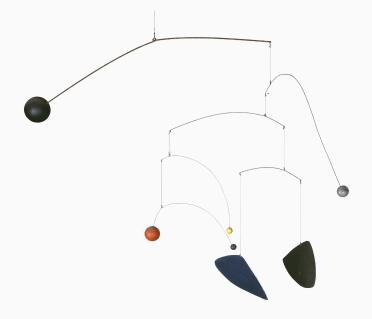
Balanced Mobiles

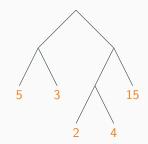
Yassine HAMOUDI, Sophie LAPLANTE, Roberto MANTACI May 17, 2017

ENS Lyon - IRIF, Paris Diderot

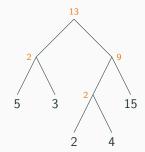


Mobile. Calder, 1932.

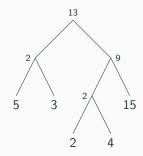
A mobile M is a full binary tree in which each leaf has a (positive) weight.



The local imbalance δ of a node is the difference (in absolute value) between the weights W_L and W_R of the left and right subtrees of the node.

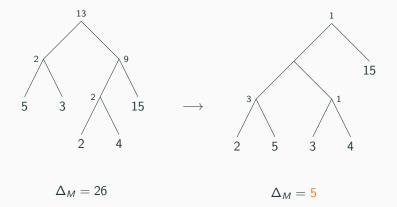


The imbalance Δ_M of M is the sum of all the local imbalances.



$$\Delta_M = 13 + 2 + 9 + 2 = 26$$

The BALANCED MOBILES problem consists in constructing, for a given set of weights $\{w_1, \ldots, w_n\}$, a mobile of imbalance as small as possible.



The $\ensuremath{\operatorname{SMALLEST}}$ algorithm

All-Equal Weights

Integer Linear Programming

The $\operatorname{Evaluation}\,\operatorname{Trees}\,\operatorname{problem}$

Conclusion

The Smallest algorithm

```
Input: weights w_1 \leq \cdots \leq w_n

Output: imbalance SMALLEST(w_1, \ldots, w_n)

if n = 2 then

| Return |w_2 - w_1|

else

| Return |w_2 - w_1| + \text{SMALLEST}(\text{SORT}(w_1 + w_2, w_3, \ldots, w_n))
```

```
Input: weights w_1 \leq \cdots \leq w_n

Output: imbalance SMALLEST(w_1, \ldots, w_n)

if n = 2 then

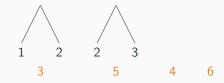
| Return |w_2 - w_1|

else

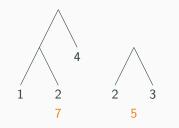
| Return |w_2 - w_1| + \text{SMALLEST}(\text{SORT}(w_1 + w_2, w_3, \ldots, w_n))
```

Input: weights $w_1 \leq \cdots \leq w_n$ Output: imbalance $SMALLEST(w_1, \dots, w_n)$ if n = 2 then | Return $|w_2 - w_1|$ else | Return $|w_2 - w_1| + SMALLEST(SORT(w_1 + w_2, w_3, \dots, w_n))$

Input: weights $w_1 \leq \cdots \leq w_n$ Output: imbalance $SMALLEST(w_1, \dots, w_n)$ if n = 2 then | Return $|w_2 - w_1|$ else | Return $|w_2 - w_1| + SMALLEST(SORT(w_1 + w_2, w_3, \dots, w_n))$

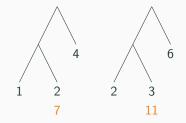


Input: weights $w_1 \leq \cdots \leq w_n$ Output: imbalance $SMALLEST(w_1, \dots, w_n)$ if n = 2 then | Return $|w_2 - w_1|$ else | Return $|w_2 - w_1| + SMALLEST(SORT(w_1 + w_2, w_3, \dots, w_n))$



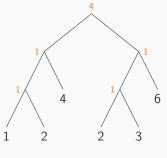
6

Input: weights $w_1 \leq \cdots \leq w_n$ Output: imbalance $SMALLEST(w_1, \dots, w_n)$ if n = 2 then | Return $|w_2 - w_1|$ else | Return $|w_2 - w_1| + SMALLEST(SORT(w_1 + w_2, w_3, \dots, w_n))$



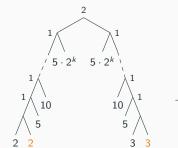
Input: weights $w_1 \le \dots \le w_n$ **Output:** imbalance SMALLEST (w_1, \dots, w_n) if n = 2 then | Return $|w_2 - w_1|$ else

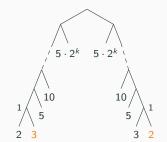
Return $|w_2 - w_1|$ + SMALLEST(SORT $(w_1 + w_2, w_3, \ldots, w_n)$)



 $\Delta = 8$

Non-optimality of Smallest





 $\Delta = 4 + 2k$

 $\Delta = 2$

Theorem

The SMALLEST algorithm is optimal in the following cases:

- when the smallest possible imbalance is 0 or 1
- when all the weights are equal
- when all the weights are powers of two

It runs in $\mathcal{O}(n \log n)$ time.

Given two mobiles of weights A and B, if $w_1 \le A \le B$ then this rotation does not increase the imbalance:

Given two mobiles of weights A and B, if $w_1 \le A \le B$ then this rotation does not increase the imbalance:

Lemma

For any weights $w_1 \leq \cdots \leq w_n$, there exists an optimal mobile in which the sibling of the leaf of weight w_1 is also a leaf.

Given $w_1 \leq \cdots \leq w_n$ and a threshold δ , try for all *i* to find a mobile of imbalance $\leq \delta - |w_1 - w_i|$ on $\{w_1 + w_i, w_2, \dots, w_{i-1}, w_{i+1}, \dots, w_n\}$.

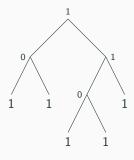
Given $w_1 \leq \cdots \leq w_n$ and a threshold δ , try for all *i* to find a mobile of imbalance $\leq \delta - |w_1 - w_i|$ on $\{w_1 + w_i, w_2, \dots, w_{i-1}, w_{i+1}, \dots, w_n\}$.

Theorem

For any weights w_1, \ldots, w_n , the R-SMALLEST algorithm finds the optimal imbalance Δ in time $\mathcal{O}(\log(n)n^{\min(\Delta,n)+1})$.

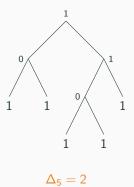
All-Equal Weights

 Δ_n : optimal imbalance for the weights $w_1 = \cdots = w_n = 1$

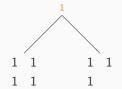


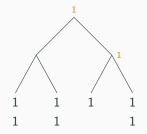
 $\Delta_5 = 2$

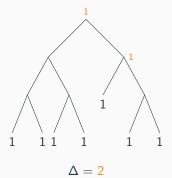
 Δ_n : optimal imbalance for the weights $w_1 = \cdots = w_n = 1$



- $\rightarrow\,$ the $\rm Smallest$ algorithm is optimal in this case
- $\rightarrow\,$ a $\rm PARTITION$ algorithm (inspired from 2-PARTITION) is also optimal

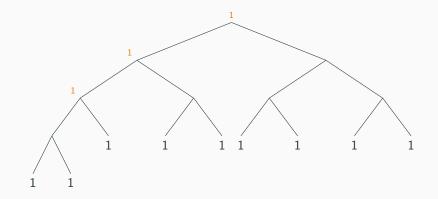




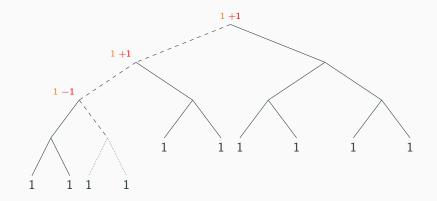


The optimal imbalance Δ_n verifies:

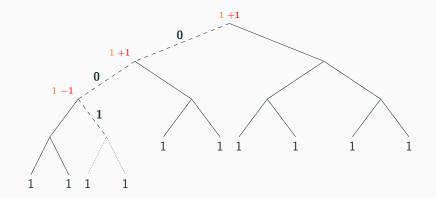
$$\begin{cases} \Delta_1 = 0\\ \Delta_{2n} = 2\Delta_n\\ \Delta_{2n+1} = 1 + \Delta_n + \Delta_{n+1} \end{cases}$$



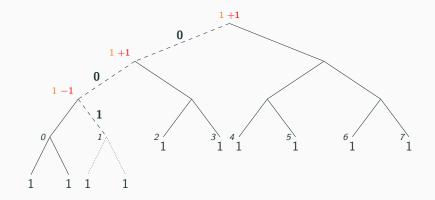
A mobile over 9 weights, built with SMALLEST.



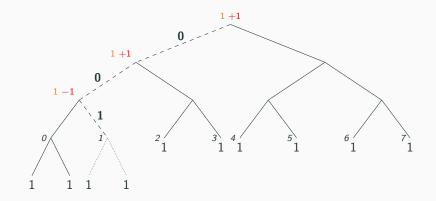
A mobile over 10 weights, built with SMALLEST.



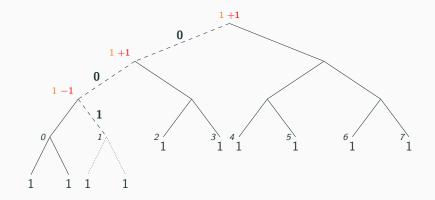
Increase of $|001|_0 - |001|_1$



Increase of $|001|_0 - |001|_1 = |1001|_0 - (|1001|_1 - 1)$



Increase of $|001|_0 - |001|_1 = |2^3 + 1|_0 - (|2^3 + 1|_1 - 1)$



Increase of $|001|_0 - |001|_1 = |2^3 + 1|_0 - (|2^3 + 1|_1 - 1)$

$$S_{10} = S_9 + |9|_0 - |9|_1 + 1$$

The imbalance S_n obtained by SMALLEST verifies:

$$\begin{cases} S_1 = 0 \\ S_{n+1} = S_n + |n|_0 - |n|_1 + 1 \end{cases}$$

The imbalance S_n obtained by SMALLEST verifies:

$$\begin{cases} S_1 = 0 \\ S_{n+1} = S_n + |n|_0 - |n|_1 + 1 \end{cases}$$

Proposition

Using $\Delta_{2n} = 2\Delta_n, \Delta_{2n+1} = 1 + \Delta_n + \Delta_{n+1}$ we prove $S_n = \Delta_n$.

The Δ_n function

$$\begin{cases} \Delta_1 = 0\\ \Delta_{2n} = 2\Delta_n\\ \Delta_{2n+1} = 1 + \Delta_n + \Delta_{n+1} \end{cases} \quad \text{and} \quad \begin{cases} \Delta_1 = 0\\ \Delta_{n+1} = \Delta_n + |n|_0 - |n|_1 + 1 \end{cases}$$

The Δ_n function

$$\left\{ \begin{array}{l} \Delta_1 = 0\\ \Delta_{2n} = 2\Delta_n\\ \Delta_{2n+1} = 1 + \Delta_n + \Delta_{n+1} \end{array} \right. \text{ and } \left\{ \begin{array}{l} \Delta_1 = 0\\ \Delta_{n+1} = \Delta_n + |n|_0 - |n|_1 + 1 \end{array} \right.$$

If $b_k b_{k-1} \dots b_0$ is the binary representation of n:

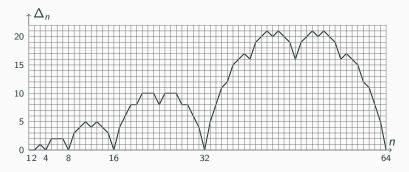
$$\Delta_n = 2 \cdot (n \mod 2^k) + \sum_{i=0}^{k-1} (-1)^{b_i} \cdot (n \mod 2^{i+1})$$

The Δ_n function

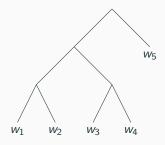
$$\left\{ \begin{array}{l} \Delta_1 = 0\\ \Delta_{2n} = 2\Delta_n\\ \Delta_{2n+1} = 1 + \Delta_n + \Delta_{n+1} \end{array} \right. \text{ and } \left\{ \begin{array}{l} \Delta_1 = 0\\ \Delta_{n+1} = \Delta_n + |n|_0 - |n|_1 + 1 \end{array} \right. \right.$$

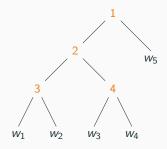
If $b_k b_{k-1} \dots b_0$ is the binary representation of n:

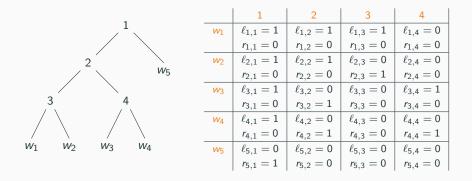
$$\Delta_n = 2 \cdot (n \mod 2^k) + \sum_{i=0}^{k-1} (-1)^{b_i} \cdot (n \mod 2^{i+1})$$



Integer Linear Programming

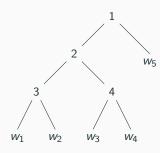






Define:

- $\ell_{i,u} = 1$ if w_i is in the left subtree of the node u, 0 otherwise
- $r_{i,u} = 1$ if w_i is in the right subtree of the node u, 0 otherwise



	1	2	3	4	
w_1	$\ell_{1,1}=1$	$\ell_{1,2}=1$	$\ell_{1,3}=1$	$\ell_{1,4}=0$	
	$r_{1,1} = 0$	$r_{1,2} = 0$	$r_{1,3} = 0$	$r_{1,4} = 0$	
W2	$\ell_{2,1} = 1$	$\ell_{2,2}=1$	$\ell_{2,3} = 0$	$\ell_{2,4}=0$	
	$r_{2,1} = 0$	$r_{2,2} = 0$	$r_{2,3} = 1$	$r_{2,4} = 0$	
W3	$\ell_{3,1} = 1$	$\ell_{3,2}=0$	$\ell_{3,3}=0$	$\ell_{3,4}=1$	
	$r_{3,1} = 0$	$r_{3,2} = 1$	$r_{3,3} = 0$	$r_{3,4} = 0$	
w ₄	$\ell_{4,1} = 1$	$\ell_{4,2}=0$	$\ell_{4,3}=0$	$\ell_{4,4}=0$	
	$r_{4,1} = 0$	$r_{4,2} = 1$	$r_{4,3} = 0$	$r_{4,4} = 1$	
W ₅	$\ell_{5,1} = 0$	$\ell_{5,2} = 0$	$\ell_{5,3}=0$	$\ell_{5,4}=0$	
	$r_{5,1} = 1$	$r_{5,2} = 0$	$r_{5,3} = 0$	$r_{5,4} = 0$	

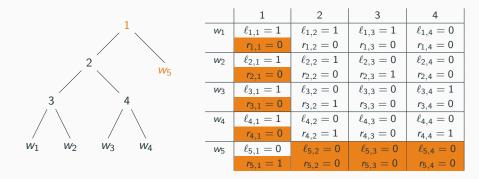
The imbalance is:

$$\sum_{u=1}^{n-1} \left| \sum_{i=1}^n w_i (\ell_{i,u} - r_{i,u}) \right|$$

_		1	2	3	4
	w ₁	$\ell_{1,1}=1$	$\ell_{1,2}=1$	$\ell_{1,3}=1$	$\ell_{1,4}=0$
		$r_{1,1} = 0$	$r_{1,2} = 0$	$r_{1,3} = 0$	$r_{1,4} = 0$
2	w2	$\ell_{2,1}=1$	$\ell_{2,2}=1$	$\ell_{2,3}=0$	$\ell_{2,4}=0$
W ₅		$r_{2,1} = 0$	$r_{2,2} = 0$	$r_{2,3} = 1$	$r_{2,4} = 0$
	W3	$\ell_{3,1}=1$	$\ell_{3,2}=0$	$\ell_{3,3}=0$	$\ell_{3,4}=1$
3 4		$r_{3,1} = 0$	$r_{3,2} = 1$	$r_{3,3} = 0$	$r_{3,4} = 0$
	w ₄	$\ell_{4,1}=1$	$\ell_{4,2}=0$	$\ell_{4,3}=0$	$\ell_{4,4}=0$
		$r_{4,1} = 0$	$r_{4,2} = 1$	$r_{4,3} = 0$	$r_{4,4} = 1$
$W_1 W_2 W_3 W_4$	w ₅	$\ell_{5,1}=0$	$\ell_{5,2}=0$	$\ell_{5,3}=0$	$\ell_{5,4}=0$
		$r_{5,1} = 1$	$r_{5,2} = 0$	$r_{5,3} = 0$	$r_{5,4} = 0$

The weight w_i cannot be simultaneously in the left and right subtrees of the node u.

$$\forall i, u, \ell_{i,u} + r_{i,u} \leq 1$$



If the weight w_i is the right (resp. left) child of the node u, then none of the other leaves can be in the right (resp. left) subtree of the node u.

$$\forall i \neq j, \forall u, \begin{cases} (1 - \ell_{i,u}) + \sum_{v > u} (\ell_{i,v} + r_{i,v}) \ge \ell_{j,u} \\ (1 - r_{i,u}) + \sum_{v > u} (\ell_{i,v} + r_{i,v}) \ge r_{j,u} \end{cases}$$

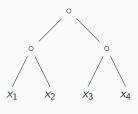
$$\underbrace{\text{Minimize}}_{u=1}^{n-1} \left| \sum_{i=1}^{n} w_i (\ell_{i,u} - r_{i,u}) \right| \text{ subject to}$$

$$\begin{aligned} \forall i, u, \ell_{i,u} + r_{i,u} &\leq 1 \\ \forall i, \ell_{i,1} + r_{i,1} &= 1 \\ \forall u, \sum_{i} \ell_{i,u} > 0 \text{ and } \sum_{i} r_{i,u} > 0 \\ \forall i \neq j, \forall u, \begin{cases} (1 - \ell_{i,u}) + \sum_{v > u} (\ell_{i,v} + r_{i,v}) \geq \ell_{j,u} \\ (1 - r_{i,u}) + \sum_{v > u} (\ell_{i,v} + r_{i,v}) \geq r_{j,u} \end{cases} \\ \forall i \neq j, \forall u < v, \begin{cases} \ell_{i,u} + (\ell_{i,v} + r_{i,v} + \ell_{j,v} + r_{j,v}) \leq 2 + \ell_{j,u} \\ r_{i,u} + (\ell_{i,v} + r_{i,v} + \ell_{j,v} + r_{j,v}) \leq 2 + r_{j,u} \end{cases} \\ \forall i \neq j, \forall u < u', \begin{cases} 2 - \ell_{i,u} - \ell_{j,u} + \sum_{w=u+1}^{u'} (\ell_{i,w} + r_{i,w}) \geq r_{j,u'} + r_{j,v'} + \ell_{j,v'} \end{cases} \end{aligned}$$

The Evaluation Trees problem

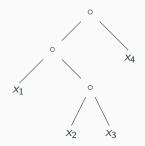
Given *n* elements x_1, \ldots, x_n of a set \mathcal{X} equipped with an associative operator $\circ : \mathcal{X} \times \mathcal{X} \to \mathcal{X}$ and a cost function $c : \mathcal{X} \times \mathcal{X} \to \mathbb{R}^+$, find the optimal evaluation tree to compute $x_1 \circ x_2 \circ \ldots \circ x_n$.

Given *n* elements x_1, \ldots, x_n of a set \mathcal{X} equipped with an associative operator $\circ : \mathcal{X} \times \mathcal{X} \to \mathcal{X}$ and a cost function $c : \mathcal{X} \times \mathcal{X} \to \mathbb{R}^+$, find the optimal evaluation tree to compute $x_1 \circ x_2 \circ \ldots \circ x_n$.



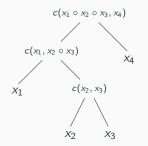
 $((x_1 \circ x_2) \circ (x_3 \circ x_4))$

Given *n* elements x_1, \ldots, x_n of a set \mathcal{X} equipped with an associative operator $\circ : \mathcal{X} \times \mathcal{X} \to \mathcal{X}$ and a cost function $c : \mathcal{X} \times \mathcal{X} \to \mathbb{R}^+$, find the optimal evaluation tree to compute $x_1 \circ x_2 \circ \ldots \circ x_n$.



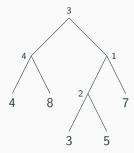
 $((x_1 \circ (x_2 \circ x_3)) \circ x_4)$

Given *n* elements x_1, \ldots, x_n of a set \mathcal{X} equipped with an associative operator $\circ : \mathcal{X} \times \mathcal{X} \to \mathcal{X}$ and a cost function $c : \mathcal{X} \times \mathcal{X} \to \mathbb{R}^+$, find the optimal evaluation tree to compute $x_1 \circ x_2 \circ \ldots \circ x_n$.



 $c(x_1 \circ x_2 \circ x_3, x_4) + c(x_1, x_2 \circ x_3) + c(x_2, x_3)$

Given a sequence of weights (w_1, \ldots, w_n) , find a mobile of imbalance as small as possible with these weights in the same order from left to right.



An optimal mobile for the sequence (4, 8, 3, 5, 7).

Given a sequence of weights (w_1, \ldots, w_n) , find a mobile of imbalance as small as possible with these weights in the same order from left to right.

This is a NON-ABELIAN EVALUATION $\ensuremath{\mathrm{TREES}}$ problem with:

- $x_i = w_i$ and $\mathcal{X} = \mathbb{N}$
- c(x,y) = |x-y|
- $x \circ y = x + y$

Given a sequence of matrices (M_1, \ldots, M_n) where $dim(M_i) = (n_{i-1}, n_i)$, find the optimal way to compute the product $M_1 \times \cdots \times M_n$.

Given a sequence of matrices (M_1, \ldots, M_n) where $dim(M_i) = (n_{i-1}, n_i)$, find the optimal way to compute the product $M_1 \times \cdots \times M_n$.

This is a NON-ABELIAN EVALUATION TREES problem with:

•
$$x_i = (n_{i-1}, n_i)$$
 and $\mathcal{X} = \mathbb{N} \times \mathbb{N}$

•
$$c(x, y) = n \times m \times k$$
 where $x = (n, m)$ and $y = (m, k)$

•
$$x \circ y = (n, k)$$
 where $x = (n, m)$ and $y = (m, k)$

Given a sequence of matrices (M_1, \ldots, M_n) where $dim(M_i) = (n_{i-1}, n_i)$, find the optimal way to compute the product $M_1 \times \cdots \times M_n$.

This is a NON-ABELIAN EVALUATION TREES problem with:

•
$$x_i = (n_{i-1}, n_i)$$
 and $\mathcal{X} = \mathbb{N} \times \mathbb{N}$

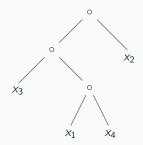
•
$$c(x, y) = n \times m \times k$$
 where $x = (n, m)$ and $y = (m, k)$

•
$$x \circ y = (n, k)$$
 where $x = (n, m)$ and $y = (m, k)$

Dynamic programming in $\mathcal{O}(n^3)$:

$$C[i,j] = \begin{cases} 0 & \text{if } i = j \\ \min_{i \le k < j} \{C[i,k] + C[k+1,j] + c(x_i \circ \cdots \circ x_k, x_{k+1} \circ \cdots \circ x_j), \} & \text{if } i < j \end{cases}$$

Given *n* elements x_1, \ldots, x_n of a set \mathcal{X} equipped with an associative and commutative operator $\circ : \mathcal{X} \times \mathcal{X} \to \mathcal{X}$ and a cost function $c : \mathcal{X} \times \mathcal{X} \to \mathcal{X}$ $\to \mathbb{R}^+$, find the optimal evaluation tree to compute $x_1 \circ x_2 \circ \ldots \circ x_n$.



 $((x_3 \circ (x_1 \circ x_4)) \circ x_2)$

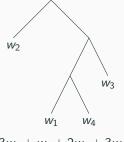
Given a set of weights $\{w_1, \ldots, w_n\}$, find a mobile of imbalance as small as possible with these weights.

This is an ABELIAN EVALUATION TREES problem with:

- $x_i = w_i$ and $\mathcal{X} = \mathbb{N}$
- c(x,y) = |x-y|
- $x \circ y = x + y$

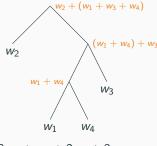
Given an alphabet $\{a_1, \ldots, a_n\}$ and the number of occurencies w_i of each a_i , find a prefix-free binary code (c_1, \ldots, c_n) that minimizes $\sum_i w_i \cdot |c_i|$.

Given an alphabet $\{a_1, \ldots, a_n\}$ and the number of occurencies w_i of each a_i , find a prefix-free binary code (c_1, \ldots, c_n) that minimizes $\sum_i w_i \cdot |c_i|$.



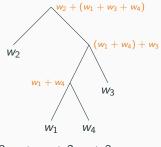
 $3w_1 + w_2 + 2w_3 + 3w_4$

Given an alphabet $\{a_1, \ldots, a_n\}$ and the number of occurencies w_i of each a_i , find a prefix-free binary code (c_1, \ldots, c_n) that minimizes $\sum_i w_i \cdot |c_i|$.



 $3w_1 + w_2 + 2w_3 + 3w_4$

Given an alphabet $\{a_1, \ldots, a_n\}$ and the number of occurencies w_i of each a_i , find a prefix-free binary code (c_1, \ldots, c_n) that minimizes $\sum_i w_i \cdot |c_i|$.



 $3w_1 + w_2 + 2w_3 + 3w_4$

This is an ABELIAN EVALUATION TREES problem with:

• $x_i = w_i$ and $\mathcal{X} = \mathbb{N}$

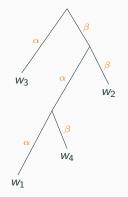
•
$$c(x,y) = x + y$$

• $x \circ y = x + y$

The coding alphabet is made of two letters of unequal lengths α and β .

Generalized Huffman Coding

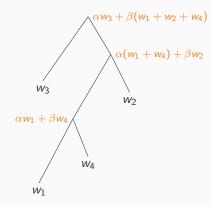
The coding alphabet is made of two letters of unequal lengths α and β .



$$(2\alpha + \beta)w_1 + 2\beta w_2 + \alpha w_3 + (\alpha + 2\beta)w_4$$

Generalized Huffman Coding

The coding alphabet is made of two letters of unequal lengths α and β .



 $(2\alpha + \beta)w_1 + 2\beta w_2 + \alpha w_3 + (\alpha + 2\beta)w_4$

The coding alphabet is made of two letters of unequal lengths α and β .

This is an ABELIAN EVALUATION TREES problem with:

- $x_i = w_i$ and $\mathcal{X} = \mathbb{N}$
- $c(x, y) = \alpha x + \beta y$
- $x \circ y = x + y$

The coding alphabet is made of two letters of unequal lengths α and β .

- The case $\alpha = \beta$ is HUFFMAN CODING [Huf52]. This is solved in $\mathcal{O}(n \log n)$ by SMALLEST.
- The case $w_1 = \cdots = w_n$ is solved in poly-time [Var71, GY96, CG01].
- First known algorithm for the general case is an ILP $_{[{\rm Kar61}]}.$
- Dynamic programming algorithm in $\mathcal{O}(n^{\max(\alpha,\beta)})$ [GR98, BGLR02].
- PTAS [GMY12]

No poly-time algorithm for the general case nor it is known to be NP-hard.

Using dynamic programming, compute for all $S \subseteq \{1, ..., n\}$ the optimal cost C(S) for $\circ_{i \in S} x_i$.

$$C(S) = \min_{S' \subseteq S, S' \neq \emptyset} c\left(\underset{i \in S'}{\circ} x_i, \underset{i \in S \setminus S'}{\circ} x_i \right) + C(S') + C(S \setminus S')$$

It runs in $2^{\mathcal{O}(n)}$ time and $\mathcal{O}(2^n)$ space.

Integer Linear Programming (Balanced Mobiles)

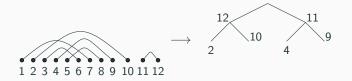
$$\begin{split} \text{Minimize} \sum_{u=1}^{n-1} \left| \sum_{i=1}^{n} (\ell_{i,u} - r_{i,u}) \cdot w_{i} \right| \text{ subject to:} \\ \forall i, u, \ell_{i,u} + r_{i,u} \leq 1 \\ \forall i, \ell_{i,1} + r_{i,1} = 1 \\ \forall u, \sum_{i} \ell_{i,u} > 0 \text{ and } \sum_{i} r_{i,u} > 0 \\ \forall i \neq j, \forall u, \begin{cases} (1 - \ell_{i,u}) + \sum_{v > u} (\ell_{i,v} + r_{i,v}) \geq \ell_{j,u} \\ (1 - r_{i,u}) + \sum_{v > u} (\ell_{i,v} + r_{i,v}) \geq r_{j,u} \end{cases} \\ \forall i \neq j, \forall u < v, \begin{cases} \ell_{i,u} + (\ell_{i,v} + r_{i,v} + \ell_{j,v} + r_{j,v}) \leq 2 + \ell_{j,u} \\ r_{i,u} + (\ell_{i,v} + r_{i,v} + \ell_{j,v} + r_{j,v}) \leq 2 + r_{j,u} \end{cases} \\ \forall i \neq j, \forall u < u', \begin{cases} 2 - \ell_{i,u} - \ell_{j,u} + \sum_{w=u+1}^{u'} (\ell_{i,w} + r_{i,w}) \geq r_{j,u'} + r_{j,u'} \\ 2 - r_{i,u} - r_{j,u} + \sum_{w=u+1}^{u'} (\ell_{i,w} + r_{i,w}) \geq \ell_{j,u'} + \ell_{j,u'} \end{cases} \end{split}$$

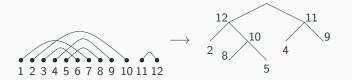
Integer Linear Programming (Huffman Coding)

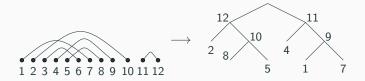
$$\begin{split} \text{Minimize} \sum_{u=1}^{n-1} \sum_{i=1}^{n} (\alpha \cdot \ell_{i,u} + \beta \cdot r_{i,u}) \cdot w_{i} \text{ subject to:} \\ \forall i, u, \ell_{i,u} + r_{i,u} &\leq 1 \\ \forall i, \ell_{i,1} + r_{i,1} &= 1 \\ \forall u, \sum_{i} \ell_{i,u} > 0 \text{ and } \sum_{i} r_{i,u} > 0 \\ \forall i \neq j, \forall u, \begin{cases} (1 - \ell_{i,u}) + \sum_{v > u} (\ell_{i,v} + r_{i,v}) \geq \ell_{j,u} \\ (1 - r_{i,u}) + \sum_{v > u} (\ell_{i,v} + r_{i,v}) \geq r_{j,u} \end{cases} \\ \forall i \neq j, \forall u < v, \begin{cases} \ell_{i,u} + (\ell_{i,v} + r_{i,v} + \ell_{j,v} + r_{j,v}) \leq 2 + \ell_{j,u} \\ r_{i,u} + (\ell_{i,v} + r_{i,v} + \ell_{j,v} + r_{j,v}) \leq 2 + r_{j,u} \end{cases} \\ \forall i \neq j, \forall u < u', \begin{cases} 2 - \ell_{i,u} - \ell_{j,u} + \sum_{w=u+1}^{u'} (\ell_{i,w} + r_{i,w}) \geq r_{j,u'} + r_{j,u'} \\ 2 - r_{i,u} - r_{j,u} + \sum_{w=u+1}^{u'} (\ell_{i,w} + r_{i,w}) \geq \ell_{j,u'} + \ell_{j,u'} \end{cases} \end{split}$$

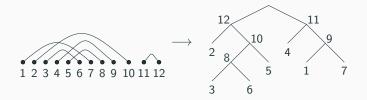
The $\operatorname{R-SMALLEST}$ algorithm can be used whenever the "rotation property" holds:

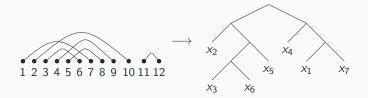
$$\forall x \leq y \leq z, \quad c(x,y) + c(x \circ y, z) \leq c(y, z) + c(y \circ z, x)$$











	Time	Space
Dynamic Programming	$2^{\mathcal{O}(n)}$	$\mathcal{O}(2^n)$
Integer Programming*	n^2 variables and n^4 constraints	
R-Smallest*	$\mathcal{O}(\log(n)n^{\min(C,n)+1})$	$\mathcal{O}(n \log n)$
Enumeration of Trees	$\mathcal{O}(n^{n/2})$	$\mathcal{O}(n \log n)$

Conclusion

- 1. Is BALANCED MOBILES NP-hard?
- 2. What are the polynomial-time instances of ABELIAN EVALUATION $$\mathrm{Trees}$$?
- 3. For which instances is SMALLEST optimal?
- 4. Which instances admit an approximation scheme?

What if the shape of the mobile is fixed and one has just to find the permutation of the weights that minimizes the imbalance?

References i

O. Bernardi, B. Duplantier, and P. Nadeau.

A bijection between well-labelled positive paths and matchings.

In *Séminaire Lotharingien de Combinatoire*, volume 63, page B63e, 2010.

Phillip G. Bradford, Mordecai J. Golin, Lawrence L. Larmore, and Wojciech Rytter.

Optimal prefix-free codes for unequal letter costs: Dynamic programming with the Monge property.

Journal of Algorithms, 42(2):277-303, 2002.

V. Choi and M. J. Golin.
 Lopsided trees, I: Analyses.
 Algorithmica, 31(3):240–290, 2001.

References ii

W. Y. C. Chen.

A general bijective algorithm for trees.

Proc. Nat. Acad. Sci. U.S.A., 87(24):9635-9639, 1990.

Mordecai J. Golin, Claire Mathieu, and Neal E. Young. Huffman coding with letter costs: A linear-time approximation scheme.

SIAM J. Comput., 41(3):684-713, 2012.

M. J. Golin and G. Rote.

A dynamic programming algorithm for constructing optimal prefix-free codes with unequal letter costs.

IEEE Transactions on Information Theory, 44(5):1770–1781, Sep 1998.

References iii

Mordecai J. Golin and Neal Young.

Prefix codes: Equiprobable words, unequal letter costs. *SIAM Journal on Computing*, 25(6):1281–1292, 1996.

🔋 D.A. Huffman.

A method for the construction of minimum-redundancy codes. *Proceedings of the IRE*, 40(9):1098–1101, Sept 1952.

Richard M. Karp.

Minimum-redundancy coding for the discrete noiseless channel.

Information Theory, IRE Transactions on, 7(1):27–38, January 1961.

Ben Varn.

Optimal variable length codes (arbitrary symbol cost and equal code word probability).

Information and Control, 19(4):289 – 301, 1971.

References iv

Powers-Of-Two Weights

A mobile *M* is irregular if:

- it is an optimal mobile built on powers-of-two weights
- it cannot be built by $\ensuremath{\operatorname{SMALLEST}}$
- its imbalance is *less* than the one obtained by SMALLEST on the same weights.

A mobile *M* is irregular if:

- it is an optimal mobile built on powers-of-two weights
- it cannot be built by $\ensuremath{\operatorname{SMALLEST}}$
- its imbalance is *less* than the one obtained by SMALLEST on the same weights.

Proposition

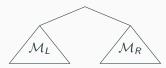
The SMALLEST algorithm is optimal for powers-of-two weights if and only if there is no irregular mobiles.

Assume by contradiction that there exist irregular mobiles.

Assume by contradiction that there exist irregular mobiles.

Take such a mobile \mathcal{M} with:

- the smallest maximum weight
- the smallest number of leaves (among the irregular mobiles having the smallest maximum weight)



Note that:

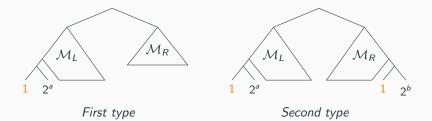
• the maximum weight of ${\mathcal M}$ is at least 2

- the maximum weight of ${\mathcal M}$ is at least 2
- ${\mathcal M}$ has at least one leaf of weight 1

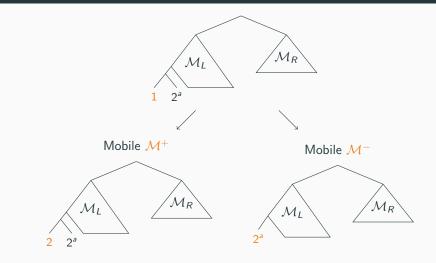
- the maximum weight of ${\mathcal M}$ is at least 2
- ${\mathcal M}$ has at least one leaf of weight 1
- w.l.o.g. \mathcal{M}_L and \mathcal{M}_R are built by SMALLEST

- the maximum weight of ${\mathcal M}$ is at least 2
- ${\mathcal M}$ has at least one leaf of weight 1
- w.l.o.g. \mathcal{M}_L and \mathcal{M}_R are built by SMALLEST
- \mathcal{M}_L and \mathcal{M}_R have at most one leaf of weight 1 each

- the maximum weight of ${\mathcal M}$ is at least 2
- ${\mathcal M}$ has at least one leaf of weight 1
- w.l.o.g. \mathcal{M}_L and \mathcal{M}_R are built by SMALLEST
- \mathcal{M}_L and \mathcal{M}_R have at most one leaf of weight 1 each



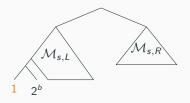
First possible shape



$$\Delta_{\mathcal{M}} = \frac{1}{2}\Delta_{\mathcal{M}^+} + \frac{1}{2}\Delta_{\mathcal{M}^-} + 2^{\mathfrak{a}-1}$$

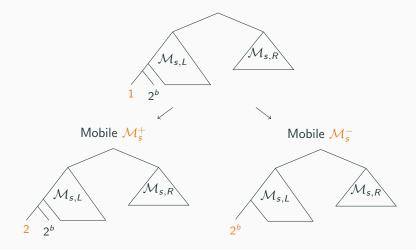
First possible shape

Take the (non-optimal) mobile \mathcal{M}_s built by SMALLEST:



First possible shape

Take the (non-optimal) mobile \mathcal{M}_s built by SMALLEST:



$$\Delta_{\mathcal{M}_s} = \frac{1}{2} \Delta_{\mathcal{M}_s^+} + \frac{1}{2} \Delta_{\mathcal{M}_s^-} + 2^{b-1}$$

- \mathcal{M}_{s}^{+} and \mathcal{M}_{s}^{-} are also built by $\operatorname{Smallest}$
- \mathcal{M}^+ and \mathcal{M}^- cannot be irregular
- $2^b \leq 2^a$

Note that:

- \mathcal{M}_s^+ and \mathcal{M}_s^- are also built by SMALLEST
- \mathcal{M}^+ and \mathcal{M}^- cannot be irregular
- $2^b \leq 2^a$

 $\mbox{Consequently: } \Delta_{\mathcal{M}_s^+} \leq \Delta_{\mathcal{M}^+} \mbox{ and } \Delta_{\mathcal{M}_s^-} \leq \Delta_{\mathcal{M}^-}$

Note that:

- \mathcal{M}_{s}^{+} and \mathcal{M}_{s}^{-} are also built by $\mathrm{Smallest}$
- \mathcal{M}^+ and \mathcal{M}^- cannot be irregular
- $2^b \leq 2^a$

$$\ \ \text{Consequently:} \ \ \Delta_{\mathcal{M}_s^+} \leq \Delta_{\mathcal{M}^+} \ \text{and} \ \ \Delta_{\mathcal{M}_s^-} \leq \Delta_{\mathcal{M}^-}$$

Thus :

$$\Delta_{\mathcal{M}_s} = \frac{1}{2} \Delta_{\mathcal{M}_s^+} + \frac{1}{2} \Delta_{\mathcal{M}_s^-} + 2^{b-1} \leq \frac{1}{2} \Delta_{\mathcal{M}^+} + \frac{1}{2} \Delta_{\mathcal{M}^-} + 2^{a-1} = \Delta_{\mathcal{M}_s^+}$$

It contradicts $\Delta_{\mathcal{M}_s} > \Delta_{\mathcal{M}}$.