
Optimization Problems on Quantum Computers

CEMRACS Summer School 2025

Instructor: Yassine Hamoudi

Course page: https://yassine-hamoudi.github.io/cemracs2025/

Problem Session

Solving MAX-3SAT with Grover’s search in Qiskit

MAX-3SAT is a Boolean optimization problem that asks for the maximum number of clauses

that can be simultaneously satisfied in a given 3-CNF formula. For instance, in the formula:

(x̄1 ∨ x2 ∨ x4) ∧ (x̄2 ∨ x3 ∨ x4) ∧ (x1 ∨ x̄3 ∨ x4) ∧ (x1 ∨ x̄2 ∨ x̄4)∧

(x2 ∨ x̄3 ∨ x̄4) ∧ (x̄1 ∨ x3 ∨ x̄4) ∧ (x1 ∨ x2 ∨ x3) ∧ (x̄1 ∨ x̄2 ∨ x̄3)

one can check that at most 7 out of the 8 clauses can be satisfied simultaneously. An example

of a maximizing assignment is x = x1x2x3x4 = 1101.

Input encoding. We let n denote the number of variables and m the number of clauses. In

the example above, n = 4 and m = 8. A 3-CNF formula will be represented in Python as a

list F of size m, where each entry encodes a clause as a 6-tuple (i, j, k, a, b, c), defined as follows:

i, j, k are the indices of the three variables in the clause, and a, b, c are Boolean values indicating

whether the corresponding variables are negated or not. For instance, the clause x̄1 ∨ x2 ∨ x4 is

represented by the tuple (1,2,4,False,True,True) and the formula above is encoded as:

F = [(1,2,4,False,True,True), (2,3,4,False,True,True), (1,3,4,True,False,True), (1,2,4,True,False,False),

(2,3,4,True,False,False), (1,3,4,False,True,False), (1,2,3,True,True,True), (1,2,3,False,False,False)]

Algorithm. We aim to solve the problem using Grover’s algorithm, as presented1 in Lecture 2.

Let WF (x) ∈ {0, . . . ,m} be the number of clauses satisfied by x ∈ {0, 1}n. The algorithm is:

1. Set x = 0 . . . 0 ∈ {0, 1}n and w = WF (x).

2. Repeat until no further progress is made:

(a) Use Grover’s algorithm to search for a string x′ ∈ {0, 1}n such that WF (x
′) > w.

(b) If such an x′ is found, update x = x′ and w = WF (x
′).

Qiskit. We recommend using the modules qiskit.circuit2 and qiskit.circuit.library3,

in particular the class QuantumCircuit4. For simulating quantum circuits and collecting statis-

tics about measurement outcomes, we recommend using the Qiskit Aer simulator5 (install the

module qiskit-aer) and the visualization module6.

1https://yassine-hamoudi.github.io/files/cemracs2025/Lecture2.pdf
2https://quantum.cloud.ibm.com/docs/en/api/qiskit/circuit
3https://quantum.cloud.ibm.com/docs/en/api/qiskit/circuit_library
4https://quantum.cloud.ibm.com/docs/en/api/qiskit/qiskit.circuit.QuantumCircuit
5https://qiskit.github.io/qiskit-aer/tutorials/1_aersimulator.html
6https://quantum.cloud.ibm.com/docs/en/api/qiskit/visualization

1

https://yassine-hamoudi.github.io/cemracs2025/
https://yassine-hamoudi.github.io/files/cemracs2025/Lecture2.pdf
https://quantum.cloud.ibm.com/docs/en/api/qiskit/circuit
https://quantum.cloud.ibm.com/docs/en/api/qiskit/circuit_library
https://quantum.cloud.ibm.com/docs/en/api/qiskit/qiskit.circuit.QuantumCircuit
https://qiskit.github.io/qiskit-aer/tutorials/1_aersimulator.html
https://quantum.cloud.ibm.com/docs/en/api/qiskit/visualization


Grover’s search

Before addressing the MAX-3SAT problem, we will familiarize ourselves with Grover’s algorithm

by implementing it on a simpler problem. The goal of this section is to search, among all x ∈
{0, 1}n, for an assignment that satisfies the clause x1∨ x̄3∨ x̄4. We define C : {0, 1}n → {0, 1} as

the Boolean function that evaluates this clause on input x (i.e., C(x) = 1 ⇔ x1∨x̄3∨x̄4 = True).

Question 1. Implement the function oracleClause(n) that returns a quantum circuit over

n+ 1 qubits simulating the oracle

UC : |x⟩|b⟩ 7→ |x⟩|b⊕ C(x)⟩

for all x ∈ {0, 1}n and b ∈ {0, 1}, i.e., UC |x⟩|0⟩ = |x⟩|C(x)⟩ and UC |x⟩|1⟩ = |x⟩|1 − C(x)⟩ (the

second caseensures that UC is a unitary operator). You may use the X gate controlled on 3

qubits7. Run the circuit on the Aer simulator and check that it returns the correct outcomes.

Grover’s algorithm requires a different kind of oracle, known as a phase-flip oracle PC . Instead

of writing the value of C in an extra register, this oracle flips the phase of the basis state |x⟩
whenever C(x) = 1, i.e.,

PC : |x⟩ 7→ (−1)C(x)|x⟩

Question 2. Show that, for any Boolean function C : {0, 1}n → {0, 1}, the phase-flip oracle PC

can be efficiently computed using one call to UC , two additional single-qubit gates, and one

ancilla qubit. That is, it computes |x⟩|0⟩ 7→ (−1)C(x)|x⟩|0⟩ where the second register holds an

ancilla qubit that may be used during the computation but must be restored to |0⟩ at the end.

Question 3. Implement the function phaseOracleClause(n) that returns a quantum circuit

over n + 1 qubits simulating the phase-flip oracle |x⟩|0⟩ 7→ (−1)C(x)|x⟩|0⟩ corresponding to the

clause C(x) = x1 ∨ x̄3 ∨ x̄4.

Grover’s algorithm works by repeated application of the following operator Q (known as the

Grover operator), which acts on the Hilbert space spanned by {|x⟩ : x ∈ {0, 1}n}:

Q = H⊗nR0H
⊗nPC .

This operator is composed of two layers of Hadamard gates, a reflection R0 = 2|0 . . . 0⟩⟨0 . . . 0|−
Id about the all-zero state and the phase flip oracle PC . When applied for the correct number T

of iterations to the initial state H⊗n|0 . . . 0⟩, this operators prepares the uniform superposition

over all satisfying assignments:

QTH⊗n|0 . . . 0⟩ ≈ 1√
|{x : C(x) = 1}|

∑
x:C(x)=1

|x⟩.

The correct number of iterations is on the order of T ≈
√
2n/|{x : C(x) = 1}|. If the number of

satisfying assignments is unknown, one can try increasing values T = 1, 2, 4, 8, . . . , and measure

the state QTH⊗n|0 . . . 0⟩ at each step, until the measurement yields a satisfying assignment.

7https://quantum.cloud.ibm.com/docs/en/api/qiskit/qiskit.circuit.library.C3XGate

2

https://quantum.cloud.ibm.com/docs/en/api/qiskit/qiskit.circuit.library.C3XGate


Question 4. Implement the function groverOperatorClause(n) that takes as input an integer

n ≥ 4 and returns a quantum circuit simulating the Grover operator for the function C(x) =

x1 ∨ x̄3 ∨ x̄4. It is recommended to use the function from Question 3 and the multi-controlled X

gate8. You may use ancilla qubits during the computation (as in Question 2), provided they are

restored to |0⟩ at the end.

Question 5. Implement the function groverClause(n) that takes as input an integer n ≥ 4

and returns a list x = [x1, . . . , xn] of binary values representing an assignment that satisfies the

clause x1∨ x̄3∨ x̄4. You must use the function from Question 4 and Grover’s algorithm to search

for a solution (i.e., do not simply return a valid hardcoded assignment such as [1, 0, . . . , 0]).

Oracle for MAX-3SAT

We now move on to the MAX-3SAT problem. Given a 3-CNF formula represented by a list F

and integer w, we define Fw : {0, 1}n → {0, 1} as the Boolean function that evaluates to 1 if

and only if x satisfies more than w clauses in F (i.e., Fw(x) = 1 ⇔ WF (x) > w). Our goal is

to implement the corresponding phase-flip oracle |x⟩ 7→ (−1)Fw(x)|x⟩. If necessary, additional

ancilla qubits initial in the all-zero state may be used in the circuits implemented below, provided

they are guaranteed to be restored to zero at the end of the computation (this is necessary to

be able to correctly combine quantum circuits together).

Question 6. Modify the code from Question 1 to write a function oracleClause(n,C) that

takes as input an integer n and a 6-tuple C representing a clause, and returns a quantum circuit

simulating the operation

UC : |x⟩|b⟩ 7→ |x⟩|b⊕ C(x)⟩

for all x ∈ {0, 1}n and b ∈ {0, 1}, where C(x) = 1 if and only if the clause is satisfied by x.

Question 7. Implement the function countClauses(n,F) that takes as input an integer n and

a 3-CNF formula represented as a list F , and returns a quantum circuit simulating the operation

|x⟩|0 . . . 0⟩ 7→ |x⟩|WF (x)⟩

whereWF (x) denotes the number of clauses satisfied by x in F . You may use the ModularAdderGate9.

Question 8. Implement the function MAX3SATOracle(n,w,F) that takes as input an integer n,

an integer w and a 3-CNF formula represented as a list F , and that returns a quantum circuit

simulating the phase-flip oracle

|x⟩ 7→ (−1)Fw(x)|x⟩.

You may use the IntegerComparatorGate10.

8https://quantum.cloud.ibm.com/docs/en/api/qiskit/qiskit.circuit.library.MCXGate
9https://quantum.cloud.ibm.com/docs/en/api/qiskit/qiskit.circuit.library.ModularAdderGate

10https://quantum.cloud.ibm.com/docs/en/api/qiskit/qiskit.circuit.library.

IntegerComparatorGate

3

https://quantum.cloud.ibm.com/docs/en/api/qiskit/qiskit.circuit.library.MCXGate
https://quantum.cloud.ibm.com/docs/en/api/qiskit/qiskit.circuit.library.ModularAdderGate
https://quantum.cloud.ibm.com/docs/en/api/qiskit/qiskit.circuit.library.IntegerComparatorGate
https://quantum.cloud.ibm.com/docs/en/api/qiskit/qiskit.circuit.library.IntegerComparatorGate


Final algorithm

Question 9. Implement the function decisionMAX3SAT(n,w,F) that takes as input a list F rep-

resenting a 3-CNF formula over n variables and an integer w, and returns a list x = [x1, . . . , xn]

such that x is an assignment satisfying more than w clauses of F , if such an assignment ex-

ists. Otherwise, the function should return x = [−1, . . . ,−1]. You must use Grover’s algorithm

together with the phase-flip oracle implemented in Question 8.

Question 10. By using decisionMAX3SAT and the Quantum Minimum Finding algorithm (as

presented in Lecture 2), implement the function MAX3SAT(n,F) that takes as input a list F

representing a 3-CNF formula over n variables, and returns a list x = [x1, . . . , xn] representing

an assignment that solves the MAX-3SAT problem on F .

(Bonus) K-Maximum Finding

We now aim to extend the above algorithm to find the top-K assignments x(1), . . . , x(K) that

satisfy the largest number of clauses in a given 3-CNF formula.

Question 11. Given a quantum oracle access to an arbitrary function W : {0, . . . , 2n − 1} →
{0, . . . ,m}, describe a quantum algorithm for finding the K largest elements under W , using

O(
√
K2n) quantum queries to an oracle for W .

Question 12. Using this algorithm, implement the function topMAX3SAT(n,k,F) that returns

the top-k assignments satisfying the most clauses in a 3-CNF formula F .

4


