp1) = IIU|0) and U|0) = /T —plto) + /plb1). If p > 0
then the sequential amplitude amplification algorithm Seq-AAmp(U,II) (Algorithm 5.2)

outputs the state |11) with probability 1. Moreover, if we let T' denote the number of
applications of U, UT and I — 211 used by the algorithm, then

(1) E[T)<O0(1//p).
(2) There is a universal constant ¢ such that Pr[T < ¢/,/p] < 1/10.

Proof. Let 0 < 0 < /2 be the angle such that ,/p = sin. We show the theorem in the
case where 6 < 7/4 (the case § > 7/4 is easy to handle separately). Let P, denote the
probability of obtaining “II” (i.e. the state |1)1) is returned) at step 3 of the ¢-th iteration.

We first prove part (1). Let /T = {logy(%ﬂ. If ¢ > ¢ then we have

. o
P = W Z;\:)\Zlfl sin?((2t +1)0) > 1 — m > 1 where the equality is by

Theorem 3.2.1, the first inequality uses the same trigonometric identities as in the proof
of [BBHT98, Lemma 2|, and the second one uses that ¢ > ¢*. Moreover, the algorithm
has used at most Zle A< 5N applications of U, UT and I — 211 after ¢ iterations of

step 3. Consequently, E[T] < 3,0+ 5ATH1(3/4)7 < O(X") < O(1//p).

We prove part (2). Let {~ = Ll_og)\(ﬁle)f If ¢ < ¢~ then Py <sin?((2(\¢ —1) + 1)) <
4N292 < %)\2(24_), where the first inequality is by Theorem 3.2.1, and the second one
uses that sin(z) < x for all = € [0,7/2]. Thus, the probability that the algorithm stops
before the £~ -th iteration is at most Zf;l %)\2(447) < 1/10. Moreover, the algorithm has
used at least A ~1 > Q(1/,/p) applications of U, UT and I — 2II after £~ iterations. [J

19

Chapter 3 Algorithmic Preliminaries

3.3 Amplitude estimation

The amplitude estimation algorithm [BHMT02] is a generalization of quantum count-
ing [BBHT98] to the problem of estimating the success probability of an algorithm. The
next result corresponds to Theorems 11 and 12 in [BHMT02].

Theorem 3.3.1 (AMPLITUDE ESTIMATION, [BHMTO02]). Let U be a unitary quantum
algorithm and let II be a projection operator. Define the number p € [0,1] such that p =
ITIU|0)||%. Then, for any integer t > 0, the amplitude estimation algorithm AEst(U,II,t)
outputs an amplitude estimate p such that,

~ 2m+/p(1 — 2
Pr \p—p\ﬁpi p)+7;2 > 8/n2.

If we let 6 € [0,7/2] denote the angle such that \/p = sin 6, then Pr[p = 0] = Sﬁﬂ% The

algorithm uses t applications of U, Ut, T — 21T and O(log?(t)) other 2-qubit quantum gates.

The next corollary gives an upper bound for the probability that the estimate p is of an
order larger than p. This is similar in some sense to Markov’s inequality.

Corollary 3.3.2. Under the hypothesis and notations of Theorem 3.5.1, the output p of
the amplitude estimation algorithm satisfies p < (14 27)%p with probability at least 8/m>.

Proof. Ift > 1/(2,/p) then Theorem 3.2.1 implies that p < pHdmp+anp? < (1427)%p with
probability at least 8/m%. If t < 1/(2,/p) then let 6 € [0,7/2] denote the angle such that
/P =sinf. Observe that § < 7,/p < f; (using the standard inequality %9 < sin(#)) and
sin? (t0) sin? (t7/(4t)) sin? (7 /4)
t2sin?(0) = t2sin?(n/(4t)) = t2(w/(4t))
for 0 < x < w/t. Thus, p is equal to 0 with probability at least 8/72 when t < 1/(2y/p),
according to Theorem 3.2.1. O

, = 8/m2, since x — sin?(tz)/(t? sin?(z)) is decreasing

We present a sequential version of the amplitude estimation algorithm that does not
need a time parameter ¢t as input. This result was first obtained by [BHMT02, Theorem
15]. We describe a variant with two main additional properties: a bound on the expected
value of the estimate and of its inverse (part (2)) and a high-probability bound on the
running time (part (4)). These results are used in Proposition 4.5.1 and Proposition 5.3.4.

Theorem 3.3.3 (SEQUENTIAL AMPLITUDE ESTIMATION). Let U be a unitary quantum
algorithm and let II be a projection operator. Define the number p € [0,1] such that
p = |[TIU|0)||2. Fir two reals €,5 € (0,1/2). Then, the sequential amplitude estimation
algorithm Seq-AEst(U, 11, €,) (Algorithm 3.3) outputs an amplitude estimate p and uses a
number T of applications of U, Ut, I — 211 such that,

(1) Pr[|p—p| > ep] <6.
(2) E[1/7] < O(1/p) and E[\/7] < O(y/p).

(3) E[T] < O(*40).

(4) There is a universal constant ¢ such that Pr [T > c% <.

Moreover, it uses O(log®(T)) other 2-qubit quantum gates.

20

3.3 Amplitude estimation

1. Set £ =0 and A\ = 6/5.

2. Increase ¢ by 1.

a) Fori=1,...,24[log(5/8)]: choose an integer t; € [*"1, A — 1] uniformly at
random, apply the amplitude amplification algorithm AAmp(U, 1L, ¢;) to |0)
and measure the state by using the projective measurement {I — I, IT}. If
the outcome is “II” then set bl@) =1, else set bl(-e) = 0.

24/108(5/)] 50

b) Let b9 = =4 emr—

CIF 0 < 1/12 then go to step 2, else set ¢ = P
3. For j = 1,...,6[log(2/0)]: compute an estimate p; by using the amplitude

estimation algorithm AEst(U, IT, {%]) Set ¢’ = median(p1, - - - , Defiog(2/5)])

€

4. Output p = median(2~'2q, ¢, 9¢).

Algorithm 3.3: Sequential amplitude estimation, Seq-AEst(U, 1, €, §).

Proof. Let 0 < 6 < m/2 be the angle such that /p = sinf and define ¢~ = LlogA(ﬁ)J
and (t = {logA (Wﬂ (assuming 6 < 7/4, the case 6 > 7/4 is easy to handle
separately). Let Py denote the probability of obtaining b =1 at step 2.a. We have

i

shown in the proof of Theorem 3.2.3 that Pr[bz(-z) =1] > 1/4 when ¢ > (", and Pr[bl@) =
1] < %)\2(5*@7) when ¢ < £~. We show that the average b computed at step 2.b satisfies

(1) Prip® < 1/12) < 6/5if 0> 0+, (i) Prp > 1/12] < (6/5)" ~Cif e <o,

Part (i) is obtained by the additive Chernoff bound. Part (ii) is obtained by Pr[b(®) >

1/12] < (224&05(%5//66))]])Pézﬂog(s/m < (%)\2(5—4_))2f10g(5/5ﬂ < (6/5) ~¢, where we used that

(1) < (en/k)* for all k < n, and A* > 2.
We now prove that the estimate g obtained at step 2.b satisfies the three properties:

(a) Prlp/6 <q<2'p]>1-06/2, (b)E[l/q) <O(1/p), (c) E[V/4] < O(yp).

The algorithm sets ¢ = A2 when b > 1/12. Consequently, by (i) and (ii), we
have Prlg > A% < 3, ,-(6/5)" ¢ < §/4 and Prg < A~207] < §/5. Moreover,
A2 > (’\%)2 sin?(20) > p/6, and A7 < (12M0)% < 2'p since z < (7/2)sin(x)
when x € [0,7/2]. This proves part (a). Parts (b) and (c) are obtained by E[1/q] <
Yeser N(8/5) 7 < OO) and E[/g] < Ypep- AH0/5) <O,

We finally prove the different parts of the theorem. If g < 2'p then Pr{|p; — p| < ep] >
8/m? for each j at step 3 according to Theorem 3.3.1. In this case, by the median trick,
we have Pr[|¢’ — p| > ep] < /2. Part (1) is deduced from Pr[|p — p| < ep] > Pr[|¢’ — p| <
ep and 2712¢ < ¢’ < 9q] > Pr[|¢ —p| < ep and p/6 < q < 2'1p] > 1—§, where we used (a)
for the last inequality. Part (2) is deduced from (b), (c) and the fact that 271%2¢ < p < 9¢
(by definition of step 4). Finally, parts (3) and (4) are deduced from (a), (b) and the

fact that T = 0(%). O

21

Part Il

Quantum Algorithms for
Estimating Average Values

23

Mean Estimation Problem

This chapter is based on the following papers:

[HM19] Y. Hamoudi and F. Magniez. “Quantum Chebyshev’s Inequality and Appli-
cations”. In: Proceedings of the 46th International Colloquium on Automata,
Languages, and Programming (ICALP). 2019, 69:1-69:16.

[Ham21] Y. Hamoudi. “Quantum Sub-Gaussian Mean Estimator”. In: Proceedings of
the 29th European Symposium on Algorithms (ESA). 2021.

4.1 Introduction

The problem of estimating the mean p of a real-valued random variable X given i.i.d.
samples from it is one of the most basic tasks in statistics and in the Monte Carlo method.
The properties of the various classical mean estimators are well understood. The standard
non-asymptotic criterion used to assess the quality of an estimator is formulated as
the following high probability deviation bound: upon performing ¢ random experiments
that return ¢ samples from X, and given a failure probability § € (0,1), what is the
smallest error €(t, d, X) such that the output z of the estimator satisfies |z — p| > €(t, d, X)
with probability at most §7 Under the standard assumption that the unknown random
variable X has a finite variance o2, the best possible performances are obtained by the
so-called sub-Gaussian estimators [LM19] that achieve the following deviation bound

Pr|[fi— > L "210%(1/5)] < (41)

t

for some constant L. The term “sub-Gaussian” reflects that these estimators have a
Gaussian tail even for non-Gaussian distributions. The most well-known sub-Gaussian
estimator is arguably the median-of-means [NY83; JVV86; AMS99], which consists of
partitioning the ¢ samples into roughly log(1/d) groups of equal size, computing the
empirical mean over each group, and returning the median of the obtained means.

The process of generating a random sample from X is generalized in the quantum
model by assuming the existence of a unitary operator U where U|0) coherently encodes
the distribution of X. A quantum experiment is then defined as one application of this
operator or its inverse. The celebrated quantum amplitude estimation algorithm [BHMT02]
provides a way to estimate the mean of any Bernoulli random variable by performing fewer
experiments than with any classical estimator. Yet, for general distributions, the existing
quantum mean estimators either require additional information on the variance [Hei02;
Mon15; HM19] or are less performant than the classical sub-Gaussian estimators when
the distribution is heavy tailed [BHMT02; Ter99; BDGT11; Monl15]. These results leave

25

Chapter 4 Mean Estimation Problem

open the existence of a general quantum speedup for the mean estimation problem. We
address this question by introducing the concept of quantum sub-Gaussian estimators,
defined through the following deviation bound

olog(1/6)

Prijp—pl>L—

<4 (4.2)
for some constant L. We give the first construction of a quantum estimator that achieves
this bound up to a logarithmic factor in ¢. Additionally, we prove that it is impossible to
go below that deviation level. This result provides a clear equivalent of the concept of
sub-Gaussian estimator in the quantum setting.

A second important family of mean estimators addresses the (e, d)-approzimation prob-
lem, where given a fixed relative error € € (0,1) and a failure probability § € (0,1) the
goal is to output a mean estimate iz such that

Pr{lp — pl > elpl] < 6. (4.3)

The aforementioned sub-Gaussian estimators do not quite answer this question since
the number of experiments they require (respectively ¢ = Q((%)*log(1/4)) and t =

o
Q(ﬁ 10g(1/5))) depends on the unknown quantities ¢ and p. Sometimes a good upper

bound is known on the coefficient of variation |o/u| and can be used to parametrize
a sub-Gaussian estimator. Otherwise, the standard approach is based on sequential
analysis techniques, where the number of experiments is chosen adaptively depending
on the results of previous computations. Given a random variable distributed in [0, 1],
the optimal classical estimators perform G)(((i)2 + i) log(1/4)) random experiments
in expectation [DKLRO0] for computing an (e, d)-approximation of u. We construct a
quantum estimator that reduces this number to é((& + \/1@) log(1/ 5)) and we prove
that it is optimal. We also consider the situation where a non-increasing function f is
known such that f(u) > o/u. In that case, we present an estimator that performs roughly

6(@ log(1/6)) quantum experiments with high probability for some constant c.

4.1.1 Related work

There is an extensive literature on classical sub-Gaussian estimators and we refer the
reader to [LM19; Cat12; BCL13; DLLO16; LV20] for an overview of the main results
and recent improvements. We point out that the empirical mean estimator is not sub-
Gaussian, although it is optimal for Gaussian random variables [SV05; Catl12]. The
non-asymptotic performances of the empirical mean estimator are captured by several
standard concentration bounds such as those presented in Section 2.2.

There is a series of quantum mean estimators [Gro98; AW99; BDGT11] that get close

to the bound Pr[[ﬁ — pul > LM} < ¢ for any random variable distributed in [0, 1] and
some constant L. Similar results hold for numerical integration problems [AW99; Nov01;
Hei02; TWO02; Hei03]. The amplitude estimation algorithm [BHMT02; Ter99] leads to a
(x/u(l—ut) log(1/9) . log(t12/5)2>] <5

when X is distributed in [0, 1]. Nevertheless, the quantity (1 — p) is always larger than or
equal to the variance o2. The question of improving the dependence on o was considered
in [Hei02; Monl5; HM19]. The estimators of [Hei02; Mon15] require us to know an upper
bound ¥ on the standard deviation o, whereas [HM19] uses an upper bound V on the
coefficient of variation o/u (for non-negative random variables). The performances of

sharper bound of Pr “ﬁ —pl > L see Proposition 4.4.1)

26

4.1 Introduction

these estimators are captured (up to logarithmic factors) by the deviation bound given in
Equation (4.2) with o replaced by 3 and u) respectively.

The (¢, §)-approximation problem has been addressed by several classical works such as
[DKLR00; MSA08; GNP13; Hub19]. In the quantum setting, there is a variant [BHMT02,
Theorem 15] of the amplitude estimation algorithm that performs O(log(1/9)/(e\/1t))
experiments in expectation and computes an (e, d)-approximate of the mean of any random
variables distributed in [0,1] (see Theorem 3.3.3 and Proposition 4.5.1). However, the
complexity of this estimator does not scale with o. Given an upper bound V on o/pu,
the estimator of [HM19] can be used to compute an (e, d)-approximate with roughly
O(Vlog(1/d)/e) quantum experiments.

We note that the related problem of estimating the mean with additive error €, that is
Pr{|z — p| > €] <6, has also been considered by several authors. The optimal number of
experiments is O (log(1/6)/€?) classically [CEG95] and ©(1/¢) quantumly [NW99] (with
failure probability § = 1/3). These bounds do not depend on unknown parameters (as
opposed to the relative error case), thus sequential analysis technigues are unnecessary here.
Montanaro [Mon15] also described an estimator that performs O(Xlog(1/d)/e) quantum
experiments given an upper bound ¥ on the standard deviation o.

4.1.2 Contributions and organization

We first formally define the input model in Section 4.2. We introduce the concept of
“g-random variable” (Definition 4.2.3) to describe a random variable that corresponds to
the output of a quantum computation. We measure the complexity of an algorithm by
counting the number of quantum experiments (Definition 4.2.4) it performs with respect
to a g-random variable.

We construct a quantum algorithm for estimating the quantiles of a g-random variable
in Section 4.3, and we use it in Section 4.4 to design the following quantum sub-Gaussian
estimator.

Theorem 4.4.2 (Restated). There exists a quantum algorithm with the following proper-
ties. Let X be a g-random variable with mean u and variance o2, and set as input a time
parametert and a real 6 € (0,1) such thatt > log(1/6). Then, the algorithm outputs a mean

estimate [such that, Pr||g — p| > %(1/6)] < 8, and it performs O(tlog®?(t) loglog(t))
quantum experiments. Moreover, if X is non-negative then Pr[n < (24 2m)%u] > 1 - 4.

We prove in Section 4.6.1 that the above estimator is nearly optimal (Theorem 4.6.2).
Then we turn our attention to the (€, d)-approximation problem in Section 4.5. We first
construct an estimator that requires no prior information about the input random variable,
except that it is distributed in [0,1]. The number of experiments performed by this
estimator is chosen adaptively, and the bound we get is stated in expectation.

Theorem 4.5.2 (Restated). There exists a quantum algorithm with the following proper-
ties. Let X be a g-random variable distributed in [0,1] with mean p and variance o2, and
set as input two reals €,5 € (0,1). Then, the algorithm outputs a mean estimate fi such
z%hat Pr{| - wu| > ep] <96, and it performs O((i + \/IGTL) log(1/6)) quantum experiments
in expectation.

We prove a nearly matching lower bound in Proposition 4.6.4. We also consider the
(e,0)-approximation problem when some information is available on the coefficient of
variation |o/pu|. The objective is to remove the above dependency on 1/,/€ir. We use our
sub-Gaussian estimator to simplify two results previously shown in [HM19]. First, we

27

Chapter 4 Mean Estimation Problem

assume the knowledge of an upper bound V on |0/u| and we obtain the next result that
follows directly from Theorem 4.4.2.

Corollary 4.5.3 (Restated). There exists a quantum algorithm with the following proper-
ties. Let X be a g-random variable with mean p and variance o2, and set as input a value
V > |o/u| and two reals €,0 € (0,1). Then, the algorithm outputs a mean estimate ji such
that Pr[|pn — p| > €|u|] <6, and it performs 6(% log(1/6)) quantum ezperiments.

Then, we assume the knowledge of a non-increasing function f such that f(u) > o/pu.
Although f(u) is unknown a priori, we present an algorithm to approximate it with high
success probability (Theorem 4.5.5). As a result, we obtain a variant of the above corollary
where V is replaced with a term on the order of f(u) (Corollary 4.5.6).

Finally, we prove several lower bounds for the mean estimation problem in Section 4.6.
In particular, we consider the weaker input model where one is given copies of a quantum
state encoding the distribution of X. We prove that no quantum speedup is achievable in
this setting (Theorem 4.6.6).

4.1.3 Proof overview

Sub-Gaussian estimator. Our approach (Theorem 4.4.2) combines several ideas used
in previous classical and quantum mean estimators. In this section, we simplify the
exposition by assuming that the random variable X is non-negative and by replacing the
variance o with the second moment E[X?2]. We also take the failure probability & to be a
small constant. Our starting point is a variant of the truncated mean estimators [Bic65;
BCL13; LM19]. Truncation is a process that consists of replacing the samples larger
than some threshold value with a smaller number. This has the effect of reducing the
tail of the distribution, but also of changing its expectation. Here we study the effect
of replacing the values larger than some threshold b with 0, which corresponds to the
new random variable Y = X1x<;. We consider the following classical sub-Gaussian
estimator that we were not able to find in the literature: set b = /tE[X?]| and compute
the empirical mean of ¢t samples from Y. By a simple calculation, one can prove that the
expectation of the removed part is at most E[X — Y] < E[X?]/b = \/E[X?]/t. Moreover,
using Bernstein’s inequality and the boundedness of Y, the error between the output
estimate and E[Y] is on the order of \/E[X?2]/t. These two facts together imply that the
overall error for estimating E[X] is indeed of a sub-Gaussian type. This approach can be
carried out in the quantum model by performing the truncation in superposition. This
is similar to what is done in previous quantum mean estimators [Hei02; Monl5; HM19].
In order to obtain a quantum speedup, one must balance the truncation level differently
by taking b = ¢t1/E[X?]. Then, by a clever use of amplitude estimation discovered by
Heinrich [Hei02], the expectation of Y can be estimated with an error on the order of
E[X?2]/t. The main drawback of this estimator is that it requires the knowledge of E[X?]
to perform the truncation. In previous work [Hei02; Monl5; HM19], the authors made
further assumptions on the variance to be able to approximate b. Here, we overcome
this issue by choosing the truncation level b differently. Borrowing ideas from classical
estimators [LM19], we define b as the quantile value that satisfies Pr[X > b] = 1/t2. This
quantile is always smaller than the previous threshold value t1/E[X?]. Moreover, it can be
shown that the removed part E[X — Y] is still on the order of \/E[X?]/t. We give a new
quantum algorithm for approximating this quantile with roughly ¢ quantum experiments
(Theorem 4.3.4), whereas it would require ¢? random experiments classically. Our quantile
estimation algorithm builds upon the quantum minimum finding algorithm of Diirr and

28

4.1 Introduction

Hgyer [DH96; AGGW20b] and the kth-smallest element finding algorithm of Nayak and
Wu [NW99]. Importantly, it does not require any knowledge about E[X?2].

(e,0)-Approximation without side information. We follow an approach similar to that
of a classical estimator described in [DKLRO00]. Our algorithm (Theorem 4.5.2) uses
the quantum sub-Gaussian estimator and the quantum sequential Bernoulli estimator
described in Proposition 4.5.1. The latter estimator can estimate the mean p of a
random variable X distributed in [0, 1] with constant relative error by performing O(1/,/1)
quantum experiments in expectation. The first step of the (e, §)-approximation algorithm
is to compute a rough estimate m of p with the sequential Bernoulli estimator. Then,
the variance o2 of X is estimated by using again the sequential Bernoulli estimator on
the random variable (X — X’)/2 (where X’ is an independent copy of X). The latter
estimation is stopped if it uses more than O(1//em) quantum experiments. We show
that if 02 > Q(eu) then the computation is not stopped and the resulting estimate &>
is close to o with high probability. Otherwise, it is stopped with high probability and
we set ¢ = 0. Finally, the quantum sub-Gaussian estimator is used with the parameter

o 1

t~ max<%, \/%) to obtain a refined estimate g of u. The choice of the first (resp.

second) term in the maximum value implies that | — u| < ep with high probability when
the variance o2 is larger (resp. smaller) than eu. In order to upper bound the expected
number of experiments performed by this estimator, we show in Proposition 4.5.1 that the
estimates m and ¢ obtained with the sequential Bernoulli estimator satisfy the expectation
bounds E[1/m] < 1/u, E[g] < o and E[1//m] < 1//p.

(e,0)-Approximation with information on the coefficient of variation. We explain how
the knowledge of a non-increasing function f such that f(u) > o/ can help to solve the
(e, 0)-approximation problem (Theorem 4.5.5). If f(u) were known, it would suffice to
run the quantum sub-Gaussian estimator with ¢t = f(u)/e - log(1/d). We cannot find f(u)
exactly, but we show how to compute a value V such that f(u) <V < f(cu) for some
constant ¢ with high probability. Our approach is again based on sequential analysis. We
instantiate the quantum sub-Gaussian estimator with ¢ = f(27)log(2¢/§) to obtain an
estimate fiy of p for increasing values of £. We stop this process when we observe a value jip
that is larger than 27¢, and we take V ~ f(27¢). It is easy to see that when £ is sufficiently
large the estimate piy is close to u by property of the sub-Gaussian estimator. More
precisely, if 27¢ < 11/2 then we have iy > (3/4)p > 27¢ with high probability. Hence the
algorithm is likely to stop with ¢ <log(2/u). The challenging part is to prove that it does
not stop too early. For this purpose, we use another property of the quantum sub-Gaussian
estimator, which says that the output estimate is smaller than (2 + 27)2p with high
probability whatever t is (Theorem 4.4.2). This can be seen as a weak version of Markov’s
inequality. It implies that when (2 + 2m)%u < 27¢ the estimate Jiy is smaller than 27¢ with
high probability. Hence the algorithm is likely to stop with £ > log(1/((2 + 27)%u)).

Lower bounds. We sketch the proof of optimality of the quantum sub-Gaussian estimator
(Theorem 4.6.2). The lower bound is proved in the stronger quantum query model, which
allows us to extend it to all the other models mentioned in Section 4.2. Our approach is
inspired by the truncation level chosen in the algorithm. Given o and ¢, we consider the two
distributions pg and p; that output respectively \/1“’ and ——2_ with probability 1/t2,

—1/t2 V1-1/t2
2

and 0 otherwise. The two distributions have variance o“ and the distance between their
means is larger than 27‘7 Thus, any estimator that satisfies the bound Pr [|ﬂ — | > %] < %

29

Chapter 4 Mean Estimation Problem

can distinguish between pg and p; with constant success probability. However, we show
by a reduction to Quantum Search that it requires at least {2(¢) quantum experiments to
distinguish between two distributions that differ with probability at most 1/t2.

4.2 Model of input

The input to the mean estimation problem is represented by a real-valued random vari-
able X defined on some probability space. A classical estimator accesses this input by
obtaining t i.i.d samples of X. In this section, we describe the access model for quantum
estimators and we compare it to previous models suggested in the literature. We only
consider finite probability spaces for finite encoding reasons. First, we recall the definition
of a random variable, and we define a classical model of access called a random experiment.

Definition 4.2.1 (RANDOM VARIABLE). A finite random variable is a function X : Q@ — E
for some probability space (€2, p), where € is a finite sample set, p : Q@ — [0, 1] is a probability
mass function and E C R is the support of X. As is customary, we will often omit to
mention (2, p) when referring to the random variable X.

Definition 4.2.2 (RANDOM EXPERIMENT). Given a random variable X on a probability
space (€2, p), we define a random experiment as the process of drawing a sample w € (2
according to p and observing the value of X (w).

We now introduce the concept of “g-random variable” to represent a quantum process
that outputs a real number.

Definition 4.2.3 (Q-RANDOM VARIABLE). A g-variable is a triple (H, U, M) where H is a
finite-dimensional Hilbert space, U is a unitary transformation on H, and M = {M,},cp is
a projective measurement on H indexed by a finite set £ C R. Given a random variable X
on a probability space (€2, p), we say that a q-variable (H,U, M) generates X when,

(1) H is a finite-dimensional Hilbert space with some basis {|w) },ecq indexed by .

(2) U is a unitary transformation on H such that U]0) =" g Vp(W)|w).

(8) M = {Mz}, is the projective measurement on H defined by My = >, v ()= |w){w]-
A random variable X is a g-random variable if it is generated by some g-variable (H,U, M).

We stress that the sample space €2 may not be known explicitly, and we do not assume
that it is easy to perform a measurement in the {|w)},cq basis for instance. Often, we
are given a unitary U such that U[0) =} _p+/p(z)[1)z)|x) for some unknown garbage
unit state [1)), together with the measurement M = {I ® |z)(x|},cp. In this case, we
can consider the g-random variable X defined on the probability space (£2,p) where
Q = {|¢2)|7) }ser and X (|¢z)|x)) = x. This model is similar to previous work [Monl5;
HM19; Bell9; GL20]. The much stronger assumption of having a unitary U such that
Ul0) = > cp V/Pr[X = z]|z) is studied in [AT07; Bell9] for example.

We make two minimal assumptions on the type of computations that can be performed
on the Hilbert space H. We assume the existence of a comparison oracle (Assumption 4.A)
and a rotation oracle (Assumption 4.B). These two oracles have also been used in previous
work on quantum mean estimation [Ter99; NW99; BDGT11; Mon15; HM19].

30

4.3 Quantile estimation

Assumption 4.A (COMPARISON ORACLE). Given a g-random variable X on a probability
space (€2, p), and any two values a,b € RU {—00,+00} such that a < b, there is a unitary
operator Uy, acting on H ® C? such that for all w € Q,

|w)[1) when a < X (w) <b,

|w)|0) otherwise.

Cap(|w)]0)) = {

Assumption 4.B (ROTATION ORACLE). Given a g-random variable X on a probability

space (£2,p), and any two reals 0 < a < b, there is a unitary operator R,; acting on
H ® C? such that for all w € Q,

Rap(|w)|0)) = |w) <\/1_‘7X§;J>\0> + |X§j">‘|1>> when a < X (w) < b,

|w)|0) otherwise.

We now define the measure of complexity used to count the number of accesses to a
g-random variable, which are referred to as quantum experiments.

Definition 4.2.4 (QUANTUM EXPERIMENT). Let X be a g-random variable that satisfies
Assumptions 4.A and 4.B. Let (H,U, M) be a g-variable that generates X. We define a
quantum experiment as the process of applying any of the unitaries U, Cqyp, Rqyp (for any
values of a < b), their inverses or their controlled versions, or performing a measurement
according to M.

Note that a random experiment (Definition 4.2.2) can be simulated with two quantum
experiments by computing the state U|0) and measuring it according to M. We briefly
mention two other possible input models. First, some authors [Gro98; NW99; Hei02;
BHH11; CFMW10; BDGT11; LW19] considered the case where p is the uniform distribution
and a quantum oracle is provided for the function w — X (w). A second model studies
the problem of learning from quantum states [BJ99; AW18; ABC+20], where the input
consists of several copies of) __p+/Pr[X = z]|z). In this model, it is not possible to
use quantum subroutines such as the amplitude estimation algorithm since we do not
have access to a unitary preparing the state. In fact, we show in Theorem 4.6.6 that no
quantum speedup is achievable for our problem in the latter setting.

4.3 Quantile estimation

In this section, we present a quantum algorithm for estimating the quantiles of a finite
random variable X. This is a key ingredient for the sub-Gaussian estimator of Section 4.4.
For the convenience of reading, we define a quantile in the following non-standard way
(the cumulative distribution function is replaced with its complement).

Definition 4.3.1 (QUANTILE). Given a discrete random variable X and a real p € [0, 1],
the quantile of order p is the number Q(p) = sup{z € R: Pr[X > x| > p}.

Our result is inspired by the minimum finding algorithm of Diirr and Hgyer [DH96]
and its generalization in [AGGW20b]. The problem of estimating the quantiles of a set of
numbers under the uniform distribution was studied before by Nayak and Wu [NW99;
Nay99]. We differ from that work by allowing arbitrary distributions, and by not using
the amplitude estimation algorithm. On the other hand, we restrict ourselves to finding a
constant factor estimate, whereas [NW99; Nay99] can achieve any wanted accuracy.

31

Chapter 4 Mean Estimation Problem

The idea behind our algorithm is rather simple: if we compute a sequence of values
—00 =1yo < y1 < y2 <y3 < ... where each y;1 is sampled from the distribution of X
conditioned on yj;1 > y;, then when j ~ log(1/p) the value of y; should be close to
the quantile Q(p). The complexity of sampling each y; is on the order of 1/ Pr[X > y;]
classically, but it can be done quadratically faster in the quantum setting. We analyze
a slightly different algorithm, where the sequence of samples is strictly increasing and
instead of stopping after roughly log(1/p) iterations we count the number of experiments
performed by the algorithm and stop when it reaches a value close to 1/,/p. This requires
showing that the times T spent on sampling y; is neither too large nor too small with
high probability, which is proved in the next lemma.

Lemma 4.3.2. There is a quantum algorithm such that, given a q-random variable X
and a value x € RU {—o00, +00}, it outputs a sample y from the probability distribution
of X conditioned on y > x. If we let T denote the number of quantum experiments
performed by this algorithm, then there exist two universal constants cy < c¢1 such that

E[T] < ¢1/+/Pr[X > 2] and Pr[T < ¢o/+/Pr[X > z]] < 1/10.

Proof. Let (H,U, M) be a g-variable generating X. We use the comparison oracle Cy 4
from Assumption 4.A to construct the unitary V = C, 1o0(U ® I) acting on H ® C2. By
definition of Cy 4o and U (Section 4.2), we have that V[0) = > co. v (u)<» VP(W)[w)[0) +

D owe: X (w)sz VPW)w)|1) = /1 =Pr[X >]|¢0)[|0) + \/Pr[X > z]|¢1)[1) for some unit
states |¢o), |¢1) where |¢1) = \/ﬁ 2w X (w)>2 VPW)|w). The algorithm for sampling y
conditioned on y > x consists of two steps. First, we use the sequential amplitude
amplification algorithm Seq-AAmp(V, I ® [1)(1|) from Theorem 3.2.3 on V to obtain the
state |¢1). Next, we measure |¢1) according to M. The claimed properties follow directly
from Theorem 3.2.3. O

We use the next formula for the probability that a value z occurs in the sequence (y;);
defined before. This lemma is adapted from [DH96, Lemma 1].

Lemma 4.3.3 (Lemma 47 in [AGGW20b]). Let X be a discrete random variable. Consider
the increasing sequence of random variables Yo, Y1,Ya, ... where Yy is a fived value and Y; 41
for 3 >0 is a sample drawn from X conditioned on Yjy1 > Y;. Then, for any x,y € R,

PriX =2|X >z whenz >y,

Pr:I}G Y7Y7"‘ Y: =
[{Y1,Ys,.. .} [Yo =9 {0 otherwise.

The quantile estimation algorithm is described in Algorithm 4.1 and its analysis is
provided in the next theorem.

Theorem 4.3.4 (QUANTILE ESTIMATION). Let X be a g-random variable. Given two reals

p,6 € (0,1), the approzimate quantile @ produced by the quantile estimation algorithm
Quantile(X, p,0) (Algorithm /J.1) satisfies

Q(p) < Q < Q(ep)
with probability at least 1 — 9, where ¢ < 1 is a universal constant. The algorithm performs

O(%) quantum exrperiments.

Proof. Let ¢y, ¢ be the universal constants mentioned in Lemma 4.3.2, and set ¢ =
c2/(c3v/191) and ¢ = 190c;. Fix i and consider the sequence (y;)j>0 that would be

32

4.3 Quantile estimation

1. Repeat the following steps for i = 1,2,..., [61log(1/d)].

a) Set yp = —oo and initialize a counter C' = 0 that is incremented each time
a quantum experiment is performed.

b) Set j = 1. Repeat the following process and interrupt it when C' = ¢’/ /p
(where ¢’ is a constant chosen in the proof of Theorem 4.3.4): sample an
element y;41 from X conditioned on y;41 > y; by using the algorithm of
Lemma 4.3.2, set j < j + 1.

¢) Set QW) =y
2. Output Q = median(@(l)7 e @([6log(1/6)]))_

Algorithm 4.1: Quantile estimation algorithm, Quantile(X, p, d).

computed during the i-th execution of steps 1.a-1.c if the stopping condition on C' was
removed. We prove that immediately after the ¢//,/p-th quantum experiment is performed
(which may occur during the computation of y;j;1), the current value of y; satisfies
Q(p) < y; < Q(cp) with probability at least (9/10)2. The analysis is done in two parts.
First, let 2~ = Q(p) and denote by T~ the number of experiments performed until y;
becomes larger than or equal to x~. According to Lemma 4.3.3, the probability that a
given x occurs in the sequence (y;);>0 is equal to Pr[X = = | X > z|. Moreover, using
Lemma 4.3.2, the expected number of experiments performed at step 1.b when y; = z is

at most ¢;//Pr[X > z]|. Consequently, we have

= >
<612Pr .’E’X 1']

ot VPr[X > z]

Suppose that Q(1) # = (otherwise T~ = 0). We upper bound the above sum by splitting
it into several parts as follows. Define Qr = Q(27%) for k& > 0 and let £ be the largest
integer such that Q(27¢) < ~. For each 1 < k < £ such that Q_; # Qx, we have

Z Pr[X::U\XZx]< 1 4 Pr[X = z]
o Zico, VPr[X > 2] 7 /Pr[X > Qi_1] o Tico, Pr[X > x]3/2
1 PT[X > Qp—1]
\/X7>Q,,C Pr[X > Q]3/2
1 9—(k—1)
< 29—k + 9—3k/2
< ok/2+2.

Similarly, >, <; e % <202 4 o=t+1 /32 Thus, E[T7] < ¢; (Zi:l ok/2+2 |

2t/2 - 2_”1/1)3/2) < 19¢1//p where we used that log(1/p) —1 < £ < log(1/p) since
Q¢ < Q(p) < Qe41- By Markov’s inequality, Pr[T~ < 190¢; /,/p] > 9/10.

Secondly, let 27 = Q(cp) and denote by T the number of experiments performed at
step 1.b to sample y;41 when y; > . According to Lemma 4.3.2, we have Pr[T* >
co/+/Pr[X > y;]] > 9/10. Moreover, Pr[X > y;] < cp = Z/(c3\/191)p by definition of 2.
Thus, Pr[T" > 191¢;/,/p] > 9/10.

33

Chapter 4 Mean Estimation Problem

We conclude that step 1.b is interrupted when the value CNQ(i) satisfies Q(p) < @(i) < Q(cp)
with probability at least (9/10)2. Thus, by the median trick, the output Q satisfies
Q(p) < C~2 < Q(cp) with probability at least 1 — 4. The total number of experiments is
guaranteed to be O(log(1/d)/,/p) by our use of the counter C. O

4.4 Sub-Gaussian estimator

In this section, we present the main quantum algorithm for estimating the mean of a
random variable with a near-quadratic speedup over the classical sub-Gaussian estimators.
Our result uses the following Bernoulli estimator, which is an easy adaptation of the
amplitude estimation algorithm to the mean estimation problem [BHMT02; Ter99; Mon15].
The Bernoulli estimator allows us to estimate the mean of the truncated random variable
X14<x<p for any values of a, b.

Proposition 4.4.1 (BERNOULLI ESTIMATOR). There exists a quantum algorithm, called
the Bernoulli estimator, with the following properties. Let X be a g-random variable and
set as input a time parameter t > 0, two range values 0 < a < b, and a real § € (0,1)
such that t > log(1/9). Then, the Bernoulli estimator BernEst(X,t,a,b,d) outputs a mean

; N ~ bpra,p log(1/0 bl 5)2
estimate fiqp Of frap = E[X Lgex<p| such that |figp — fap| < mtog(/9) n ogg/ 2 nd

fap < (14 27)%pqp with probability at least 1 — 8. It performs O(t) quantum ezperiments.

Proof. Let (H,U, M) be a g-variable generating X. Using the rotation oracle R, from
Assumption 4.B, we consider the unitary algorithm V = R, (U ® I) that acts on H @ C2.
In order to simplify notations, let us assume that the random variable X is distributed in
the interval (a,b). Then, p = p, and by definition of R, and U (Section 4.2) we have,

vioy = 3 V@) <\/1 S \/Xﬁj‘”m)

weN

_ 1 p(w)(b = X(w)) 1 p(w)X (w)
_\/:(% T |w>>yo>+\fb(§2 R |w>>|1>.

Thus, there exist some unit states [¢g), [41) such that V]0) = /1 — &[epo) + \/%]1/11> and

(I ®[1)(1])V]0) = \/%\wﬁ. If X takes values outside the interval (a,b) then the same

result holds with p,p in place of p and a different definition of |vg), [1)1).

Consider the output v of the amplitude estimation algorithm AEst(V,H, [bgz(%])
(Theorem 3.3.1) where IT = I ® |1)(1]. Then, the estimate bv satisfies the statement of the
proposition with probability 8/7% by Theorem 3.3.1 and Corollary 3.3.2. The Bernoulli
estimator consists of running [6log(1/d)] copies of AEst(V, 11, [IO;(%]) and outputting

the median of the results. The success probability is at least 1 — § by the median trick. [

The Bernoulli estimator can estimate the mean of a non-negative g-random variable X by
setting a = 0 and b = max X. However, its performance is worse than that of the classical
sub-Gaussian estimators when the maximum of X is large compared to its variance. Our
quantum sub-Gaussian estimator (Algorithm 4.2) uses the Bernoulli estimator in a more
subtle way, and in combination with the quantile estimation algorithm.

Theorem 4.4.2 (SUB-GAUSSIAN ESTIMATOR). Let X be a g-random variable with mean
and variance 0. Given a time parameter t and a real § € (0,1) such that t > log(1/5), the

34

4.4 Sub-Gaussian estimator

1. Set k =logt and s = dt+/log 1;30gg(91k /56), where d > 1 is a constant chosen in the

proof of Theorem 4.4.2 (if k is not an integer, round ¢ to the next power of two).

2. Compute the median 7 of [30log(2/d)] classical samples from X and define the
non-negative random variables

Yt = (X —77)]1)(277 and Y~ =—(X —T])]lxgn.

3. Compute an estimate 1y, of E[Y,] and an estimate iy of E[Y_] by executing
the following steps with Y := Y, and Y := Y_ respectively:

- 2
a) Compute an estimate () of the quantile of order p = (%) of Y
with failure probability §/8 by using the quantile estimation algorithm
Quantile(Y, p,d/8).

b) Define a_; = 0 and ay = 274@ for £ > 0. Compute an estimate i, of
E[Y1,, ,<v<a,] with failure probability §/(9k) for each 0 < ¢ < k, by
using the Bernoulli estimator BernEst(Y, s, ag—1,as,/(9k)) with s quantum
experiments.

c) Set fiy = Sy e

4. Output ft =n + fiy, — fiy_.

Algorithm 4.2: Sub-Gaussian estimator, SubGaussEst(X, ¢,).

sub-Gaussian estimator SubGaussEst(X,¢,d) (Algorithm 4.2) outputs a mean estimate ji
such that,

>1-4.

~ olog(1/9)
Pr||j— pul < 29870
rilp—pls —

The algorithm performs O(t1log®/?(t) loglog(t)) quantum ezperiments. Moreover, if X is
non-negative then Pr[i < (24 2m)%u] > 1 —4.

Proof. First, by standard concentration inequalities, the median n computed at step 2
satisfies |n — ,u\ < 20 with probability at least 1 — 0/2. Moreover, if |n — u| < 20 then
VE[(X —1)?] = VE[(X —p+pu—n)? < VE(X —p)2] + |u—n| < 30, by using the
triangle 1nequahty Below we prove that for any non-negative random variable Y the
estimate iy of uy = E[Y] computed at step 3 satisfies

\/E[Y2;og(1/(5) (4.4)

with probability at least 1—§/4. Using the fact that X = n+Y,—Y_ and (X—n)? = Y2+Y2,
we can conclude that

(\/EY2 +\/EY2>1og 1/‘5 «/ (X — 77 2]1og(1/0) Ulog(l/é)

ot - t
with probability at least 1 —§. The algorithm performs O(log(1/0)) < O(t) classical
experiments during step 2, O(log(1/d)/,/p) < O(t) quantum experiments during step 3.a,

oy — py| <

i —pl <

and O(ks) < O(tlog®?(t) loglog(t)) quantum experiments during step 3.b.

35

Chapter 4 Mean Estimation Problem

We now turn to the proof of Equation (4.4). We make the assumption that all the
subroutines used in step 3 are successful, which is the case with probability at least
(1—-0/8)(1— §/(9k))*+1 > 1 — §/4. First, according to Theorem 4.3.4, we have Q(p) <
Q < Q(cp) for some universal constant c. It implies that cp < Pr[Y > Q(cp)] < Pr[Y >
Q] < E[Y?]/ (2, where the first two inequalities are by definition of the quantile function @,
and the last inequality is a standard fact. Consequently, by our choice of p,

~ 6t/ E[Y?]
Q< ——— s

Velog(1/6)
Next, we upper bound the expectation of the part of ¥ that is above the largest threshold
ar = @ considered in step 3.b. By Cauchy—Schwarz’ inequality, we have E[Y'1 <

(4.5)

Y>©]
\/E[YQ] Pr[Y > Q]. Moreover, by definition of Q, Pr[Y > Q] < Pr[Y > Q(p)] < p. Thus,

VE[Y?] log 1/5 (4.6)

E[Y1,, 5] <

The expectation of Y is decomposed into the sum py = Z?:o pe + E[Y 1ys,,], where
e =E[Y1,, , <y<q,]is estimated at step 3.b. We have |fip—p,| < ¥2* log(1/9) 4 arlog(1/0)*

dt\/logt d2t2logt
for all 0 < ¢ < k according to Proposition 4.4.1. Thus, by the triangle inequality,

k
lny — py| < Z\ﬁe — o] + E[Y 1ysq,]

=0
\/Wlog (Lglog
_Quoe(}) |« \/QE[Y Lopr<v<a108(3) 2010g(2)? .
B dtQ\/@ =1 dt\/@ d2¢2 IOgt + [Y>(zk]
\ﬁ\/Zz LE[Y?1,, 1<Y<a£]log() . 3élog(%)2 x5 }
dty/logt i log § Voa
E[YZ]1 3Q log (L)
o V2RVENlog(5) | 3QNoe(5)” |, gy
dt/logt dt2\/Tog {
\f\/vlog(%) + ISWlog(%) n \/Imlog(%)
dt Vedty/logt 6t
< VE[?]log (5)
o ot

where the third step uses apuo < a3 = (Q/t)? and agpy < (ag/ar—1)E[Y?1,, <v<a,) <
2E[Y?1,, ,<v<a,] when £ > 1, the fourth step uses the Cauchy—Schwarz inequality, the
sixth step uses Equations (4.5) and (4.6), and in the last step we choose d = 600/+/c.
Finally, we prove that Pr[jz > (2 + 27)?u] < § when X is non-negative. For any non-
negative random variable Y, the estimate iy of py = E[Y] computed at step 3 is a linear
combination of the estimates fiy obtained with the Bernoulli estimator, each of which
satisfies iy < (1 + 27)%u, with probability at least 1 — §/(9k) by Proposition 4.4.1. Tt
implies that Pr[y < (14+27)%uy] > 1—6/4. We also have that Pr[n < (3+4m)u] > 1-§/2
by Markov’s inequality and the median trick. Consequently, i <1+ f1y, < (3 +4m)u +
(1+27)?E[X Lx>,] < (2+ 27)%u with probability at least 1 — 4. O

36

4.5 (€, 6)-Estimators

4.5 (e, 9)-Estimators

In this section, we study the (¢, d)-approximation problem under two different scenarios.
First, we give in Section 4.5.1 a parameter-free estimator that performs in expectation

TN
Then, we describe in Section 4.5.2 an estimator that performs O(¥log(1/§)) quantum
experiments given an upper bound V on the coefficient of variation |o/u|. We also explain
how to find such a bound V given a non-increasing function f such that f(u) > o/p.

6((o 4 1) log(%)) quantum experiments for any random variable distributed in [0, 1].

4.5.1 Parameter-free estimators

We follow an approach similar to the classical AA algorithm described in [DKLRO00].
We first give a sequential estimator that performs O(1/(e/z)) quantum experiments in
expectation. We use the term “sequential” in reference to sequential analysis techniques.
The classical counterpart of this estimator is the Stopping Rule Algorithm in [DKLRO00].

Proposition 4.5.1 (SEQUENTIAL BERNOULLI ESTIMATOR). There is a quantum algorithm,
called the sequential Bernoulli estimator, with the following properties. Let X be a ¢-
random variable distributed in [0, 1] with mean p. Fiz two reals €,0 € (0,1/2). Then,
the sequential Bernoulli estimator Seq-BernEst(X,¢€,0) outputs a mean estimate 11 and
performs a number T of quantum experiments such that,

(1) Prfjg — p| > eu] < 6.
(2) E[1/a] < O(1/p) and E[\/f] < O(\/R).

(3) E[T] < 0400,

(4) There is a universal constant ¢ such that Pr [T > c% <.

Proof. The algorithm consists of running the sequential amplitude estimation algorithm
Seq—AEst(V,H, €, 5) (Theorem 3.3.3), where V' and II are given in the proof of Proposi-
tion 4.4.1 for ¢ = 0 and b = 1. The results follow from Theorem 3.3.3. O

We now describe an algorithm that improves the dependence on ¢ compared to the
above estimator. We later show in Proposition 4.6.4 that it is nearly optimal. The classical
counterpart of this estimator is the AA Algorithm in [DKLR00].

Theorem 4.5.2 (SEQUENTIAL RELATIVE ESTIMATOR). Let X be a g-random variable
distributed in [0, 1] with mean p and variance 0. Given two reals €,6 € (0,1) the estimate [i
output by the sequential relative estimator (Algorithm /.3) satisfies Pr[|p —] > eu] < 0.

The algorithm performs
~ 1
O((U—F) log(1/d >
o T (1/6)

quantum experiments in expectation.

Proof. We assume that |m — p| < /2 at step 1 of the algorithm, which is the case with
probability at least 1 — §/4 by Proposition 4.5.1. The analysis of steps 2 and 3 is split
into two cases. First, if o < ,/eu, then we directly consider the second term in the max at

step 3. By Theorem 4.4.2, the estimate p satisfies | — p| < 2/%\/% < ep with probability

at least 1 —¢&/4. Secondly, if ¢ > /€fi, then by Proposition 4.5.1 the estimate 6% computed

37

Chapter 4 Mean Estimation Problem

1. Compute an estimate m of y = E[X] with relative error 1/2 by using the
sequential Bernoulli estimator Seq-BernEst(X,1/2,§/4).

2. Let Y denote the random variable (X — X’)?/2 where X' is independent of X and
identically distributed. Compute an estimate 52 of o2 = E[Y] with relative error
1/2 by using the sequential Bernoulli estimator Seq-BernEst(Y,1/2,4/4). Stop

4clog(4/9)
=

set & = 0 (where c¢ is the constant mentioned in part (4) of Proposition 4.5.1).

the computation if it performs more than quantum experiments and

3. Compute a second estimate g of p by using the sub-Gaussian estimator

SubGaussEst(X, ¢,d/4) with ¢t = 210[130((%7 ﬁ) log(4/6). Output f.

Algorithm 4.3: Sequential relative estimator.

at step 2 satisfies |02 — 02| < 02/2 with probability at least 1 — §/4 if we remove the

stopping condition. Since we assumed that m < (3/2)u, the computation is stopped if
4clog(4/6) > 2clog(4/9)
em - g

the number of experiments performed by the sequential Bernoulli estimator at step 2 is at
most 2¢198(4/0) ith probability at least 1 — §/4. Consequently, the computation is not
stopped and |52 — 02| < 02 /2 with probability at least 1 —¢&/2. In this case, by considering
the first term in the max at step 3, the estimate u satisfies |z — p| < m < ep with
probability at least 1 — /4. The overall success probability is at least 1 — 9.

We now analyze the expected number of quantum experiments performed by the
algorithm. Step 1 performs O(log(1/0)/\/it) experiments in expectation by Proposi-

tion 4.5.1. Step 2 is stopped after O(log(1/0)/(,/€it)) experiments in expectation since

E[1/y/m] < O(1/\/r) by Proposition 4.5.1. Step 3 performs 5(max(%, ﬁ) log(1/5)>
experiments by Theorem 4.4.2. The estimates o and m are independent if we ignore
the stopping condition at step 2, in which case E[] = E[&]E[%] < O(%) by Proposi-

it performs more than experiments. However, by Proposition 4.5.1,

F
m
tion 4.5.1. The stopping condition can only decrease this quantity. Thus, step 3 performs

5<max(i, \/1?“) log(l/é)) experiments in expectation. O

4.5.2 Parametrization by the coefficient of variation

We study the (e, d)-approximation problem when some information is available on the
coefficient of variation |o/u|. First, if we have an upper bound V on the coefficient of
variation then it suffices to use the sub-Gaussian estimator with the correct parameters.

Corollary 4.5.3 (RELATIVE ESTIMATOR). There exists a quantum algorithm with the
following properties. Let X be a g-random variable with mean p and variance o, and set
as input a value V > |o/u| and two reals €, € (0,1). Then, the algorithm outputs a mean
estimate [i such that Pr[|in — p| > €|lu|] < 0 and it performs

9) <]€} log(1 /5))
quantum experiments.

Proof. The algorithm runs the sub-Gaussian estimator SubGaussEst (X, % log(1/4), 5). O

38

4.5 (€, 6)-Estimators

This approach has the advantage that the number of experiments does not scale with
1/\/p as in Theorem 4.5.2. On the other hand, it requires us to know a “good” upper
bound on the coefficient of variation. This assumption is often met in practice, as is the
case for the applications considered in Chapters 6 and 9.

We now consider the weaker hypothesis where, instead of a direct upper bound V on
o/u, we have a non-increasing function f such that f(u) > o/u. We first describe an
algorithm to decide if the mean p lies in an interval [a, 3) or is e-far from it. Our approach
crucially relies on the inequality 7z < (2 + 2m)%u proved for the quantum sub-Gaussian
estimator (Theorem 4.4.2).

1. Compute an estimate g of p = E[X] by using the sub-Gaussian estimator

SubGaussEst(X,t,0) with t = f(s(ﬁﬂ)z) 4log(1/3)

2. If p e [(1-§)e, (14 5)B) then output B = 1, else output B = 0.

Algorithm 4.4: Interval estimator, IntervEst(X, f, «, 3, ¢€,9).

Theorem 4.5.4 (INTERVAL ESTIMATOR). Let X be a g-random variable distributed in
[0, 1] with mean pu and variance o2, and set as input a non-increasing function f such that
flu) > o/u, two endpoints o < 8 and two reals €,0 € (0,1). Then, the output B of the
interval estimator IntervEst(X, f, «, 8,€,0) (Algorithm J.4) satisfies,

(1) If p € [, B) then B = 1 with probability at least 1 — 4.
2 If p ¢ [(1—¢€)a,(1+¢€)B) then B =0 with probability at least 1 — .

The algorithm performs 0] (f (8(1-?{-71')2) log(€1/6)) quantum experiments.

Proof. Assume first that p > g¢y. Then, ¢ > 40 /(epn)log(1/6) and, by property of
the sub-Gaussian estimator, |z — p| < (€/4)u with probability at least 1 —§. Thus, with
probability at least 1 — 0, if u € [o,8) then g € [(1 = {)a, (14 §)B), if p > (1 +¢)B
then > (1 —¢/4)p > (1 —€/4) (1 +€)f > (1 +¢€/2)5, and if 4 < (1 — €)a then
< (1+e/4)u<(1+4+€¢/4)(1—€)a < (1—¢€/2)a. In all three cases, the output B is correct
with probability at least 1 — 4.

Assume now that u < m. By property of the sub-Gaussian estimator (second part
of Theorem 4.4.2), we have that 1 < (2 + 27)%u < é%ﬁgia = a/2 < (1 —¢€/2)a with
probability at least 1 — §, in which case the output is B = 0.]

We use the above algorithm to compute a value V that approximates f(u). This value
can be used subsequently in Corollary 4.5.3 to estimate the mean with any desired accuracy.

Theorem 4.5.5. Let X be a g-random variable distributed in [0, 1] with mean p and

variance o2, and set as input a non-increasing function f such that f(p) > o/p and a

real § € (0,1). Then, for any integer k > 1 and some universal constant c, Algorithm 4.5
outputs a number V such that

F) <V < f(e27")

and it performs O(V1og(2% /)2 log(1/6)) quantum experiments, with probability 1 — 6F.

39

Chapter 4 Mean Estimation Problem

1. Set ¢ =1.

2. Run the interval estimator IntervEst(X, f,a, B,€,6) with a = 27¢, 8 = +oo,
€ =1/2 and §/2¢. Let B denote the output of the algorithm.

3. If B =1 then set £ = ¢+ 1 and go to step 2. Else, output V = f(27¢~1).

Algorithm 4.5: Computing an upper bound on the coefficient of variation.

Proof. We first assume that all calls to the interval estimator at step 2 of Algorithm 4.5
are successful, which is the case with probability at least 1 —>";2, 6/ 2¢ > 1—4. According
to Theorem 4.5.4, we have B = 0 when ¢ < log(1/(2p)) and B = 1 when ¢ > log(1/u).
Consequently, the algorithm stops when ¢ is between log(1/(2u)) and [log(1/u)] + 1. In
this case, the output V = f(27¢71) satisfies f(u) <V < f(u/8) and the algorithm per-

forms at most SEF 1 O £ (i) 106(2'/0)) < O(f (i) 108(1/)2 08(1/5))
quantum experiments. This proves the theorem in the case k = 1.

For k > 2, each time step 2 is executed with ¢ > log(1/u) the probability that B =0
is at least 1 — 0. Thus, the probability that the algorithm has not yet stopped when
¢ = [log(1/p)]+k is at most 6*. The number of experiments performed up to that point is at

most SIEIE O (£ (gt) og(2/8)) < O(f (et) loa(2"/1)?1og(1/6)). D)

As an application of the above results, we consider the case where f is a power function.
We obtain a simple formula for the number of experiments performed in expectation. This
result is used in Chapter 6.

Corollary 4.5.6 (EXPONENTIAL ESTIMATOR). There is a quantum algorithm, called
the exponential estimator, with the following propertz'es Let X be a g-random variable
distributed in [0, 1] with mean p and variance o2, and set as input a function f : x — c/x?

and two reals €,6 € (0,1) such that f(u) > 0/,u and § < 2734 where ¢,d > 0 are two
constants. Then, the exponential estimator ExpEst(X, f,€,d) outputs an estimate fi such
that Pr[|pn — p| > eu] < and it performs a number T of quantum experiments such that

E[T] < VE[T?] < O(f(n) - (1/€ + log(1/p)log(1/5)) log(1/5)).

Proof. The algorithm proceeds as follows: first, it computes V by using the algorithm of
Theorem 4.5.5 with input parameters f,d/2; then it computes i by using the algorithm
of Corollary 4.5.3 with input parameters V, ¢, /2. The statement Pr[|z — p] > eu] <6 is
easy to prove. The number T of experiments satisfies

_ 2
B[1%) < 6 (Zak (r czku>log<2k/u>2log<1/5>2+f(cik“)logu/a)))

| /\

<25k< (1)2% log(2* /)% log(1/6)? + f(e“’)zkdlog(1/5)>2>

< O(f(n)* (log(1/u)* log(1/6)* + 1/€%) log(1/5)?)

where the second step uses that f : z — ¢/2¢%, and the last step uses that § < 2734, [

40

4.6 Lower bounds

4.6 Lower bounds

We prove several lower bounds for the mean estimation problem under different scenarios.
In Section 4.6.1, we study the number of experiments that must be performed to estimate
the mean with a sub-Gaussian error rate. In Section 4.6.2, we study the number of
experiments needed to solve the (e, §)-approximation problem. Finally, in Section 4.6.3, we
consider the mean estimation problem in the state-based model, where the input consists
of several copies of a quantum state encoding a distribution.

4.6.1 Sub-Gaussian estimation

We show that the quantum sub-Gaussian estimator described in Theorem 4.4.2 is optimal
up to a polylogarithmic factor. We make use of the following lower bound for Quantum
Search in the small-error regime.

Proposition 4.6.1 (Theorem 4 in [BCWZ99]). Let N >0, 1 < K <0.9N and 6 > 27V,
Let T(N, K,6) be the minimum number of quantum queries any algorithm must use to
decide with failure probability at most § whether a function f : [N] — {0,1} has 0 or K
preimages of 1. Then, T(N, K,§) > Q(y/N/K log(1/9)).

We construct two particular probability distributions that allow us to reduce the
Quantum Search problem to the sub-Gaussian mean estimation problem.

Theorem 4.6.2. Lett > 1 and § € (0,1) such that t > 2log(1/6). Fix o > 0 and consider
the family P, of all g-random variables with variance 0. Let T(t,0,6) be the minimum
number of quantum experiments any algorithm must perform to compute with failure
probability at most § a mean estimate 11 such that | — p| < M for any X € P, with
mean p. Then, T(t,0,8) > Q(t).

Proof. Let s = and b = 0. We define the probability distribution py with

log(1/5) V1- 1/ 2
support {0,b} that takes value b with probability . Similarly, we deﬁne the probability
distribution p; with support {0, —b} that takes Value —b with probablhty . The variance

of each distribution is equal to o2. Moreover, the means po and g of the two distributions

satisfy that,
olog(1/9)

t

Let N, K be two integers such that N > log(1/§) and K/N = 1/s* (assuming s is
rational). Let Fy be the family of all functions f : [N] — {0,1} with exactly K preimages
of 1. Similarly, let F; be the family of all functions f : [N] — {—1,0} with exactly K
preimages of —1. By using Proposition 4.6.1, it is easy to see that any algorithm that
can distinguish between f € Fy and f € F; with success probability 1 — § must use at
least Q(/N/Klog(1/9)) = Q(slog(1/0)) = Q(t) quantum queries to f. We associate
with each function f € Fy U Fy the g-variable (H,U, M) where H = CN*2 U|0) =
ﬁ 2ze| @) f(2)), and M = {I®|0){0], I®[-1){—1|, I®|1)(1[}. The random variable X
generated by (H,U, M) is distributed according to pg if f € Fp, and according to p; if
f € Fy. Moreover, one quantum experiment with respect to X can be simulated with one
quantum query to f. Consequently, any algorithm that can distinguish between a random
variable distributed according to pg or p; with success probability 1 — § must perform at
least €(t) quantum experiments. On the other hand, by Equation (4.7), if an algorithm
can estimate the mean with an error rate smaller than %(1/5) then it can distinguish
between f € Fy and f € Fy. Thus, T'(t,0,9) > Q(t). O

Mo — 1 > 2 (4.7)

41

Chapter 4 Mean Estimation Problem

4.6.2 (¢, 0)-Estimation

We consider the (e, 0)-estimation problem in the parameter-free setting, when the coefficient
of variation is unknown. We make use of the next lower bound for Quantum Counting.

Proposition 4.6.3 (Theorem 4.2.6 in [Nay99]). Let N >0, 1 < K < N and € € (&, 1).
Consider the set of all quantum algorithms such that, given a query oracle to any function
[[N] = {0,1}, they return an estimate C of the number C of preimages of 1 in f such
that |C — C| < €C with probability at least 2/3. Let Tk (N, €) be the minimum number of
quantum queries any such algorithm must use when the oracle has exactly K preimages

of 1. Then, Tk (N,¢€) > Q<\/m + eK+1>

eK+1

We obtain by a simple reduction to the above problem that the result described in
Theorem 4.5.2 is nearly optimal.

Proposition 4.6.4. Let e € (0,1). Let P denote the family of all g-random variables that
follow a Bernoulli distribution. Consider any algorithm that takes as input X € Pp and
that outputs a mean estimate [such that |p — E[X]| < eE[X] with probability at least 2/3.
Then, for any p € (O 1), there exists X € P with mean p such that the algorithm performs

at least Q(+

quantum experiments on input X, where o = Var[X].

\ﬁ
Proof. Given ¢ € (0,1) and p € (0,1), we choose two integers K and N such that
K >1/(4¢) and K/N = p (assuming p is rational). Similarly to the proof of Theorem 4.6.2,
we associate with each function f : [N] — {0,1} the g-variable (#,U, M) where H =
CchN+2 U)oy = \FEIE[N |z)|f(z)), and M = {I ® |0)(0],I ® |1)(1]|}. If a quantum
algorithm can estimate the mean of any Bernoulli random variable with error € and success
probability 2/3, then it can be used to count the number of preimages of 1 in f with the
same accuracy. Thus, by Proposition 4.6.3, any such algorithm must perform at least

VEK(N-K) 1—p) 1 _ 1 ;
(T/ 6K+1) (/N T \/m) = Q(i + \/TT) quantum experiments

on a g-random variable with mean p and variance o = (1 — p). O

4.6.3 State-based estimation

We consider the state-based model where the input consists of several copies of a quantum
state |p) = > .cp v/P(x)|r) encoding a distribution p over E. This model is weaker
than the one described before, since it does not provide access to a unitary algorithm
preparing |p). We prove that no quantum speedup is achievable in this setting. Our result
uses the next lower bound on the number of copies needed to distinguish two states.

Lemma 4.6.5. Let 6 € (0,1) and consider two probability distributions po and p1 with

the same finite support £ C R. Define the states |¢po) = > cp/Po(x)|x) and |¢1) =
> wer VP1(x)|z). Then, the smallest integer T' such that there is an algorithm that can

distinguish |po)®T from |¢1)®T with success probability at least 1 — 6 satisfies T > 71]“(1/(45))

D(pollp1) ’
where D(pol|p1) = D cpPo(x)ln(%) is the KL-divergence from pgy to p;.

Proof. According to Helstrom’s bound [Hel69] the best success probability to distinguish
between two states |¢) and |¢/) is (14 /1 — [(¢[¢/)[?). Thus, the smallest number T
needed to distinguish |¢o)®7 from [¢1)®7 must satisfy 2(1+ /1 — (¢o|¢1)?T) > 1—6

. . —In(1-(1-24)%) In(1/(49)) In(1/(49)) In(1/(49))

It implies that T' > —; > > &Y = D
n((¢o | ¢1)) —oln I%:EPO(I) /gég; ngpo(m) h%%) (pollp1)
where the second inequality uses the concavity of the logarithm function. O

42

4.7 Discussion

We use the above lemma to show that no quantum mean estimator can perform better
than the classical sub-Gaussian estimators in the state-based input model.

Theorem 4.6.6. Lett > 1 and § € (0,1) such that t > 2log(1/6). Fix o > 0 and consider
the family P, of all distributions with finite support whose variance lies in the interval
[0%,40?]. For any p € P, with support E C R, define the state |p) = >, /p(x)|z).
Let T'(t,0,9) be the smallest integer such that there exists an algorithm that receives the
state]p)®T(t’U’6) for any p € P,, and that outputs an estimate @i of the mean i of p such

that Pr[ﬁ — > “gt“/‘”] < 8. Then, T(t,0,8) > Q).

Proof. Let s = m, b = \/%U and a = 21n<1—i— \/1—%). We define the two

probability distributions py and p; with support E = {0,b} where po(b) = % and
p1(b) = 1. Let po and of (resp. p1 and o7) denote the expectation and the variance
of po (resp. pi1). Observe that oy € [0,20] and 01 = o, thus py,p1 € P,. Moreover,

21 5 . o a2 1)
Mo — 1 > 2\/ L Ogt(l/ ! since Mo —p1 = 0,6@711 = U(ea/Q + 1) e\/sfll = U(ea/Q + 1) Og(tl/)
and 20 < og+o01 = O’(\ / % + 1) < U(ea/Q + 1). Thus, we can distinguish |pg)®7(%::9)

from |p;)®7 (9 with failure probability § by using any optimal algorithm that satisfies the
error bound stated in the theorem. Since the KL-divergence from pg to py is D(po|lp1) <

po(b) ln@?gzg) = O‘s%a < g, we must have T'(¢,0,0) > Q<£)O(%)(1lll/zfo))> = Q(t) by Lemma 4.6.5.
O

4.7 Discussion

One interesting open question is to find a quantum mean estimator that achieves the
deviation bound Pr Uﬁ —pl > %(1/5)] < § by performing a number of experiments that is
linear in t. The current best upper bound (Theorem 4.4.2) is O(tlog®?(t) loglog(t)), and
the lower bound is (¢) (Theorem 4.6.2). A first step toward this goal could be to obtain a
better algorithm for the restricted case of Gaussian distributions. An equivalent goal is to
find the smallest value L such that the deviation bound Pr|g — | > L%(l/a)] < 0 can
be achieved by a quantum mean estimator that performs at most ¢ quantum experiments.
Classically, for the sub-Gaussian deviation bound of Equation (4.1), the optimal value is
L =+2(1+0(1)) [Cat12; LV20].

There exist many variants of the quantum mean estimation problem that have not
been explored in the quantum model yet. Let us mention for instance the multivariate
setting [LM19], where the objective is to estimate the mean of a random variable taking
values in R?. The first polynomial-time classical algorithm for this problem was only found
recently by Hopkins [Hop20)].

We present two applications of the quantum sub-Gaussian estimator later in this thesis.
In Chapter 6, we describe a quantum query algorithm for counting the number of triangles
in a graph. This result uses a variant of the quantum sub-Gaussian estimator developed
in the next chapter. In Chapter 9, we describe a quantum streaming algorithm for
approximating the frequency moments, based on the relative estimator of Corollary 4.5.3.
We note that our quantum sub-Gaussian estimator can also be plugged in simulated
annealing algorithms [Mon15; HW20; CCH+19; AHN+-20] (though in this case Montanaro’s
estimator [Mon15] is often sufficient since the variance is small), or for simplifying the
non-integer Rényi entropy estimation algorithms described in [LW19, Section V].

43

Variable-Time Mean Estimation

This chapter is based on the following papers:

[HM19] Y. Hamoudi and F. Magniez. “Quantum Chebyshev’s Inequality and Appli-
cations”. In: Proceedings of the 46th International Colloguium on Automata,
Languages, and Programming (ICALP). 2019, 69:1-69:16.

[HM21a] Y. Hamoudi and F. Magniez. “Quantum Approximate Triangle Counting”. In
submission. 2021.

5.1 Introduction

The mean estimation problem presupposes the existence of a random or quantum process
whose output value encodes some given random variable X. The computational complexity
of solving the mean estimation problem is proportional to the number of times this process
is invoked, and to the execution time of the process itself. The first of these two quantities
was studied in the previous chapter, where it was called the “number of (random or
quantum) experiments”. It reflects the amount of information that must be gathered
about X to estimate its mean. The second quantity, which we call the stopping time T,
measures the computational cost of performing each experiment. The purpose of the
present chapter is to understand the underplay between these two quantities.

The stopping time T of a random experiment is defined as the total number of operations
performed during its execution. The decision to end a random experiment is often based
on the observation of a certain random event during the computation. Thus, the stopping
time T is itself modeled as a random variable. The expected time complexity of an
algorithm is related to the product of the number of random experiments it performs
and of the average stopping time 77 = E[T], by linearity of expectation. This simple
relationship is of crucial importance in amortized analysis. Indeed, it offers a more realistic
measure of complexity than by considering the mazimum stopping time Ty x = max(T).

The stopping time of a quantum experiment is more subtle to define. The collapsing
property of quantum measurements make the design of adaptive stopping rules more
difficult to achieve in this setting. Thus, there is often no difference between the average and
the total number of operations performed during a quantum experiment. Ambainis [Amb12]
addressed a related issue by introducing the concept of variable-time algorithm. A variable-
time algorithm has the property that there is a non-negligible probability to obtain the
same output whether its memory is observed at an intermediate stage of the computation
or at the end of it. The stopping time T of such an algorithm is defined as the random
variable distributed according to the probability that a fictitious intermediate measurement,
at a given step of the computation, would return a completed result. Ambainis gave an

45

Chapter 5 Variable-Time Mean Estimation

operational meaning to this quantity by showing that, for the particular task of searching
a marked item in a database, there exists an algorithm whose complexity scales as the
product of the usual number of Grover’s iterations and of the £s-average stopping time
Ty = \/E[T?] of the algorithm generating the database [Amb10b]. He later generalized
this result to a variable-time amplitude amplification (VTAA) algorithm [Amb10c; Amb12],
for the task of projecting the output state of a variable-time algorithm in some chosen
subspace.

We adopt the same framework as Ambainis to study the mean estimation problem on
a random variable X generated by a variable-time algorithm with stopping time 7. We
focus on the problem of estimating the mean p = E[X] with relative error e. We exhibit an
algorithm whose time complexity scales as the product VThe 2, where V > o/u is an upper
bound on the coefficient of variation of X and Ty > /E[T?] is an upper bound on its
£o-average stopping time. In comparison, a direct application of the estimators constructed
in the previous chapter (Section 4.5) would require roughly VT ,a.xe ! operations, and a
classical estimator would perform V2T e~2 operations in expectation. Our main ingredients
are a new variable-time amplitude estimation (VTAE) algorithm, and a new variant of the
mean estimator algorithms studied in the previous chapter.

5.1.1 Related work

We refer the reader to Chapter 4 for related work on the mean estimation problem. We
focus here on previous work for variable-time quantum algorithms.

Ambainis initiated the study of quantum algorithms with variable stopping times
in [Amb10b]. He considered the problem of finding a marked item among n elements,
where the i-th element requires time 7; to be checked. The case of 74 = --- =7, =1
corresponds to the standard Grover search algorithm, and a naive generalization to
arbitrary stopping times would lead to a complexity of O(y/nmax; 7;). Instead, Ambainis
obtained an optimal complexity that scales as the {s-average O(T2 4+ T,QL) This
result was later generalized to a variable-time amplitude amplification (VTAA) algorithm
in [Amb10c; Amb12]. The VTAA algorithm prepares a state proportional to IIU|0),
where II is a fixed projector and U is a variable-time algorithm with stopping time 7', in
time 6(T max + %\/E[Tﬂ) where p = ||TIU|0)||%. In comparison, the standard amplitude
amplification algorithm (Theorem 3.2.1) runs in time O(%Tmax). Chakraborty, Gilyén and
Jeffery [CGJ19] built on Ambainis’ work to develop a variable-time amplitude estimation
(VTAE) algorithm whose complexity scales as 5(% (Tmax + %\/E[Tﬂ)) to estimate the
aforementioned squared amplitude p with relative error e. In our work, we propose a new
version of the VTAE algorithm where the dependence on Ty, is logarithmic, and with
additional properties that are needed to construct our mean estimator algorithms.

The VTAA algorithm has been used for solving systems of linear equations [Amb10c;
Amb12; CKS17; CGJ19], and for finding triangles in a graph [Gall4; GN17]. It has been
combined with the VTAE algorithm for solving least squares problems and estimating

electrical-network quantities [CGJ19], and for best-arm identification in the multi-armed
bandit model [WYLC21].

5.1.2 Contributions and organization

We explain in Section 5.2 what a variable-time algorithm U = Uy, - - - Uy is (Definition 5.2.1),
and we define the stopping time T of U (Definition 5.2.2). We adapt these definitions to
the mean estimation problem and to g-random variables in Definition 5.2.3.

46

5.1 Introduction

Next, we describe in Section 5.3 our variable-time amplitude estimation (VTAE) algo-
rithm for estimating with relative error e the squared amplitude p = ||TIU|0)?, given a
projector II and a variable-time algorithm U with stopping time T'. The time complexity of
the algorithm is on the order of \/E[T2]/(¢*/2,/p) (Theorem 5.3.1), whereas the standard
amplitude estimation algorithm (Theorem 3.3.1) has time complexity Tiax/(€1/P)-

We apply the VTAE algorithm to the mean estimation problem in Section 5.4 by
describing new mean estimators whose time complexity is proportional to the £s-average
stopping time /E[T?] of the algorithm generating X. In comparison, the time complexity
of the estimators developed in Chapter 4 is proportional to the maximum stopping
time Thax. We first describe a variable-time Bernoulli estimator in Section 5.4.1 for
estimating the mean of a truncated random variable. We use it in Section 5.4.2 to obtain
the next estimator that takes as input an upper bound V on the coefficient of variation
of X. This improves upon the time complexity of the estimator given in Corollary 4.5.3.

Theorem 5.4.4 (Restated). There exists a quantum algorithm with the following prop-
erties. Let X be a g-random variable distributed in [0,1] with mean p, variance o and
stopping time T'. Set as input two time parameters V, T > 1, a lower bound o > 0, and
two reals €,0 € (0,1). Then, the algorithm outputs a mean estimate i1 such that,

W) IfV >0/u, Ty > /E[T?] and p > « then Pr[|p — p| > ep] < 4.
(2) Prjp<2u]>1-4.
The time complexity of the estimator is 6(VTQ . (log() + 6%) log*(Timax) log(%)).

1

(63
Similarly to Corollary 4.5.6, we adapt the previous result to the case where we have a
non-increasing function f such that f(u) is an upper bound on the coefficient of variation
of X (Proposition 5.4.6). We also remove the need for a lower bound « on x in the above

theorem.

5.1.3 Proof overview

Variable-time amplitude estimation. Before explaining how our VTAE algorithm works,
we summarize the approach used in the VTAA algorithm developed by Ambainis [Amb10c;
Amb12]. A variable-time algorithm (Definition 5.2.1) is a unitary algorithm U that can
be decomposed as a product U = U, ---U; of n consecutive sub-algorithms, and such
that the memory of the algorithm contains (in superposition) a Boolean flag indicating
whether the computation is finished or not. Each algorithm U; can only modify the basis
states where the flag is set to 0. The purpose of the VTAA algorithm is to prepare the
state WHU\O)7 for some projector 11, by taking advantage of the fact that each U;
can be run on its own. The main idea behind the VTAA algorithm is to intertwine the n
computation steps Uy, ..., U, with n amplification steps that increase the amplitude of
the sub-state with flag 1 lying in the support of II. This has the effect of improving the
running time over the standard amplitude amplification algorithm if a large portion of
I1U]0) is prepared at an early stage of U. We follow a similar approach in our VTAE
algorithm for estimating the squared amplitude p = ||TIU|0)||>. We consider a particular
sequence of intermediate values p1,...,p, that are related to the n amplification steps
performed in the VTAA algorithm. We show that the product p; - - - p; of the first i-th
terms is equal to the squared amplitude ||[IIU; - -- U1|0)||? (Lemma 5.3.3). Moreover, if
a large portion of IIU|0) is prepared at an early stage or U then it suffices to estimate
|TIU; - - - U1]0)|? for a small value of i to obtain a good approximation of p. Finally, we use
the standard amplitude estimation algorithm to compute some estimates p1, ..., p; of the
i-th first terms, and we combine them into an estimate p = py - - - p; of p (Section 5.3.3).

47

Chapter 5 Variable-Time Mean Estimation

Variable-time Bernoulli estimator. We modify the Bernoulli estimator presented in
Proposition 4.4.1 of Chapter 4 so that it uses the VTAE algorithm instead of the amplitude
estimation algorithm. The new wvariable-time Bernoulli estimator (Proposition 5.4.2) can
estimate with relative error € the mean of a g-random variable X distributed in [a, b] with
a time complexity that depends on b, on the expectation of the truncated random variable
X14<x<p, and on the ¢r-average stopping time of X. The main step toward constructing
this estimator is to define a new variable-time algorithm U (Proposition 5.4.1) that
intertwines the original variable-time algorithm generating X with a controlled rotation
operator similar to the one used in the Bernoulli estimator. The normalized expectation
E[X La<x<p)/b is encoded as a squared amplitude [|IIU]0)||? for some projector II. We
then use the VTAE algorithm to estimate the latter quantity with relative error e.

Variable-time (e, §)-estimator. Our approach (Theorem 5.4.4) is tailored to the (e, d)-
approximation problem, where the goal is to output an estimate g of the mean p = E[X]
such that Pr[|g — | > ep] < 0. A first attempt is to replace the Bernoulli estimator with
the variable-time Bernoulli estimator in the algorithms of Chapter 4. Unfortunately, the
latter estimator satisfies a less general deviation bound than the former one. We solve
this issue by using a “weaker” version of the sub-Gaussian estimator, which increases the
complexity by a factor of e /2. We now sketch the construction of this estimator. Suppose
we are given an upper bound V > o/u on the coefficient of variation of a non-negative
random variable X with stopping time 7. By the same arguments as in Section 4.1.3 and
Theorem 4.4.2, one can show that for the truncation level b = L:H) the expectation
of the random variable Y = X1x<; satisfies |E[Y] — p| < en/2 (Lemma 5.4.3). Thus,
by the triangle inequality, it suffices to estimate E[Y] with relative error €¢/2. By using
the variable-time Bernoulli estimator, and given our choice of b, the expectation of Y
can be estimated with a time complexity on the order of V/E[T?]¢~2. The remaining
obstacle is to find the truncation level b (or an approximation of it). For that, we define
the sequence of truncation levels b, = 27¢(V2 4 1) for £ > 1 and we estimate the mean
e = E[X 1 x<p,] by using the variable-time Bernoulli estimator for increasing values of .
We set the time complexity of each estimation to V/E[T?]. The crucial property is that
the obtained estimates Ji; are smaller than 2¢ for small values of £, and they become larger
than 27¢ when £ ~ log(1/u). The first part of this property stems from an analog result to
Markov’s inequality, which shows that the output of the variable-time Bernoulli estimator
is smaller than twice the estimated mean with high probability (Proposition 5.4.2). The
second part is similar to the argument presented before, namely when b, ~ (V2 + 1) the
variable-time Bernoulli estimator outputs an accurate estimate of u after only V/E[T?]
steps of computation. Thus, by stopping the above iterations when i, becomes larger
than 27¢, we can take b = by /€ as an approximation of the desired truncation level.

5.2 Model of input

We assume the existence of an abstract measure of complexity, called the time complexity,
that characterizes the total amount of time needed to execute a given quantum algorithm.
This measure assigns a 0/1 cost to each gate occurring in a quantum circuit.

Assumption 5.A (TIME COMPLEXITY). Consider a fixed set S of quantum gates, and a
function Tiax : S — {0, 1} where Th,ax(G) is called the time complezity of the gate G € S.
Given a quantum circuit A over the gate set S, we define the time complexity Tiax(A)
of A to be the sum of the time complexities of all the gates present in A.

48

5.2 Model of input

The time complexity is intended to measure the worst-case cost of an algorithm. We
present a second measure of complexity for characterizing the average cost, which is based
on the definition of a variable-time algorithm [Amb10c; CKS17; CGJ19]. A variable-time
algorithm is a product U = U, - - - U; of n unitaries acting on a space C2"* @ H, where the
first n registers of the memory contain binary flags that indicate whether the computation
is finished or not. Fach sub-algorithm U; can only modify the states where the computation
is unfinished (which corresponds to the first ¢ — 1-th flags being set to 0). The probability
of the “branches of computation” that are stopped at the i-th step is denoted by pstop,;-
The definition is illustrated in Figure 5.1.

Definition 5.2.1 (VARIABLE-TIME ALGORITHM). Let n be an integer and H a Hilbert
space. For each i € {0,...,n}, define the projection operators Igtop; = [0 1) (0711 @ 1
and Ilgop, <; = Zé’:l IIstop,; acting on C?". We say that a quantum unitary algorithm U
acting on C?" ® H is a variable-time algorithm with intermediate stopping times (ti)ie[n]
and stopping probabilities (pstop,i)ie[n] if it can be decomposed as a product U = U,, --- Us
of n unitary quantum algorithms that satisfy the following conditions. For each i € [n],

(1) There exists a unitary operator V; acting on C2"""" @ H such that
Ui = ’Oi_1><0i_1‘ ® sz + Hstop,gi—l ® 1.
(2) The time complexity of U; is Tyax(U;) = t; — ti—1 (where tg = 0).

(3) The stopping probability is pstop,i = ||Hstop,i (Ui - - - U1|0))]?.

Additionally, we require that ||ILsop <, U|0)]| = 1.

— : 7 7
0)®™ 1 — !
_ | w v T -
? Vi
| Vi,
|0) € H

Figure 5.1: An illustration of the n steps of a variable-time algorithm U = U,, - -- Uy. The
i-th layer of the circuit represents the unitary operator U;. Each V; is controlled
on the first ¢ — 1 registers being equal to 0 (represented by the white circles).

The stopping time T of a variable-time algorithm is the random variable taking values in
{t1,...,ty} that is distributed according to the stopping probabilities of the algorithm U.
The time complexity mentioned in Assumption 5.A is simply equal to the maximum
value t,, taken by T. More interestingly, we can define two measures of average stopping
time 77 and T5 by taking the expectation of T" in ¢1 or f5 norms respectively.

Definition 5.2.2 (STOPPING TIME). The stopping time of a variable-time algorithm U
with intermediate stopping times (¢;);c[,) and stopping probabilities (pstop,i)ie[n] is the
random variable T' that takes value t; with probability psiopi. The ¢1-average stopping
time is T1(U) = E[T']. The ¢3-average stopping time is To(U) = /E[T?].

49

Chapter 5 Variable-Time Mean Estimation

We have T1(U) < T5(U) < Tmax(U). We can easily adapt the definition of a g-random
variable (Section 4.2) to the case where it is generated by a variable-time algorithm.

Definition 5.2.3 (STOPPING TIME OF A Q-RANDOM VARIABLE). A random variable X is
a g-random variable with stopping time T if it is generated by some q-variable (H,U, M)
where U has stopping time 7.

The comparison oracle from Assumption 4.A is not needed in this chapter. We assume
that the time complexity of the rotation oracle R, ; defined in Assumption 4.B is at most 1.

5.3 Variable-time amplitude estimation

The main contribution of this section is the next variable-time amplitude estimation
(VTAE) algorithm for estimating the squared amplitude p = ||[TIU|0)||? with relative error e,
where II is a projector and U is a variable-time algorithm with stopping time 7. The time
complexity of the VTAE algorithm is on the order of T5(U)/(€3/2,/p), whereas the standard
amplitude estimation algorithm (Theorem 3.3.1) has time complexity Tiax(U)/(€y/D)-

Theorem 5.3.1 (VARIABLE-TIME AMPLITUDE ESTIMATION). Let U = U, ---U; be a
variable-time algorithm on C*" @H, for some Hilbert space H, with stopping time T. Given
a projection operator I1 on H, define the number p € [0,1] such that p = ||(I ® I)U|0)]?.
Then, given two time parameters t,Ty > 1 and two reals €, € (0,1), the variable-time
amplitude estimation algorithm VT-AEst(U,I1,t, T, €,d) outputs an estimate p such that

1) Ift> % and Ty > To(U) then Pr[|p — p| > ep] < 4.

(2) Prjp<2p]>1-4.

The time complexity of the algorithm is 6(tT2 . min<10g4£/Té"ax) 1+ :52“7%2"> log(%)).

The rest of this section is dedicated to the proof of this theorem. We first introduce
some notations in Section 5.3.1. Next, we present in Section 5.3.2 the two state generations
algorithms (B;); and (A4;); used by Ambainis [Amb10c] for the VTAA algorithm. We make
a crucial observation about the amplitude of the states they generate in Lemma 5.3.3.
Finally, we use these algorithms in Section 5.3.3 to construct the VTAE algorithm.

5.3.1 Notations

For clarity in the proof, we assume the existence of an extra flag register containing a
value in {0, 1,2} that indicates if the computation is unfinished (value 2), if it is finished
and corresponds to the “accepted” part lying in the support of II (value 1), or if it is
finished and corresponds to the “rejected” part lying in the support of I —II (value 0).
More formally, the projection operator IT is assumed to be I ® |1)(1], the initial state is
[() = |0)|2), and each intermediate state [¢p() = U;--- Uy 1)) of the variable-time
algorithm U = U, - - - Uy is written as

[$9) = VPrazlét)10) + Paozi¥i)) + VBsopsalvsH2)

for some numbers prej <i, Pace,<i, Pstop,>i, and some unit states]1/16”), lwgi)),]1/15”) such
that |¢£Z))|2> = (|0°)(0°| @ T)|p™). We have that psop ~n = 0 since all the computations

50

5.3 Variable-time amplitude estimation

must be finished at step n. The quantity to be estimated is p = ||(I ® |1)(1])[sp(M)]]?,
which is equal to
P = Pacc,<n-

Finally, we define the following two projectors on C?" ® H:

I =1I® (1)1 (projection on the accepted part)
Iho=1®(|1)(1]+2)(2]) (projection on the non-rejected part).

5.3.2 State generation algorithms

We recall the definition of the two sequences of state generation algorithms (5;); (Algo-
rithm 5.2) and (A;); (Algorithm 5.3) defined by Ambainis [Amb10c] in the context of
VTAA. These algorithms alternate between running one of the sub-algorithms U;, and
amplifying the non-rejected part of the state lying in the support of II1 2. They take
as input a sequence of amplitude estimates (Ez)z of b; = || 2(B;|1@))||? that will be
computed later on. The main properties of these algorithms are given in Proposition 5.3.2.
The proof of parts (2) and (3) appears implicitly in [Amb10c], we give it with new details.

1. If i = 1, output By = U;.

2. If i > 1, output B; = U; A;—1 where A;_1 = Geny(U,i — 1, (gj)lgjgi—l)-

Algorithm 5.2: State generation algorithm B; = Geng(U, 1, (bj)1<j<i—1)-

1. Let Bz = Geng(U,z', (bj)lgjgifl).
2. Ifgi > %, output A; = B;.

3. If b < %, output the amplitude amplification algorithm A; = AAmp(B;,I1; 2, k;)
where k; is the smallest integer satisfying 1/(9n) < (2k; + 1)%b; < 1/n.

Algorithm 5.3: State generation algorithm A; = Gen4(U, i, (gj)lgjgi)-

Proposition 5.3.2. Let U be a variable-time algorithm with intermediate stopping times
(ti)ic[n) under the notations of Section 5.5.1. Given a sequence of estimates (bj)1<j<n define

B; = Geng(U, 1, (bj)1<j<i) (Algorithm 5.2) and A; = Gen4(U, 1, (bj)1<j<i) (Algorithm 5.3)
for each i € [n]. Let b; = ||[Hy2(Bi|yON|?> and a; = [Ty 2(Ai|0O))||2. Then, for
all i € [n] and some universal constant C,

l_prej,gi

1) b, =a;—1 e — where ag = 0.

(@) If [b; — b;| < 2 for all j € [i] then Tmax(A) < C’\/ﬁ(ti n 2%)
rej, <17

3 If |E] — b < % for all j € [i] then a; > (1 — 3-)4-.

o1

Chapter 5 Variable-Time Mean Estimation

Proof of part (1). The state Blw)(o)) is U1|1/1(0)> =, /prej7§1\1/)(()1)>|0> + \/pacc,§1|1,[1§1)>|1> +

1 .
\/Psmp,>1!1/1§)>’2>7 thus by = Pace.<1 + Dstop.>1 = 1 — Prej.<1. For i > 1, the state A;_1[1(®))
is equal to

m|¢éi_l)>|0>+m< Pacc,<i—1 ’wgi—1)>|1>+ _ Pstop,>i—1 ’w(z 1)

1- Drej,<i—1 1-— DPrej,<i—1

Furthermore, there exist some unit states lwéi;(l))>, W’ggi) Wéiﬁ) such that

1

i—1
T . (vprej,ilwé—m”
\ Pstop,>i—1
i—1)

where DPrej,i = Prej,<i — Prej,<i—1, Pacc,i = Pacc,<i — Pacc,<i—1, and U; (|17/}2*)b >‘2>) lies in the
support of I ® |f)(f| for each f € {0,1,2}. We obtain that b; = |[TI12(B;|¢())||? =

1+)) 1
I A O = oy (MESEER 1 Zimes) iz D

5y =

Pacc,i

i— i—1
V) + Vosersilisss))

Proof of parts (2) and (3). Assume that \EJ —bj| < b;/(3n) for all j € [i]. The time
complexity of B; is Tiax(Bi) = Tmax(Ai—1) + (t; — ti—1). If b > 1/(9n) then Tiax(A;) =
TmaX(Bi) = Tmax(Ai—l) + (ti — ti—l) and a; = b; > (1+ %)_1% > (1 — %)% If
b; < 1/(9n) then by Theorem 3.2.1 the time complexity of A; is Tmax(Ai) = (2k; +
D) Tmax(Bi) = (2ki + 1)(Timax(Ai—1) + (t; — ti—1)). Moreover, by Corollary 3.2.2, we have

ai = (1= CRFU%5) (26 + 1)%; = max((1 =) g, (1= 35)2(2k: + 1)) where the last

inequality uses the definition of k; and the hypothesis bi > (1- :,%n)bZ Consequently,

Tax(Ai) < (1 + 3 1), /3:(Timax (Ai—1) + (t; — ti—1)). Applying this result recursively,

Tmax(Ai)§<1+31 >€1< W)tz—te1

= (- 1> Z L 7 Prej,<e—1 (ty —te—1) (by part (1))

11— prej<i

1= Prejcemt

<C (e — to—
< \/ﬁz — (te —te—1)
ezl p—
%
< C\/ﬁz 1+ DPstop>t-1 . (tg — tgfl)
—1 1- Prej,<i

(since 1 — Prej,<t—1 = Dace,<t—1 + Pstop,>¢—1)

<C\/ﬁ<ti Z\/ St0p>gl't%> (Vz e Rt : /142 <1+ x)
B V1= Prej.<i ’ -

E:
. Th(U) .
<Cyn|ti+i—=—). VO € [i] : \/Pstop.>e—1 - t2 < To(U
\/>< m ([] ptp,>€ 1 0 2())
]

The next lemma provides a crucial formula that expresses the acceptance probability
Pacc,<i after 7 steps as a telescoping product.

52

5.3 Variable-time amplitude estimation

Lemma 5.3.3. Using the notations of Section 5.3.1 and Proposition 5.3.2, for each i € [n],
the probability pacc,<i of the accepting part in U; - - - U1W(0)> is equal to

i—1

b; b;
_] [J i,1
Pacc,<i = bl : :
j=2 aj—1 Q-1

where b1 = ||H1(Biw(0)>)”2-

Proof. The product by 'Hi_l b s equal to 1 — prej <i—1 by part (1) of Proposition 5.3.2.

J=2 aj_1

= ai_l% by the same arguments as in Proposition 5.3.2.]
rej,<i—

Moreover, b; 1

5.3.3 Main algorithm

We describe the VTAE algorithm used to prove Theorem 5.3.1. We first show in Algo-
rithm 5.4 how to approximate the intermediate acceptance probability pacc,<i at any step
i€ {l,...,n}. The estimate pycc,<; is obtained by approximating each term a;, b; and b;
appearing in the formula of Lemma 5.3.3. The estimation is performed by using the
sequential amplitude estimation algorithm Seq-AEst described in Theorem 3.3.3, which is
applied to the state generation algorithms (B;); and (\A;); from Proposition 5.3.2.

1. Forj=1,...,:1—1:
a) Set B; = Geng(U, j, (gk)lgkgj—l), compute Zj = Seq-AEst(B;, 12, 15, %)

b) Set A; = Gen (U, j, (bx)1<k<;), compute a; = Seq-AEst(A;, 111 2, g, %)

2. Set B; = Geng(U, 1, (Ek)lgkgz‘—l)a compute E-’l = Seq-AEst(B;, Iy, 5, %)
i—1 ,57] . Em
J=2 a1 aj—1°

3. Output Pacc,<i = by - I1

Algorithm 5.4: Estimation of the intermediate acceptance probability pace <i-

Proposition 5.3.4. Let U be a variable-time algorithm with intermediate stopping times
ti,...,tn, under the notations of Section 5.3.1 and Proposition 5.3.2. Given a step i € [n]
and two reals €,6 € (0,1), the output pace,<i of Algorithm 5.4 satisfies, with probability at
least 1 — 4,

‘ﬁacc,gi - pacc,§i| < €EPace,<i-

) : . ﬁ 17prej,§i . . TQ(U) n . _
Moreover, the time complexity is O(. \/ZGZ +1 ,71prej,<i) log(6)> with proba

bility at least 1 — 6.

Proof. We have that \gj —bj| < b5, |a; —aj| < g-a; (for all j € [i —1]) and \511 —bi1| <

1-bi,1 with probability at least (1 — %)Qi_l > 1— ¢ by Theorem 3.3.3 and a union bound.
Moreover, if |a; — a;| < g-a; then |% — % < ﬁ% Consequently, the estimate pacc <i

satisfies with probability at least 1 — d that,

i—1

~ €\ b; bi 1 41
Pacc,<i < (1 + E) by - H ajil : a:’—I < <1 + 47’L6> * Pacc,<i < (1 + 6)pacc,§i

53

Chapter 5 Variable-Time Mean Estimation

where the first inequality uses Lemma 5.3.3, and the second inequality uses that 14+x < e”
for z € R and e¥ — 1 < 2y for y € [0,1]. Similarly, it also satisfies that,

i—1

- €\ 2 b; b; 21
Pacc,<i > (1 - Z) by - H 7.l > <1 - 4n€> * Pacc,<i > (1 - f)pacc,gi
J

n 5 Gj—1 Qi1

where the second step is by Bernoulli’s inequality.
We now analyze the total time complexity. By Theorem 3.3.3 and a union bound,

with probability at least 1 — ¢, step 1.a has time complexity O("= Tnax(Bj) log(%)),

N2

Tmax(Aj) log(g)) and step 2 has time complexity

n

o

O<#Tmax(8i) log(g)). Moreover, by definitions of (B;); and (Aj);, if b > & then

a; = b; and Tax(Aj) > Tmax(Bj), and if b < g, then Thax(Aj) = Q(, /%Tmax())

max B; max A max
In both cases we get \/I%J) = O(T \/(%)) Similarly, \/bf—f) = O(\/ abr I max (A))

Thus, the total time complexity is O ((Z; -l E\”ﬁTmaX(A)+2 a,b ~Tmax (A) log(%)> =

O(";, / %e’jg’fi (ti + Z%) log(%)) with probability 1 — § by Proposition 5.3.2.

The VTAE algorithm is finally described in Algorithm 5.5. It uses the above algorithm to
obtain an amplitude estimate p of p = pacc,<n that satisfies the properties of Theorem 5.3.1.
We cannot simply run the above result on the input ¢ = n since the time complexity would
depend linearly on the maximum stopping time t,, = Tiax(U). Instead, we show that it
suffices to stop the algorithm at step i = T3(U)/,/€p to get an € error approximate of p. We
make the basic assumption (also used in [Amb10c; CGJ19]) that the intermediate stopping
times t; are exponentially distributed, that is ¢; = 2° for i € [n] (if it is not the case, we
first reslice the circuit computing U). In particular, we have that n = log(Timax(U)).

step 1.b has time complexity O(

O

~

1. Set i = min(n, [log(2y/€tTs)) and ¢’ = 2D"?3(ti + ietTy) log(%), where D is the
constant hidden in the O(.) notation of Proposition 5.3.4.
2. Run Algorithm 5.4 with input U, 7, €/2, § for at most ¢’ time steps.
a) If the computation has not ended after ' steps, stop it and output p = 0.
b) Else, output p = Dacc,<i, Where pacc <; is the result of Algorithm 5.4.

Algorithm 5.5: Variable-time amplitude estimation, VT-AEst(U, t, Ts, €, 6).

Theorem 5.3.1 (Restated). Let U be a variable-time algorithm under the notations of
Section 5.3.1 and Proposition 5.3.2. Then, given two time parameters t,T5 > 1 and two
reals €,0 € (0,1), the output p of Algorithm 5.5 satisfies,

1
D Ift> op

(2) Pr[p<2p|>1-4.

and Ty > To(U) then Pr[|p — p| > ep] < 6.

The time complexity of the algorithm is O(th . (n + min(\%, Tr“%ﬁ”))ng log(%)) where
n = log(Tmax(U)).

o4

5.4 Variable-time mean estimator

Proof. Assume first that ¢ > % and Ty > T»(U), and suppose that t; = 2¢ for all i € [n].

Then, the ¢-average stopping time of U satisfies T5(U) > 4/ Pstop,>i - t? = \/Dstop,>i - 2%.
Thus, by choosing i = min(n, [log(2/€tT2)]), the probability of stopping after step i is at
most Pstop,>i < Ty (U)?/2% < ep/2. Since the probability to be estimated is p = Dace,<ns
we get that p > Dace,<i = P — Pstop,>i = (1 - 6/2)]7 and 1 — Prej,<i < P+ Pstop,>i < (1 +6/2)p-
Thus,

‘pacc,gi - p’ S 6p/2 (51)

and D"; Iohreisi <ti + z%) log(%) < t'. Consequently, by Proposition 5.3.4, the

Pacc,<i

algorithm reaches step 2.b and obtain an estimate pacc,<; such that

|ﬁacc,§i - pacqgi’ < Epacc,gi/Q (52)

with probability at least 1 — d. By Equations (5.1) and (5.2) and the triangle inequality,
we get that |pPace,<i — p| < ep with probability at least 1 — 6.
Assume now that ¢t < ﬁ. According to Proposition 5.3.4, the estimate pacc <; obtained

at step 2.b satisfies Dace,<i < (1 + €/2)pace,<i < 2p with probability at least 1 —§. The
output p of the algorithm is either 0 or pacc <i, thus it satisfies p < 2p with probability at
least 1 — 9.

The time complexity is deduced from the stopping condition used at step 2.]

5.4 Variable-time mean estimator

We use the VTAE algorithm given in the previous section to construct a series of efficient
mean estimators for g-random variables generated by variable-time algorithms. We first
present a variable-time Bernoulli estimator in Section 5.4.1 whose complexity depends on
the largest value taken by X. We build upon this algorithm to obtain faster estimators in
Section 5.4.2, whose complexities depend on the coefficient of variation of X.

5.4.1 Variable-time Bernoulli estimator

We adapt the Bernoulli estimator presented in Proposition 4.4.1 to the case of a g-random
variable generated by a variable-time algorithm. We first explain how to transform the
latter algorithm into a new variable-time algorithm U that encodes the expectation of the
truncated random variable as an amplitude into the state U|0).

Proposition 5.4.1. Let X be a q-random variable with stopping time T, and set as input
two range values 0 < a < b. Then, there exist a variable-time algorithm U = Uy, ---U;
with stopping time O(T) acting on some Hilbert space C%" @ M, and a projector 11 acting
on H, such that
0 e mujey)? = P a<xs]

Proof. By Definition 5.2.3, there exists a g-variable ((CQn ® H',V, M) generating X, where
V =V, ---Vj is a variable-time algorithm with stopping time T acting on C?" @’ for some
Hilbert space H'. Let H = H' ® C1. Given the projector Hgop; = [0°711)(0°"11|® I acting
on C?" (Definition 5.2.1), we define the unitary Ustop,i = Hstop,i @ 1 @ X + (I — Ilgop) @ I,
acting on C2" @ H, that flips the value of the last qubit if the flag registers indicate that
the computation is stopped at the i-th step.

55

Chapter 5 Variable-Time Mean Estimation

Consider the controlled rotation R, acting on C2" @ H' @ C? (Assumption 4.B). We
modify the variable-time algorithm V' so that, after each step 4, it applies R, to the
branches of computation that are just finished. This is formalized by defining the new
variable-time algorithm U = U, - - - Uy defined as,

Ui = (Rap @ [1)(1] + 1 @ [0){0]) - Ustop,i - (Vi ® I).

The operators (R, y®|1) (1|+1®]0)(0])-Ustop,; and V;®I commute when i < j since they act
as non-identities on disjoint subspaces by Definition 5.2.1. Moreover, ||(I®0)(0)U|0)|| =0
since all the basis states in the support of V|0) must contain a flag register with a 1 (all the
branches of computation are finished at the end). Using these two facts, we obtain that the
final state U|0) is equal to the state (R, ,(V ® I2)|0))|1) obtained by applying R, ; only
once at the end of V. In order to simplify the analysis of the latter state, let us assume
that the random variable X is distributed in (a,b). Then, p = E[X] = E[X 1,<x<p] and,

Ul0) = (Rap ® I2) > /p(w)|w)|01) by Definition 5.2.3
weN
= Vp(w)|w) (1-— 7|0 |1 > 1) by Assumption 4.B
0;2 \/ \/ y P
T p(w)(b— X(w))
= 1—b<§ - |w >>01 f(% \w>>y11>.

Thus, & = ||(I ® I)U|0)||* where IT = [11)(11|. This result also holds if X takes values
outside the interval (a, b] (it only changes the unit states in front of |01) and [11)). The
stopping time of U is O(T) since Tiax(U;) < O(Tmax(Vi)) for all i € [n]. O

We estimate the expectation of the truncated random variable X1, x<; by using the
VTAE algorithm on the variable-time algorithm constructed in the above proposition.

Proposition 5.4.2 (VARIABLE-TIME BERNOULLI ESTIMATOR). There is a quantum
algorithm, called the variable-time Bernoulli estimator, with the following properties.
Let X be a g-random variable distributed in [0, 1] with stopping time T, and set as input
two time parameters t, Ty > 1, two range values 0 < a < b, and two reals €, € (0,1). Then,
the variable-time Bernoulli estimator VT-BernEst(X, ¢, 15, a, b, €, 0) outputs an estimate [iqp
of pap = E[X1acx<p] such that,

) Ift> E\/% and Ty > /E[T?] then Pr(|figp — tap

(2) Pr[ﬁa’b < 2,ua7b] > 1-6.

b <6

The time complezity of the estimator is O(\[Tg log!(Tmax) log(1/5)>

Proof. Let U and II denote the variable-time algorithm and the projector provided by
Proposition 5.4.1 on input X,a,b. The algorithm consists of using the variable-time
amplitude estimation algorithm VT-AEst(U, 11, t, 75, €,0) (Theorem 5.3.1) to obtain an esti-
mate U of fiq4/b, and to output i, = bv. The result follow directly from Proposition 5.4.1
and Theorem 5.3.1 (the expression of the time complexity has been simplified). O

As was the case with the Bernoulli estimator, we can use the variable-time Bernoulli
estimator with parameters a = 0 and b = 1 to estimate the mean p of a random variable
distributed in [0, 1]. However, the time complexity is on the order of = /2 N which is often

sub-optimal. We describe a more efficient approach in the next section.

56

5.4 Variable-time mean estimator

5.4.2 Variable-time (¢,))-estimator

We provide three estimators whose time complexity is on the order of ‘ZTB

2. Our main
result (Theorem 5.4.4) builds upon the relative estimator of Corollary 4.5.3. The analysis
is based on the next lemma that bounds the truncated mean at different truncation levels.

Lemma 5.4.3. Let X be a non-negative random variable. For any numbers I';c,m > 0
such that T' > \/E[X?]/E[X] and m > cE[X], we have (1-1)E[X] < E[X1x<,,r2] < E[X].

Proof. We have that E[X1y<,r2] = E[X] — E[X1xs,,r2] and 0 < E[X1x.,,2] <

E[X?1 x5 mre]/(mI?) < E[X?]/(mI?) < (1/c) - E[X]. H

The algorithm uses two extra input parameters compared to Corollary 4.5.3: a candidate
upper bound 75 on the fs-average stopping time, and a candidate lower bound « on the
mean . The need for « is removed in Proposition 5.4.6 by doing an exponential search.

1. Set m =1/2.

2. Set b, = m(V? + 1). Compute an estimate fi,, of E[X1x<p,,] by using
the variable-time Bernoulli estimator VT-BernEst(X, ¢, Ts,0, by, €,6') with t =
_ _)
2\/§(V +].) and 6, = 1/2, 5, = HTg(l/u)

3. If fi, < m/16 and m > « then set m = m/2 and go to step 2.

4. Set b= m(VjH). Compute an estimate i of E[X 1x<p| by using the variable-time
Bernoulli estimator VT-BernEst(X,t,T5,0,b,€,8/2) with ¢t = 8(2;;;1). Output fz.

Algorithm 5.6: Variable-time relative estimator, VT-RelatEst(X, V, Ty, a, €, 9).

Theorem 5.4.4 (VARIABLE-TIME RELATIVE ESTIMATOR). Let X be a g-random variable
distributed in [0, 1] with mean p, variance o® and stopping time T. Set as input two time
parameters V, Ty > 1, a lower bound o > 0, and two reals €,6 € (0,1). Then, the mean
estimate [computed by the variable-time relative estimator VT-RelatEst(X, V, Ty, o, €, d)
(Algorithm 5.6) satisfies

) IfV >o/u, To > \/E[T?] and p > « then Pr[|p — p] > eu] < 6.

(2) Prijp<2u]>1-4.
The time complexity of the estimator is 6(VT2 . (log(é) + 6%) 1og*(Timax) log(%)).
Proof. We prove part (1) of the theorem. Let us assume that V > o/ and p > a. Note
that V + 1 > /E[X?]/E[X]. We make the assumption that all calls to the variable-time
Bernoulli estimator satisfy parts (1) and (2) of Proposition 5.4.2, which is the case with

probability at least 1 — § by a union bound. First, we show that the value m at step 4
satisfies the following constant relative error bound,

2 < m < 32u. (5.3)

Let pt, = E[X1x<p,,] denote the expectation of the truncated random variable estimated
at step 2 of the algorithm. If m > 32y then fi, < 2u,, < 2u < m/16, where the first

o7

Chapter 5 Variable-Time Mean Estimation

inequality is by Proposition 5.4.2. If m € [2u,4p] then p,, > ©/2 by Lemma 5.4.3, and
\/% < 2v2(V +1). Thus, by Proposition 5.4.2, if m € [2u,4u] then |fm — tm| < fim /2,
and in particular fi,, > u/4 > m/16. Consequently, the algorithm reaches step 4 with a
value m that satisfies Equation (5.3). Next, we show that the computation at step 4 has
the effect of decreasing the relative error to e. Let p, = E[X 1 x<p] denote the expectation

m(V2+1)
€

estimated at step 4. Since m > 2u the threshold value b = is at least

2E[X?]
eE[X]

b> (5.4)

Consequently, by Lemma 5.4.3, the estimated mean i, satisfies |up — p| < (€/2)pu. Moreover,
8(V+1D) 2vb
e3/2 = e/l

. Thus, by Proposition 5.4.2, the estimate 1 satisfies |z — up| < (€/2)u. By the
triangle inequality, we conclude that |g — p| < ep. This proves part (1) of the theorem.
Part (2) and the time complexity are directly implied by Proposition 5.4.2. O

the time parameter ¢t used at step 4 is at least t =
32(V2+1)
b< ——+

since pp > p/2 and

Similarly to Theorem 4.5.4, we consider the weaker hypothesis where, instead of a direct
upper bound V on o/u, we have a non-increasing function f such that f(u) > o/u. We
describe an interval estimator that decides if the mean p lies in the interval [«, 3) or is
e-far from it. Our approach relies on the two properties proved in the previous theorem.

1. Compute an estimate g of y = E[X] by using the variable-time relative estimator
VT-RelatEst(X,V, Ty, a, €/4,0) with V = f(§).

2. If p € [(1 —5)a, (1+ %)B) then output B = 1, else output B = 0.

Algorithm 5.7: Variable-time interval estimator, VT-IntervEst(X, f, T, «v, 8, €,).

Proposition 5.4.5 (VARIABLE-TIME INTERVAL ESTIMATOR). Let X be a ¢-random
variable distributed in [0,1] with mean u, variance o and stopping time T. Set as
nput a non-increasing function f > 1, a time parameter Ty > 1, two endpoints a < 3,
and two reals €,0 € (0,1). Let B denote the Boolean value computed by the variable-
time interval estimator VT-IntervEst(X, f, 1o, o, B, €,8) (Algorithm 5.7). If f(pu) > o/p

and Ty > \/E[T?] then

(1) If p € [, B) then B = 1 with probability at least 1 — 4.
(2) If p¢ [(1—e€)a, (1 +¢€)B) then B =0 with probability at least 1 — 6.
The time complezity of the algorithm is 5(f(%)T2 . (log(é) + 6%) log*(Timax) log(%)).

Proof. Assume first that p > a/4. Then, V > o/u and, by part (1) of Theorem 5.4.4,
|t —] < (e¢/4)p with probability at least 1 — d. Thus, with probability at least 1 — 4,

o if p € [a, B) then € [(1 - §)o, (1 + §)B),
C it > (14 0B then i> (1 — /A > (1 — /(1 +F > (1 + /25,

e ifpu<(l—€eathenpg<(1+e/Hu<1+€/4)(1—e)a<(1—e¢€/2)a.

o8

5.4 Variable-time mean estimator

In all three cases, the output B is correct with probability at least 1 — §. Assume now
that p < a/4. By part (2) of Theorem 5.4.4, we have g < 2u < /2 < (1 — €¢/2)a with
probability at least 1 — §. Thus, the output is B = 0 with probability at least 1 — 9. [

We finally describe an estimator that removes the need for a lower bound « on p by
combining the two previous algorithms. In order to simplify the analysis, we only consider
the case where f is a power function. The algorithm is similar to the exponential estimator
of Corollary 4.5.6.

1. Set a =1/2 and ¢’ = §/2.
2. Compute a Boolean value B by running the variable-time interval estimator
VT-IntervEst(X, f, T2, o, 8,€,¢’) with =1 and ¢ =1/2.
a) If B =0 then set a = /2, & = §/2 and go to step 2.

b) Else, output the estimate i obtained by using the variable-time relative
estimator VT-RelatEst(X, V, Ty, a/2,¢€,6'/2) with V = f(«/2).

Algorithm 5.8: Variable-time exponential estimator, VT-ExpEst(X, f, Ts, €, 6).

Proposition 5.4.6 (VARIABLE-TIME EXPONENTIAL ESTIMATOR). Let X be a g-random
variable distributed in [0, 1] with mean p, variance o and stopping time T. Set as input
a function f : x + max(1,c/z?) for two constants c,d > 0 such that f(u) > o/u, a time
parameter Ty > \/E[T?], and two reals €, € (0,1) such that § < 272%. Then, the mean
estimate [computed by the variable-time exponential estimator VT-ExpEst(X, f, T, €, d)
(Algorithm 5.8) satisfies Pr{|p — p| > eu] < 6. Moreover, the time complexity C of the
estimator satisfies
1. Pr [C > 5(@% . log?’(%) log4(TmaX) log(%))] <94,

2. BC) < O(LT, - 10g? (1) 10g" (Thax) 108 (})).

Proof. According to Proposition 5.4.5, the probability to obtain B = 0 at step 2 is at least
1 — ¢ when a > 2u, and at most ¢ when a < u. Consequently, the value « at step 2.b
satisfies o € /2, 2u] with probability at least 1 — /2. In this case, V > o/ and the
output satisfies |t — u| < ep with probability at least 1 — /2.

The total number C~ of operations performed until o gets smaller than p/2 is at
most C~ < 6(@ log?®(1/)Ty - log* (Tinax) log(1/4)). Each time step 2 is executed with
a < 11/2 the probability that it outputs 1 is at least 1 — ¢’. Thus, the expectation of the
number C™T of operations performed while « is smaller than p/2 is

E[CY] <0 (fj 7 L 52Ty o (Tonw) 10g(2’““/(/u5))>

k=0
<0 <§: o - 2’“’k2f£§” log?(1/1)T% - 10g* (Timax) log(1/5)>
k=0

< (L8 10821 /1)t () o1/5)).

The total time complexity is C = C~ + C™. O

59

Chapter 5 Variable-Time Mean Estimation

5.5 Discussion

We observe that the use of the fs-average stopping time comes at the cost of a larger
dependence on the error parameter € compared to the algorithms based on the maximum
stopping time (as in Chapter 4). There is an overhead factor of ¢ 1/2 for the amplitude
estimation in the variable-time setting (Theorem 3.3.1 vs. Theorem 5.3.1), and an overhead
factor of ! for the (e, d)-mean estimation problem (Corollary 4.5.3 vs. Theorem 5.4.4).
We leave as an open problem to improve the complexities in €. A related question is to
find an efficient variable-time mean estimator achieving the sub-Gaussian deviation bound
Pr[|/7 — pl > M] < ¢ studied in the previous chapter. The results presented in the

t
current chapter are tailored to the (e, d)-approximation guarantee.

60

Estimation of Graph Parameters

This chapter is based on the following papers:

[HM19] Y. Hamoudi and F. Magniez. “Quantum Chebyshev’s Inequality and Appli-
cations”. In: Proceedings of the 46th International Colloquium on Automata,
Languages, and Programming (ICALP). 2019, 69:1-69:16.

[HM21a] Y. Hamoudi and F. Magniez. “Quantum Approximate Triangle Counting”. In
submission. 2021.

6.1 Introduction

The two previous chapters studied the mean estimation problem in the “black-box” model,
where the input consists of several independent runs of a random or quantum process
whose outcome encodes the distribution of an arbitrary random variable X. Our results
characterized the number of experiments and the time complexity needed to estimate the
mean u of X with some prescribed accuracy. In this chapter, we consider a more specific
version of the mean estimation problem, where the random variable X encodes some graph
parameter. We show that having oracle access to the underlying graph may lead to faster
mean estimation algorithms. We focus on achieving the (e, §)-approximation guarantee
Pr{|g — p| > eu] < 0, that was studied before in Section 4.5 and Chapter 5.

The mean estimation problem takes on a different tone when the process that generates X
is not arbitrary. In a seminal work, Feige [Fei06] showed for instance that the average
degree in an n-vertex graph is easier to estimate than the average value of n arbitrary
numbers. This result prompted the study of sublinear-time algorithms for subgraph
counting problems [GR08; GRS11; ORRR12; NOO08; YYI12; ELRS17; ERS20b; ERS20a].
These algorithms use the graph representation in the adjacency list or adjacency matrix
model to achieve faster estimations than in the black-box setting. The generic mean
estimators are still of great importance here, but they must be combined with more
advanced mean estimation procedures. A typical approach [GR08; GRS11; ELRS1T;
ERS20b] is to design a random process, based on local graph exploration techniques, that
outputs a random variable X whose mean equals a parameter of the graph. The objective
is to minimize both the coefficient of variation of X (that controls the number of samples
needed to approximate the mean) and the graph exploration time 7' (that determines the
average stopping time for generating one sample). In the classical setting, the expected
time complexity of this method is the product N x 77 of the number N of classical samples
needed and of the average exploration time 77 = E[T]. The quantum variable-time mean
estimators constructed in Chapter 5 lead to a tradeoff on the order of VN x Ty, with a
quadratic improvement over the first part of the product, but a larger dependence on the

61

Chapter 6 Estimation of Graph Parameters

{y-average exploration time T = /E[T?] for the second part. We investigate the question
of whether such estimators may speed up the approximation of graph parameters.

We focus our study on the quantum query complexity of the Triangle Counting problem
in the general graph model [KKR04; Goll7], where both neighbor and edge queries are
permitted. This model is commonly used for handling arbitrary graphs whose sparsity is
unknown. In a recent work, Eden, Levi, Ron and Seshadhri [ELRS17] showed that the
classical query complexity for estimating the number ¢ of triangles in an n-vertex with
m-edges is O*(n/t"/3 + min(m, m32/t))". We present an optimal quantum algorithm that
achieves a quadratic speedup over this quantity when ¢ > Q(y/m). Our result builds on
the classical algorithms for approximate triangle counting [ELR15; Ses15; ELRS17], and
on the variable-time mean estimators constructed in Chapter 5.

6.1.1 Related work

We refer the reader to Chapters 4 and 5 for related work on the mean estimation problem
in the “black-box” model. The approximation of several graph parameters has been
considered in the classical sublinear time literature, such as the number of edges [Fei06;
GRO8], stars [GRS11], triangles [ELRS17], k-cliques [ERS20b; ERS20a] or the size of a
minimum spanning tree [CRT05] or a maximum matching [NOO8; YYI12]. These results
have broad applications in diverse areas, such as social network analysis or bioinformatics.
None of these problems has been studied in the quantum setting to our knowledge. There
are a few quantum algorithms for estimating other graph parameters, such as electrical
network quantities [[J19; JJKP18; Wanl7; Pid19; CGJ19; AW20], the circuit rank of
a graph [DKW19], or the number of colorings, matchings or independent sets [Mon15;
HW?20]. There is a much more extensive literature on quantum algorithms for deciding
graph properties [BDF+04; SYZ04; DHHMO06; CK12], especially for detecting the presence
of a subgraph in a graph [MSS07; CK12; LMS12; Zhul2; BR12; LMS17]. In particular,
the Triangle Finding problem has received a great deal of interest [MSS07; Bell2; Gall4;
CLM20], and determining its query complexity is still an open problem. Some recent
results in fine-grained complexity have drawn connections between subgraph counting and
subgraph finding problems [DL18; DLM20], but it is unclear how strong the link is [FGP20;
ERR20]. Our algorithm for triangle counting is rather different than the previous quantum
algorithms for triangle finding, which have been developed mainly in the quantum walk
framework. However, it shall be noted that the variable-time amplitude amplification
algorithm has played a role in the Triangle Finding problem [Gall4; GN17], whereas our
result is based on the variable-time amplitude estimation algorithm.

6.1.2 Contributions and organization

We define the input model and the graph terminology in Section 6.2. Next, we present an
optimal quantum algorithm for estimating the number of edges in a graph in Section 6.3.
We obtain the following result that is needed for our triangle counting algorithm.

Theorem 6.3.2 (Restated). There exists a quantum algorithm with the following proper-
ties. Let G be a graph with n vertices and m edges in the quantum adjacency list model,
and fix two parameters €, € (0,1/2). Then, the algorithm outputs an edge estimate m
such that |m — m| < em with probability at least 1 — 6. The expected quantum query

complexity of the algorithm is O* <ﬂ)

ml/4

In this chapter, we use the notation O(z) to hide any polynomial factor in log(z), and the notation O* (x)
to hide any polynomial factor in log(z), log(n), log(1/d) and 1/e.

62

6.1 Introduction

The quantum triangle counting algorithm is presented in Section 6.4. It relies on a series
of assumptions described in Section 6.4.1, that we remove later on. The main concepts
used in the algorithm are introduced in Section 6.4.2. The algorithm itself is described in
Sections 6.4.3—6.4.5. The final result (Algorithm 6.9) achieves the following complexity.

Theorem 6.4.18 (Restated). There exists a quantum algorithm with the following proper-
ties. Let G be a graph with n vertices, m edges and t triangles in the quantum general graph
model, and fix an error parameter € € (0,1/2). Then, the algorithm outputs a triangle

m3/4

estimate t such that |t~— t| < et and it performs O* (% + i) quantum queries with
probability at least 1 —1/log(n).

We prove a lower bound for the Edge Counting problem in Proposition 6.5.3 that
matches the complexity of our algorithm. We also obtain the next result for Triangle
Counting that is optimal (up to logarithmic factors) when t > Q(y/m).

Proposition 6.5.5 (Restated). Any algorithm that estimates the number t of triangles

in an n-vertex m-edge graph with relative error e = 1/2 and success probability 2/3 must
m3/4

perform at least ﬁ(% + min(7 ,\/ﬁ» quantum queries in the general graph model.

6.1.3 Proof overview

We present a high overview of the triangle counting algorithm and we explain how it
differs from previous classical work. Our result builds on a series of classical sublinear
algorithms [ELR15; Ses15; ELRS17] and it uses the variable-time quantum mean estimators
developed in Chapter 5. We assume for most of the presentation that the algorithm has
prior knowledge of an edge estimate m € [m/4,m] (Assumption 6.A) and a triangle
estimate ¢ € [t/8,t] (Assumption 6.B). The purpose of the algorithm is to obtain a finer
estimate ¢ € [(1 — €)t, (1 + €)t] given a fixed error parameter € € (0,1). We explain later
on how to get rid of these assumptions by estimating the edge count m with a separate
algorithm (Section 6.3), and by running the triangle counting algorithm over a decreasing
sequence of values for ¢ (Algorithm 6.9).

The core of the algorithm is made of four estimators summarized in Table 6.1. In each of
the four cases, the expectation p of the estimator equals some quantity related to the total
triangle count and we know a non-increasing function f such that the coefficient of variation
o/u is upper bounded by f(u). The variable-time quantum mean estimators developed
in Chapter 5 (Theorem 5.4.4 and Proposition 5.4.6) can estimate the expectation u of
any such estimator in time roughly O*(f(u)T3), where T3 is an upper bound on the
fs-average stopping time of the considered estimator. Alternatively, the variable-time
interval estimator (Proposition 5.4.5) can decide if the mean pu is above some threshold
value « in time O*(f(a)T%). Below, we describe the estimators of Table 6.1 and we explain
how they can be used to solve the Triangle Counting problem.

Buckets partitioning. Our starting point is to consider a discretization of the interval
[1,n2] into a sequence 1 = 1y < 11 < -+ < v, = n? of O*(logn) values, where each two
consecutive numbers differ by a small factor on the order of 1 + €. These values define a
partition of the graph vertices into k buckets By, ..., B, where each bucket B; consists
of all the vertices whose triangle-degree ¢, lies between v; and v;41 (Assumption 6.D). If
we could compute an estimate s; of each bucket size |B;| with relative error O(e), then
the triangle estimate ¢ = % Zie[k] s;v; would solve the Triangle Counting problem. The
most natural algorithm for computing s; is to estimate the expectation of the unbiased

63

Chapter 6 Estimation of Graph Parameters

Estimator Expectation Coefficient of variation /¢-average stopping time
Triangle-degree T, 14 [d
VP 1
Proposition 6.4.8 to 0 (m ty) o)
Bucket size S; 3/4
B (v/7#1) "1+ %)
Proposition 6.4.10 |Bi 0 |Bil 0 + nvi

Weighted triangle-

x to 3/4
degree T, To O(ml/‘*\/%) O (1 + \/%;1/4 m\/z)
Proposition 6.4.13

Bucket weight W; o N m3/4 |B;| m3/4
Proposition 6.4.15 2iven; To O(\/ W) 0 (1+ v TV v)

Table 6.1: Estimators used in the triangle counting algorithm. The values in the second
column are approximately equal to the expectation of each estimator.

random variable S; = nl,cp, where v is a vertex chosen uniformly at random in the graph
(Proposition 6.4.10). This approach poses two challenges. First, it requires a procedure
to decide if a given vertex v belongs to the bucket B; (which amounts to estimate if
ty € [Vi,vig1)). Secondly, the coefficient of variation of the random variable S; is \/n/|B;],
which makes the time needed to estimate its mean prohibitively large when B; is small.
The first idea toward solving these problems is to restrict our attention to the significant
buckets (Definition 6.4.3) defined as,

i #° .
|Bi| > Q T and v; <O 75 |- (significant)
Vi €

)

We let S denote the set of the vertices that belong to a significant bucket (the vertices
in S are also called significant). Although the non-significant vertices cannot be fully
ignored (we explain later on how to compensate their loss), the sum %que st of the
triangle-degrees over S already constitutes a constant fraction of the total triangle count t.
This sum is broken down into different terms %ZUG B, tv for each significant bucket B;.
The latter quantity is now easier to estimate using the estimator S; = nl,cp,. Indeed,
the largeness condition on |B;| provides a lower bound on the coefficient of variation of \S;,
and the smallness condition on the bucket boundary v; will facilitate the computation of
whether a given vertex v belongs to B;. We explain these two points in more detail in the
next two paragraphs.

Triangle-degree estimator and bucket assignment. The triangle-degree t, of a fixed
vertex v can be represented as the expectation of a particular random variable T}, computed
by a simple random process described in [ELRS17] and in Algorithm 6.4. The coefficient
of variation of T, is upper bounded by O(ml/ 4/d, /tv), and the /s-average stopping
time of the process generating T, is O(1). We obtain a bucket assignment algorithm
(Proposition 6.4.9) that decides if ¢, lies in the interval [v;, v;41) (meaning that v is assigned
to the bucket B;) by applying the variable-time interval estimator developed in the previous
chapter to T;,. The query complexity of this algorithm is O*(l +m'/4/d, / y,-).

Significant buckets detection. We use the above bucket assignment algorithm to im-
plement the bucket size estimator S; = nl,cp, where v is chosen uniformly at random

64

6.1 Introduction

(Proposition 6.4.10). The coefficient of variation of S; is O(y/n/|B;|), and the ¢>-average
stopping time to compute S; is O* (\/% ey (1 +mb/Ay /dv/yi)2> = O <1 + %) Con-

sequently, by using again the variable-time interval estimator, we can decide if the size |B;|
exceeds the threshold value Q(iz) in time O* (1 / ”kl’l (1 + >> (Proposition 6.4.11).

F
/

We only perform this computation when v; < O(T /3> to decide if the bucket is significant.

s + 2

bucket can be estimated at the same cost by using the variable-time exponential estimator.

Thus, the query complexity is O*(\/) Furthermore, the size of a significant

Weighted triangle-degree. The sum % > ves v of the triangle-degrees over S may be
smaller than the lower endpoint (1 — €)t¢ of the error interval we are aiming at. Thus, we
cannot simply estimate the size of the significant buckets for solving the problem (although
it would be sufficient for getting a constant factor estimate of ¢). We address this issue by
considering the set H of all the heavy vertices (Definition 6.4.4), defined as

m 73
d’U > Q<64/3t1/3> or t > Q 1/3 (heavy)

We show that the augmented sum) g 4, v over the union of S and H is larger than
the lower endpoint (1 — €)t (Proposition 6.4.6). Thus, it can be estimated in place of
the triangle count t. We estimate this sum in an indirect way by using a compensation
idea. First, we assign the weight w(A) = 1/max(1,3 — h) to each triangle A in the graph,
where h € {0,1,2,3} is the number of heavy vertices contained in A (Definition 6.4.5).
Next, we define the weighted triangle-degree 7, of a vertex v as the sum of the weights of
all the triangles adjacent to v. Suppose for a moment that none of the heavy vertices is
significant, and that each triangle containing a heavy vertex also contains a significant one.
Then the sum of the weighted triangle-degrees) s 7, over S would exactly be equal
to the sum of the triangle-degrees) g 5ty over S UH. In practice, a vertex can be
both heavy and significant, and a triangle can contain three non-significant heavy vertices.
However, we show that the total contribution of these events to the total triangle count is
negligible (Proposition 6.4.6 and Proposition 6.4.7). Thus, the quantity)
estimated in place of the triangle count ¢.

ves Tv can be

Weighted triangle-degree estimation. The weighted triangle-degree 7, can be estimated
in a similar way as the triangle-degree ¢, (note that these two quantities can only differ by
a factor of 3). The main difference is the use of a procedure for deciding whether some
vertex w is heavy, which can be done in time O*(m3/*/v/t) by using the variable-time
interval estimator on the triangle-degree estimator 7T, defined before (Proposition 6.4.12).
The resulting algorithm (Proposition 6.4.13) generates a random variable 7, whose ex-
pectation is close to 7,, and whose coefficient of variation is upper bounded by a value
O(ml/ 4/d,/ 7'1,) similar to that of the triangle-degree estimator. The fo-average stopping

time of the quantum process generating 7, is O* (1 + \ﬁ‘/T’M m\[/) due to the heavy

during the computation. As a result

detection procedure occurring with probability - \/Fn

(Proposition 6.4.14), we can estimate with high accuracy the weighted triangle-degree 7,
of a vertex v € B; in time O*(m\//,%/%(l + \ﬁ\/tfm \74» < O*(% + m\j?), by

using the variable-time relative estimator on 7.

65

Chapter 6 Estimation of Graph Parameters

Bucket weight estimation. We can finally wrap up the algorithm. The triangle estimate ¢
is set to be t = ZZ w;, where w; is an estimate of the bucket weight Zve B, T for each
significant bucket B; (Proposition 6.4.17). The weight w; is obtained by considering the
unbiased bucket weight estimator W; = nl,cp,T,, where v is a vertex chosen uniformly
at random in the graph (Proposition 6.4.15). We use the bucket assignment algorithm
for computing 1,¢p,, and the weighted triangle-degree estimator for estimating 7, when

v € B;. The ¢s-average stopping time of W; is shown to be O* (1 + % + Ei‘ m\j? > The

weight estimate w; is obtained by using the variable-time relative estimator on W; (Propo-
sition 6.4.16). Since the coefficient of variation of W; is upper bounded by O(\/n/|B;|),
and provided that we only compute w; for significant buckets, the query complexity is on

theorderofO*Q/%(l%—%%— %%))SO*(T‘@ mj?)

Misclassification. A central aspect of the analysis, that we did not mention yet, is to
handle the case where a vertex or a bucket is misclassified by the algorithm. This is likely
to happen when the estimated quantity is close to the threshold value used to classify it.
For instance, the bucket assignment procedure can wrongly assign a vertex v to a bucket
B; if the triangle-degree t, is slightly smaller than the lower endpoint v;. We ensure that
such misclassifications do not impact the accuracy of the triangle estimate much. First, the
threshold values used to define the buckets and the sets S and H are randomly perturbed
to guarantee that few elements lie in their neighborhood (Lemmas 6.4.1 and 6.4.2). Next,
we duplicate each concept involving a threshold value (significant bucket, heavy vertex,
triangle weight, etc.) into a weak variant allowing for a small error in the estimation. We
then show that the algorithm remains correct in this relaxed setting.

Prior knowledge of m and . We compute the edge estimate m in time O*(m‘/&)
(Theorem 6.3.2) by using the exponential estimator on an unbiased estimator of m
described in [Ses15] and in Algorithm 6.1. The triangle estimate ¢ € [t/8,¢] is obtained in a
more complicated way. We run our triangle counting algorithm over a decreasing sequence
of values £ = n3 n3/2,... (Algorithm 6.9). We show that the obtained estimate # is larger
than 3t when ¢ > ¢, and it becomes smaller than 3¢ when t € [t/8,¢/4]. This property
is inherited from a Markov-like inequality satisfied by the quantum mean estimators,
which states that the estimates are smaller than a small multiple of the mean with high
probability. By comparing ¢ and ¢, we can detect when £ lies in the correct range of values.

Differences with [ELR15; Ses15; ELRS17]. Our work uses the quantum mean estimators
developed in Chapter 5, whereas the classical algorithms use the median-of-means estimator.
As a consequence, we must upper bound the /s-average stopping time of the processes
generating the random variables we are considering, whereas classically it suffices to bound
the ¢1-average stopping time. The bucketing technique originates from [GR08; GRS11;
ELR15] but was abandoned in subsequent versions of the triangle counting algorithm [Ses15;
ELRS17]. The weighted triangle-degree 7, was introduced in the later version [Sesl5;
ELRS17], where the sum) s 7, is approximated by using a different estimator from W;.
The authors need to set up a data structure of size O*(n/t'/3) for sampling edges uniformly
at random, which is unclear how to speed up in the quantum setting. In the present work,
we combine the bucketing and the weighted triangle-degree ideas together to avoid edge
sampling, which requires some subtle changes in the analysis. For instance, the definition
of a heavy vertex differs by a factor of 1/e compared to [Ses15; ELRS17].

66

6.2 Preliminaries

6.2 Preliminaries

Our algorithms are formulated in the graph query model. Before describing the latter, we
first introduce the terminology used in the present chapter.

Definition 6.2.1 (TERMINOLOGY OF GRAPHS). A graph G with n vertices and m edges
is a pair (V, E), where V' = [n] is the vertex set and E C (‘2/) is the edge set of size m. We
let G,, denote the set of all graphs with n vertices. Given two vertices v,w € V, we say
that w is a neighbor of v if {v,w} € E. An edge e € E is adjacent to a vertex v if v € e.
We let E(v) denote the set of all the edges adjacent to v. The degree of a vertex v is
dy, = |E(v)|. A triangle A = {u,v,w} is a subset of three vertices of V' such that the edges
{u,v}, {v,w} and {u,w} belong to E. We say that a triangle A is adjacent to v if v € A,
and we let T'(v) denote the set of all the triangles adjacent to v. The triangle-degree t, of v
is defined as t, = |T'(v)|. The total number ¢ of triangles in G is equal to t = £ 3" |, t.

We also define the following total order < on the vertex set V = [n].
Definition 6.2.2 (VERTEX ORDERING). We let < denote the total order on V' defined as
u < v when d,, < d,, or when d,, = d, and u < v (where < is the natural order on [n]).

A graph can be represented in different ways, leading to different query models. The
two most common representations are the adjacency list and adjacency matriz models,
which are suitable for bounded degree graphs and dense graphs respectively. The general
graph model [KIKKR04; Goll7] is a combination of these two models that is relevant when
the input graph is arbitrary. We first present the classical definitions of these models.

Definition 6.2.3 (CLASSICAL GRAPH ORACLES). Given a graph G = (V, E), we define
three oracles to G corresponding to the following types of queries:

(1) degree query: given v € V, returns the degree d,, of v,

(2) neighbor query: given v € V and i € [n], returns the i-th neighbor of v (according to
any fixed order) if i < d,,, and 0 otherwise,

(3) edge query: given u,v € V, returns the Boolean value indicating if {u,v} € E.

A graph is in the adjacency list model if it can be accessed with degree and neighbor
queries. It is in the adjacency matriz model if it can be accessed with edge queries. It is
in the general graph model if it can be accessed with degree, neighbor and edge queries.

We adapt these models to the quantum setting by defining the corresponding quantum
oracle operators. The query complexity of a quantum algorithm is equal to the number of
times these operators are used.

Definition 6.2.4 (QUANTUM GRAPH ORACLES). Given a graph G = (V| E), we consider
the three unitary operators Ogeg, Ongh and Ogqg defined on the basis states as follows,

(1) degree query: Ogeg(|v)|y)) = |v)|y ® dy), where v € V and y € {0, 1}e"],

(2) neighbor query: Ongn(|v)|i)|y)) = [v)]i)|y © N(v,i)), where v € V, i € {0,1}1o87]
y € {0,1}1°e+ D1 and N(v,14) is the i-th neighbor of v if i < d,, and 0 otherwise,

(3) edge query: Oegg(|u)|v)[b)) = [u)|v)|b @ 1y 1ep) Where u,v € V and b € {0, 1}.

A graph is in the quantum adjacency list model if it can be accessed with Ogeg and Opgy.
It is in the quantum adjacency matriz model if it can be accessed with Ogqg. It is in the
quantum general graph model if it can be accessed with Ogeg, Ongh and Oeqg.

We recall that the notation O*(z) is used to hide any polynomial factor in log(z), log(n),
log(1/§) and 1/¢, where § is the failure probability parameter, and € is the error parameter.

67

Ch