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Two player model

F : {0, 1}n × {0, 1}n → {0, 1}

Alice Bob

x ∈ {0, 1}n y ∈ {0, 1}n

0, 1
channel

F(x, y) =? F(x, y) =?

Number of bits communicated?

• D2(F) : cost of the most efficient deterministic protocol
• R2(F) : cost of the most efficient randomized protocol with error 1/3
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Two player simultaneous model

Alice Bob

Referee
x ∈ {0, 1}n y ∈ {0, 1}n

F(x, y) =?

Simultaneous communication complexity: D||
2 (F) and R

||
2 (F)
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Number On the Forehead model

x1

x2

x3

x4

F(x1, . . . , xk) = ?

NOF model:

• Player i does not see xi. Communicate by broadcasting
• Communication cost: Dk(F), Rk(F), D||

k (F) and R
||
k (F) 3



Applications of Communication Complexity

Circuit complexity [HG91, BT94] Ramsey theory [CFL83]

Branching programs [CFL83]

Proof complexity [BPS07]
Quasirandom graphs [CT93]

Streaming algorithms [AMS96]

Property testing [BBM12]

Game theory [CS04, NS06]
Data structures [MNSW95]

4



Contents

The logn barrier and composed functions

Decision tree complexity and log-rank conjecture

Conclusion

5



The logn barrier and composed
functions



ACC0 and the logn barrier

The logn barrier:
Find a function F such that D||

k (F) = ω(polylogn) when k = polylogn.

Motivations:

• ACC0 = functions computable by polysize constant-depth circuits made
of AND, OR, NOT and MODm gates

• NEXP ⊈ ACC0 [Wil14]
• Conjecture: NP ⊈ ACC0

F breaks the logn barrier [HG91]
===⇒ F /∈ ACC0
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Composed functions

· · ·...

x1,1 x1,2 x1,3
x2,1 x2,2 x2,3

xk,1 xk,2 xk,3

x1,n
x2,n

xk,n

Player 1 (x1)
Player 2 (x2)

Player k (xk)

n

k

Given f : {0, 1}n/t → {0, 1} and g : {0, 1}t·k → {0, 1}:

f ◦ g(x1, . . . , xk)
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Composed functions

· · · · · ·...

x1,1 x1,t
x2,1 x2,t

xk,1 xk,t

x1,tn
x2,tn

xk,tn

Player 1 (x1)
Player 2 (x2)

Player k (xk)

t

k

g g f

Given f : {0, 1}n/t → {0, 1} and g : {0, 1}t·k → {0, 1}:

f ◦ g(x1, . . . , xk)
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Prior work

Symmetric function = invariant under any permutation of the input

When k = polylogn:

• Dk(Sym ◦ AND1) = O
(
log2 n

)
[Gro94]

• D||
k (Sym ◦ Sym1) = O

(
log3 n

)
[BGKL04]

• D||
k (Sym ◦ Any1) = O

(
log3 n

)
[ACFN15]

• Dk(Sym ◦ Anyt) = O (polylogn) for t ≤ log logn [CS14]

Our result:

• D||
k (Sym ◦ Symt) = O (polylogn) for constant t
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Proof sketch

Symmetric f and g with t = 2:

g g g f
· · ·

0 0 0 0 0 1 1 0 0 0 1 0 1 1 1 0 0 1 0 1
0 1 0 0 1 1 0 1 0 0 0 1 0 1 0 0 1 0 0 0
0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 0 0 1 0 0
0 0 0 0 1 0 0 1 0 0 0 1 1 0 0 1 1 0 0 0
1 1 0 0 0 0 1 1 0 1 0 0 0 1 0 0 1 0 0 0

yi1,i2,i3 = # columns with exactly i1 occurrences of 1, i2 of 2 and i3 of 3

Recovering the yi1,i2,i3 ’s is enough since f and g are symmetric
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Proof sketch
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Proof sketch
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Proof sketch

0 0 1 2 0 2 3 2 1 1
1 0 3 1 0 1 1 0 2 0
0 0 3 2 0 0 1 2 1 0
0 0 2 1 0 1 2 1 2 0
3 0 0 3 1 0 1 0 2 0

• Player 1 sends to the referee:

a1i1,i2,i3 = # columns he sees with i1 occurrences of 1, i2 of 2 and i3 of 3

→ a10,0,0 = 2, a11,0,0 = 1, a12,1,1 = 1, . . .

• Players 2 to 5 do the same
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Proof sketch

The referee computes:

bi1,i2,i3 = a1i1,i2,i3 + · · ·+ a5i1,i2,i3

It verifies: 

yi1,i2,i3 ≥ 0

∑
yi1,i2,i3 = n

(k− (i1 + i2 + i3))yi1,i2,i3 + (i1 + 1)yi1+1,i2,i3
+(i2 + 1)yi1,i2+1,i3 + (i3 + 1)yi1,i2,i3+1 = bi1,i2,i3

Theorem
If k ≥ 52t logn then it admits exactly one integral solution.

→ the referee recovers the yi1,i2,i3 ’s and computes the output
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Decision tree complexity and log-rank
conjecture



Log-rank conjecture

F : {0, 1}n × {0, 1}n → {0, 1}

Proposition ([MS82])
Let MF ∈ {0, 1}n×n be the communication matrix: MF(x, y) = F(x, y).

log rankMF ≤ D2(F)

Conjecture
For some absolute constant c:

log rankMF ≤ D2(F) ≤ logc rankMF
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XOR and AND functions

• A function F : {0, 1}n × {0, 1}n → {0, 1} is an XOR function if:

F(x, y) = f(x⊕ y)

for some f : {0, 1}n → {0, 1}

• A function F : {0, 1}n × {0, 1}n → {0, 1} is an AND function if:

F(x, y) = f(x ∧ y)

Examples: Equality(x, y) = NOR(x⊕ y), Hammingd(x, y) = GAPd(x⊕ y),
Disjointness(x, y) = NOR(x ∧ y), InnerProduct(x, y) = MOD2(x ∧ y), etc.

Interests:

• For XOR functions: rankMF = mon f [BC99]
• For AND functions: rankMF = mon⋆ f [BdW01]
• Connections with Decision Tree complexity
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Decision tree complexity

A decision tree is an ordered tree where each internal node is labeled with a
query, and each leaf is labeled with 0 or 1.

x3

x2 x1

x1 x20 1

0 1 0 1
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Decision tree complexity

A decision tree is an ordered tree where each internal node is labeled with a
query, and each leaf is labeled with 0 or 1.

x1 ⊕ x2 ⊕ x3

x2 x1 ⊕ x2

x2 ⊕ x3 x20 1

0 1 0 1

Input: x1x2x3 = 011 on a parity decision tree

DT⊕(f),RDT⊕(f) and QDT⊕(f)
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Decision tree complexity

A decision tree is an ordered tree where each internal node is labeled with a
query, and each leaf is labeled with 0 or 1.

x2 ∧ x3

x1 ∧ x3 x1

x2 x1 ∧ x30 1

0 1 0 1

Input: x1x2x3 = 011 on a conjunctive decision tree

DT∧(f),RDT∧(f) and QDT∧(f)
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Connections

Proposition ([ZS10])
For any XOR function F(x, y) = f(x⊕ y):

D2(F) ≤ 2 · DT⊕(f)

For any AND function F(x, y) = f(x ∧ y):

D2(F) ≤ 2 · DT∧(f)

Conjecture

• Communication and Decision Tree complexities are polynomially related

• Log-rank conjecture for decision trees:
• XOR function: logmon(f) ≤ D2(F) ≤ 2 · DT⊕(f) ≤ logcmon(f)
• AND function: logmon⋆(f) ≤ D2(F) ≤ 2 · DT∧(f) ≤ logcmon⋆(f)
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Symmetric XOR and AND functions

Communication complexity1 of (nontrivial) XOR and AND functions, for
symmetric f:

XOR functions AND functions

Deterministic Θ(n) Θ
(
(n− t(f))

(
1+ log n

n−t(f)

))
Randomized Θ(r(f)) Θ†

(
(n− t(f))

(
1+ log n

n−t(f)

))
Quantum Θ(r(f)) Θ⋆

(√
n · ℓ0(f) + ℓ1(f)

)

1[ZS09, BdW01, Raz03]
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Symmetric functions

Decision tree complexities2 of (nontrivial) symmetric functions:

Regular Parity Conjunctive

Deterministic Θ(n) Θ (n) Θ
(
(n− t(f))

(
1+ log n

n−t(f)

))
Randomized Θ(n) Θ (r(f)) Θ†

(
(n− t(f))

(
1+ log n

n−t(f)

))
Quantum Θ

(√
n · ℓ(f)

)
Θ(r(f)) Θ⋆

(√
n · ℓ0(f) + ℓ1(f)

)

Result: Communication and Decision Tree complexities are polynomially
related for symmetric functions.

2[ZS09, BdW01, Raz03, BBC+01]
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Conclusion



Our contributions:

• first efficient simultaneous protocol for Sym ◦ Symt
• full characterization of the decision tree complexities of symmetric
functions

• efficient construction for Ramsey numbers over Fnp

Future work:

• other protocols for larger families of composed functions
• breaking the log n barrier
• log-rank conjecture for XOR and AND functions (using decision tree
complexity?)
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Equality function

Equality(x1, . . . , xk) = 1⇔ x1 = · · · = xk

D2(Equality) = Ω(n)

• log-rank method

R||
2 (Equality) = O (1)

• Alice and Bob test x · r = y · r mod 2 for two random r ∈ {0, 1}n

D||
k (Equality) = O (1) when k > 2

• Player 1 checks x2 = · · · = xk
• Player 2 checks x1 = x3 = · · · = xk
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ACC0 and Sym+

Sym+(s, k) = depth-2 circuits whose top gate is a symmetric gate of fan-in s,
and each bottom gate is an AND gate of fan-in k

SYM

AND AND· · ·

s

k k

• ACC0 ⊂ SYM+(2polylog n,polylogn) [Yao90, BT94]
• f is computed by a SYM+(s, k− 1) circuit⇒ for any partition of the input
between k players, there is a protocol of cost O (k log s) computing f
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Symmetric XOR and AND functions

F(x, y) = f(x⊕ y) is symmetric iff f is symmetric

→ f(x) depends only on |x|. Hence f : {0, . . . ,n} → {0, 1}

• t(f) = min{p : f(p− 1) ̸= f(p)}

• ℓ0(f) = min{p ≤ n/2 : f(i) = f(n/2) for i ∈ [p,n/2]}

• ℓ1(f) = min{p ≤ n/2 : f(i) = f(n/2) for i ∈ [n/2,n− p]}

• ℓ(f) = min{p : f(i) = f(i+ 1) for i ∈ [p,n− p− 1]}

• r(f) = min{p : f(i) = f(i+ 2) for i ∈ [p,n− p− 2]}
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Ramsey numbers and EvalG



EvalG

For any Abelian group G and x1, . . . , xk ∈ G:

EvalG(x1, . . . , xk) = 1⇔ x1 + · · ·+ xk = 0

Communication complexity:

• R||
k (EvalG) = O (1) since

x1 + · · ·+ xk = 0⇔ x1 = −(x2 · · ·+ xk)

• Dk(EvalG) → connections to Ramsey theory
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Ramsey numbers

k-dimensional corner in Gk:

(x1, x2, . . . , xk), (x1 + λ, x2, . . . , xk), (x1, x2 + λ, . . . , xk), . . . , (x1, x2, . . . , xk + λ)

Ramsey numbers:

• c∠k (G) = min # of colors to avoid monochromatic k-dim corner in Gk

• r∠k (G) = size of largest subset of Gk without any k-dim corner

Chandra, Furst and Lipton [CFL83]:

log(c∠k (G)) ≤ Dk+1(EvalG) ≤ k+ log(c∠k (G))
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Connections

Chandra, Furst and Lipton [CFL83]:

log(c∠k (G)) ≤ Dk+1(EvalG) ≤ k+ log(c∠k (G))
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Ramsey numbers and EvalFnp

Motivations for G = Fnp:

• the proofs are easier and cleaner
• they can be adapted to any other group [Gre05]
• EvalFnp ∈ Sym ◦ Symp

Prior work:

• D3(EvalFnp) = ω(1) [LM07]

• c∠k (Fn2 ) ≤ O
(
2n/2k−2

nk+1
)
[ACFN15]

• an explicit large corner free set over Fn2 [ACFN15]
• c∠k (Fnp) ≤ 2O(p log2 n)pO(p log n) when k > 1+ p log(3n) [CS14]

Our result:

• the first explicit large corner-free set over Fnp, of size pnk

Ck2pk+k2
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Results

Our contribution: the first explicit large corner-free set in Fnp

Definitions:

• M ∈ (Fnp)k is seen as a k× n matrix over Fp
• d(c, cj) = Hamming distance between columns c and cj
• ni,c(M) = number of columns at distance i to c in M

For any c ∈ Fkp, Nk = 0 and N0, . . . ,Nk−1 ≥ 0 such that∑k
i=0 Ni = n:

Skc = {M ∈ (Fnp)k : ∀i ∈ {0, . . . , k},ni,c(M) = Ni}
is a corner-free set.

If k ≥
⌈

log n
log

(
1+ 1

p−1
)
⌉
and Ni =

⌊(k
i
) (p−1)i

pk n
⌋
then |Skc | ≥ pnk

Ck2pk+k2
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The logn barrier and composed
functions



Composed functions

Given f : {0, 1}n → {0, 1} and −→g = (g1, . . . , gn) where gi : {0, 1}k → {0, 1}:

f ◦ −→g (x1, . . . , xk) = f(. . . , gi(x1,i, . . . , xk,i), . . . )

· · ·...

x1,1 x1,2 x1,3
x2,1 x2,2 x2,3

xk,1 xk,2 xk,3

x1,n
x2,n

xk,n

Player 1 (x1)
Player 2 (x2)

Player k (xk)

n

k

g1 g2 g3 gn f

34



Composed functions

Definitions:

• f ◦ g if g1 = · · · = gn
• Symmetric = invariant under any permutation of the input
• Any ◦ −−→Any, Any ◦ Any, Sym ◦

−−→Any, Sym ◦ Sym...

Motivations:

• very simple structure
• most of the important functions: GIP = MOD2 ◦ AND ∈ Sym ◦ Sym,

MAJ ◦ MAJ ∈ Sym ◦ Sym, DISJ = NOR ◦ AND ∈ Sym ◦ Sym
• major open problems still unknown for composed functions
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Prior work

Conjecture ([BKL95]): MAJ ◦ MAJ breaks the logn barrier

When k = Ω(logn):

• Dk(f ◦ g) = O
(
log2 n

)
for f ◦ g ∈ Sym ◦ AND [Gro94]

• D||
k (f ◦ g) = O

(
log3 n

)
for f ◦ g ∈ Sym ◦ Comp [BGKL04]

• D||
k (f ◦

−→g ) = O
(
log3 n

)
for f ◦ −→g ∈ Sym ◦

−−→Any [ACFN15]

→ none of the functions in Sym ◦
−−→Any can break the logn barrier
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Composed functions of block-width t

· · · · · ·...

x1,1 x1,t
x2,1 x2,t

xk,1 xk,t

x1,tn
x2,tn

xk,tn

Player 1 (x1)
Player 2 (x2)

Player k (xk)

t · n

k

g1 gn f

• MAJt : {0, 1}k·t → {0, 1}
• Conjecture : MAJ ◦ MAJ√

n breaks the barrier

37
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Composed functions of block-width t

{0, 1}t ∼ F2t

· · · · · ·...

x1,1 x1,t
x2,1 x2,t

xk,1 xk,t

x1,tn
x2,tn

xk,tn

Player 1 (x1)
Player 2 (x2)

Player k (xk)

t · n

k

g1 gn f

Given f : {0, 1}n → {0, 1} and −→g = (g1, . . . , gn) where gi : Fkp → {0, 1}:

f ◦ −→g (x1, . . . , xk) = f(. . . , gi(x1,i, . . . , xk,i), . . . )

→ Any ◦ −−→Anyp, Any ◦ Anyp, Sym ◦ Anyp, . . .
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Prior work

Conjecture: MAJ ◦ MAJ√log n breaks the logn barrier

When k = Ω(polylogn):

• D||
k (f ◦

−→g ) = O
(
log3 n

)
for f ◦ −→g ∈ Sym ◦

−−→Any2 [ACFN15]

• Dk(f ◦ g) = O (polylogn) for f ◦ g ∈ Sym ◦
−−→Anyp and p ≤ polylogn [CS14]

New results for constant p:

• D||
k (f ◦ g) = O (polylogn) for f ◦ g ∈ Sym ◦ Symp (k = polylogn)

• D||
k (f ◦ g) = O (polylogn) for f ◦ g ∈ Sym ◦ Compp (k ≥ polylogn)

• MAJ ◦ MAJt cannot break the barrier for constant t
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Proof sketch

Symmetric f and g over F3:

g g g f
· · ·

0 0 1 2 0 2 3 2 1 1
1 0 3 1 0 1 1 0 2 0
0 0 3 2 0 0 1 2 1 0
0 0 2 1 0 1 2 1 2 0
3 0 0 3 1 0 1 0 2 0

yi,j = # columns with i one’s and j two’s

Recovering the yi,j’s is enough since f and g are symmetric

40
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Recovering the yi,j’s is enough since f and g are symmetric
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Proof sketch

0 0 1 2 0 2 3 2 1 1
1 0 3 1 0 1 1 0 2 0
0 0 3 2 0 0 1 2 1 0
0 0 2 1 0 1 2 1 2 0
3 0 0 3 1 0 1 0 2 0

• Player 1 sends to the referee:

a1i,j = # columns she sees with i one’s and j two’s

→ a10,0 = 2, a11,0 = 1, a11,1 = 3, . . .

• Players 2 to 5 do the same
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Proof sketch

0 0 1 2 0 2 3 2 1 1
1 0 3 1 0 1 1 0 2 0
0 0 3 2 0 0 1 2 1 0
0 0 2 1 0 1 2 1 2 0
3 0 0 3 1 0 1 0 2 0

The referee computes:
bi,j = a1i,j + · · ·+ a5i,j

Note that:

bi,j = (k− (i+ j))yi,j + (i+ 1)yi+1,j + (j+ 1)yi,j+1
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bi,j = (k− (i+ j))yi,j + (i+ 1)yi+1,j + (j+ 1)yi,j+1
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Proof sketch

Let (bi1,...,ip)0≤i1+···+ip≤k−1 be integers. Consider the system of equations:
(k− (i1 + · · ·+ ip))yi1,...,ip +

p∑
j=1

(ij + 1)yi1,...,ij−1,ij+1,ij+1,...,ip = bi1,...,ip

0 ≤ i1 + · · ·+ ip ≤ k− 1

Assume further that

yi1,...,ip ≥ 0, 0 ≤ i1 + · · ·+ ip ≤ k and
∑

i1+···+ip≤k

yi1,...,ip ≤ n

Theorem
If k > 1+ 5p logn then it admits at most one integral solution.

→ the referee recovers the yi,j’s and computes the output
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Proof sketch

Conclusion:

• [BGKL04] proved the uniqueness for p = 2
• we generalized to any p
• sending all the aℓi,j has cost O (k(k+ p) logn) → not efficient is
k = ω(polylogn) (compressibility)

Future work:

• remove the compressibility condition
• handle larger p
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