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Yesterday'’s lecture:

- very general algorithms applying to broad class of problems

- running time often unknown but expected to be significantly smaller than that of
classical methods

- sometimes adapted to near-term and hybrid guantum computers

Today’s lecture:

- algorithms that are more computer science-oriented and problem-specific

- precise running time guarantees and provable quantum advantages, but often
moderate speedups

- require large-scale fault-tolerant guantum computers



Quantum optimization algorithms

Lecture 1
(Physics-inspired)

Exact algorithms

- Quantum Phase Estimation (QPE)
- Quantum Adiabatic Algorithm (QAA)

Variational guantum algorithms

- Variational Quantum Eigensolver (VQE)

- Quantum Approximate Optimization
Algorithm (QAOA)

Lecture 2
(Oracle-based)

Grover-type algorithms

- Quantum Minimum Finding

- Minimum Spanning Tree
Gradient computation

Monte-Carlo algorithms

- Linear programming

- Escaping Saddle Points



Quantum oracles



The algorithms presented in this lecture require a specific input-access

model known as a guantum oracle.

Unknown function  An oracle is a unitary operator U, that provides a way
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F(@) to evaluate a function on any superposition of values
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On classical computers, the oracle can only return a

200
single value at a time 1 — F(7)

We aim at minimizing the number of calls (= queries) to the oracle



Example

Function that enumerates the

edges of an unknown grapn How many calls to the oracle are needed to

T

I | F3) solve a given problem on an unknown graph?

(1,2)

(2,5) | |

(1.4) (Ex: Is the graph connected? What is the size of
(3,4) the maximum cut? Etc.)

(3,6)

(4,6)

(4,5)

(4,7)

(6,7)
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Example: Bernstein—Vazirani algorithm

Bernstein-Vazirani problem: Oracleto f: {0,1}¢ — {0,1}
X+ ax;+ ... +azx, mod 2
Compute (ay, ...,a,)

Using a classical oracle Using a quantum oracle

d queries 7 queries



Example: Bernstein—Vazirani algorithm




Grover-type algorithms



Grover’s algorithm

What it does:

Search in the domain of an oracle if an element satisfies a given predicate

Example
1 i | FG) Is there an edge
3 Lo containing vertex 37
2 (2,5)
3 (1,4)
) 4 <§"6‘> Classical algorithms may Grover requires quadratically
2 §4j6; have to query all edges less queries to the oracle
0 7 | @s)
8 4,7)
9 (6,7)




Grover’s algorithm

What it does:

Search in the domain of an oracle if an element satisfies a given predicate

... and If so, return a uniform superposition over all the solution elements:

|
Z |i) where [ ={i: Predicate(i, F(i)) = True)

Grover’s algorithm requires ~ 1/ N/K quantum queries, where N

is the domain size of F'and K = || the number of solutions.




Quantum Minimum Finding



2

x | fx)

1| 6

2 | 2

3| 9

4 | 8

5 | 3

6 | 1

7 | 8
=8 | 4

FInding the smallest element

If the function is completely arbitrary, the best possible
classical algorithm is to evaluate all entries in time NV

How Grover’s algorithm can help here?

Set (x,y) = (1,/(1))
Repeat:

Prepare with Grover the superposition over all x" satisfying f(x’) < y.

Sample x’s.t. f(x") < y, uniformly at random, by measuring the state.

Update (x,y) = (X, f(x)).




x | fx)
L2

3 | 9

4 | 8
~C_ | >
— 6 | 1

7 | 8
— 8 | 4

FInding the smallest element

If the function is completely arbitrary, the best possible
classical algorithm is to evaluate all entries in time NV

How Grover’s algorithm can help here?

Set (x,y) = (1,/(1))
Repeat:

Prepare with Grover the superposition over all x" satisfying f(x’) < y.

Sample x’s.t. f(x") < y, uniformly at random, by measuring the state.

Update (x,y) = (X, f(x)).




x | fx)
1| 6
— 2 | 2
3| 9
4 | 8
D
==
7| 8
3 | 4

FInding the smallest element

If the function is completely arbitrary, the best possible
classical algorithm is to evaluate all entries in time NV

How Grover’s algorithm can help here?

Set (x,y) = (1,/(1))
Repeat:

Prepare with Grover the superposition over all x" satisfying f(x’) < y.

Sample x’s.t. f(x") < y, uniformly at random, by measuring the state.

Update (x,y) = (X, f(x)).

Converges to the minimum in log N steps
The overall query complexity is ~ \/N .



Example: MAX-SAT

Find an assignment that maximizes the number of
satisfied clauses in a CNF formula

f(X) — _l.xl AN (xl V .Xz) AN (_'.Xl V X2) AN X3 AN (_'.xl V _'.XZ V _'X3)

x| =fx)

Compiles the formula into a quantum circuit that (Built-in class
simulates the oracle U, : |x)|0) = |x)|f(x))  PhaseOracle in Qiskit
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100

Quantum Minimum Finding finds a solution in time ~ /2"

101 '
(n = number of variables)
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Super-quadratic speedups

= I'le > quant-ph > arXiv:2212.01513

For some hard binary optimization
Quantum Physics

e problems encoded into Hamiltonians:

Mind the gap: Achieving a super-Grover quantum
speedup by jumping to the end

Alexander M. Dalzell, Nicola Pancotti, Earl T. Campbell, Fernando G. S. L. Branddo (Grover’s algOrithm can help fraverse
We present a quantum algorithm that has rigorous runtime guarantees for several families of reg IOnS Of Sma” SpeCtraI gapS |n the

binary optimization problems, including Quadratic Unconstrained Binary Optimization (QUBO),

Ising spin glasses (p-spin model), and k-local constraint satisfaction problems (k-CSP). We show ad |abat|C eVOIUtK)n
that either (a) the algorithm finds the optimal solution in time O* (20°79") for an n-independent

constant ¢, a 2°" advantage over Grover's algorithm; or (b) there are sufficiently many low-cost

solutions such that classical random guessing produces a (1 — 1) approximation to the optimal . . 2(1 —C)n
cost value in sub-exponential time for arbitrarily small choice of M. Additionally, we show that for Provable ru NN ng tl me Of ~

a large fraction of random instances from the k-spin model and for any fully satisfiable or

slightly frustrated k-CSP formula, statement (a) is the case. The algorithm and its analysis is (fOr a Sma” C < 1)
largely inspired by Hastings' short-path algorithm [Quantum 2 (2018) 78].




2

x | fx)

1| 6

2 | 2

3| 9

4 | 8

5 | 3

6 | 1

7 | 8
=8 | 4

FInding the smallest element

Quantum Minimum Finding can find the minimum in a
search space of size /N by using ~ \/N queries

As a standalone optimization algorithm, this is often ineffective
since the size /V of the search space is typically enormous

... but It can become useful when used as a subroutine



Example: Minimum Spanning Tree



Find a spanning tree with minimum

total edge weight
/ Weight: w; + w3 + w, + wg + wy + wg = 26

Number of vertices: n = 7/

Number of edges: m = 9

Weight: w; + w, + ws + wy + ws + wy = 14



Find a spanning tree with minimum

total edge weight
Oracle

The oracle provides the vertices
and weight of each edge

1 | (1L2),1
2 | (2)5),2
9 | (6,7),2

Number of vertices: n = 7/

Number of edges: m = 9



FInding a minimum spanning tree in a graph
with 7 vertices and m1 edges

Number of classical queries Number of quantum queries

~ Mm ~ \/ nm

n—1<m<n?ifthe graph is connected



Boruvka's algorithm

Grow a spanning tree by adding the smallest-weight
outgoing edge to each component of the current forest

Step O Step Step 2




Boruvka's algorithm

Each step consists of finding the k-out-of-m edges of smallest
weights that are outgoing from the k£ remaining trees.

Step O Step Step 2




Boruvka's algorithm

Each step consists of finding the k-out-of-m edges of smallest
weights that are outgoing from the k£ remaining trees.

Quantum k-minimum finding

Quantum speedup (Diir et al.’2006)

- Quantum minimum finding can find those edges using ~ 1/ km quantum queries

- At the 7-th step of the algorithm, at most 7/2' connected components remain

Overall complexity: ~+/am + \/nm/2 ++/nm/4 ++/nm/8 ~ +/nm



Other applications



= I'le > quant-ph > arXiv:quant-ph/0401091

Quantum Physics Malﬂ tOOI M|n|mum F|nd|ng

[Submitted on 15 Jan 2004 (v1), last revised 8 Jun 2004 (this version, v2)]

Quantum query complexity of some graph problems
Christoph Durr, Mark Heiligman, Peter Hoyer, Mehdi Mhalla

Quantum algorithms for graph problems are considered, both in the adjacency matrix

Examples of applications:
model and in an adjacency list-like array model. We give almost tight lower and upper . 0
bounds for the bounded error quantum query complexity of Connectivity, Strong - M I n I m U m S pan n I n g Tree

Connectivity, Minimum Spanning Tree, and Single Source Shortest Paths. For example

we show that the query complexity of Minimum Spanning Tree is in Theta(nA{3/2}) in — Si ng Ie SOU rce ShOrteSt Paths

the matrix model and in Theta(sgrt{nm}) in the array model, while the complexity of
Connectivity is also in Theta(nA{3/2}) in the matrix model, but in Theta(n) in the array

model. The upper bounds utilize search procedures for finding minima of functions
under various conditions.




o -Search...
= I'le > quant-ph > arXiv:1911.07306 Help | Adh

Quantum Physics

[Submitted on 17 Nov 2019 (v1), last revised 8 May 2023 (this version, v4)]

Quantum Speedup for Graph Sparsification, Cut
Approximation and Laplacian Solving

Simon Apers, Ronald de Wolf

Graph sparsification underlies a large number of algorithms, ranging from
approximation algorithms for cut problems to solvers for linear systems in the graph
Laplacian. In its strongest form, "spectral sparsification" reduces the number of edges to
near-linear in the number of nodes, while approximately preserving the cut and spectral
structure of the graph. In this work we demonstrate a polynomial quantum speedup for
spectral sparsification and many of its applications. In particular, we give a quantum
algorithm that, given a weighted graph with n nodes and m edges, outputs a classical

description of an e-spectral sparsifier in sublinear time O~(\/mn/£). This contrasts with
the optimal classical complexity d(m). We also prove that our quantum algorithm is
optimal up to polylog-factors. The algorithm builds on a string of existing results on
sparsification, graph spanners, quantum algorithms for shortest paths, and efficient
constructions for k-wise independent random strings. Our algorithm implies a quantum
speedup for solving Laplacian systems and for approximating a range of cut problems
such as min cut and sparsest cut.

Main tool: Graph sparsification

Examples of applications:
- Laplacian system solving
- Cut approximations



= I'le > quant-ph > arXiv:1807.05209 Help | Adv:

Quantum Physics

Main tool: Dynamic programming

[Submitted on 13 Jul 2018]

Quantum Speedups for Exponential-Time Dynamic
Programming Algorithms

Jevgenijs Vihrovs Examples of applications:

In this paper we study quantum algorithms for NP-complete problems whose best

classical algorithm is an exponential time application of dynamic programming. We m— Travel | i n g Sal esm an P ro b I em

introduce the path in the hypercube problem that models many of these dynamic

programming algorithms. In this problem we are asked whether there is a path from 0" . .

to 1" in a given subgraph of the Boolean hypercube, where the edges are all directed - M I n I m U m Set COver
from smaller to larger Hamming weight. We give a quantum algorithm that solves path

in the hypercube in time O*(1.817"). The technique combines Grover's search with

computing a partial dynamic programming table. We use this approach to solve a variety

of vertex ordering problems on graphs in the same time O*(1.817"), and graph

bandwidth in time O*(2.946"). Then we use similar ideas to solve the travelling
salesman problem and minimum set cover in time O*(1.728").




= I'le > quant-ph > arXiv:1612.06203 Help | Adv:

Quantum Physics

e Main tools: Quantum walks,

Quantum speedup of the Travelling Salesman

Problem for bounded-degree graphs BathraCking, BranCh—and—bOu nd

Alexandra E. Moylett, Noah Linden, Ashley Montanaro

The Travelling Salesman Problem is one of the most famous problems in graph theory.
However, little is currently known about the extent to which quantum computers could
speed up algorithms for the problem. In this paper, we prove a quadratic quantum
speedup when the degree of each vertex is at most 3 by applying a quantum
backtracking algorithm to a classical algorithm by Xiao and Nagamochi. We then use
similar techniques to accelerate a classical algorithm for when the degree of each vertex

5 2 03t 4, before speeding up higher-degres graphs i reductions 10 these Exam p | es Of ap pl iC at | ONS:
- Travelling Salesman Problem
- Ground states of spin models

= I‘le > cs > arXiv:1906.10375 Help | Adv

Computer Science > Data Structures and Algorithms

[Submitted on 25 Jun 2019]

Quantum speedup of branch-and-bound algorithms

Ashley Montanaro

Branch-and-bound is a widely used technique for solving combinatorial optimisation

problems where one has access to two procedures: a branching procedure that splits a
set of potential solutions into subsets, and a cost procedure that determines a lower
bound on the cost of any solution in a given subset. Here we describe a quantum
algorithm that can accelerate classical branch-and-bound algorithms near-quadratically
in a very general setting. We show that the quantum algorithm can find exact ground
states for most instances of the Sherrington—Kirkpatrick model in time O(2°%%°"), which
is substantially more efficient than Grover's algorithm.




Gradient computation



Gradient descent is an optimization method that explores the search space by
making iterative steps in the direction where f decreases the fastest

/

f:RY > R

This works very well in convex optimization (converges to the minimum)
but is also used in hon-convex optimization (converges to local minima)

The fastest decreasing direction is given by the gradient (~ derivative)
of the objective function

Gradient Gradient step
o of of ,
V£(x) = (a_xl(x)’ ...,a—)%(x)) XD = xO_ v ()



Gradient computation

0 0
RS R V) = (—f<x>,... —f<x>)

0X; " ox,
Suppose f behaves locally as a linear function:
f(.X) — ao + alxl + ... + adxd

How many evaluations of f to compute its gradient Vf(x) = (ay,...,a,;) ?

Number of classical queries: d+ 1 Number of quantum queries: 2,
f(bo) = d + alb(),l + ... + adb(),d
fby) = ag+aby, + ... +ab,,  System of d + 1 independent Jordan’s algorithm (2004)
, equations with unigue solution
(ag, ..., d,)

f(bd) = d + albd,l + ...+ adbd,d



Jordan’s algorithm

Compute the gradient of a linear function: f(x) =ay+ ax; + ... + ax, f:RY> R
| a)|0) =
LI —— m s s o s s — o 21X [0) ——> [V/())]0)
xeG X

Two quantum queries to Uf Quanturn Eourier

\ Transf
Carefully chosen set ranstorm

of points G C R¢

Reminiscent of the Bernstein-Vazirani problem: f(x) = ajx; + ... + a;x; mod 2 f: {0,1}¢ — {0,1}

1
i D 1010y — WZ\xﬂf(x)) — WZ( D) x) [ f(X)) —n 2d,22< D 1x)10) —— |a)|0)

xe{0,1}4

Quantum Phase encoding Inverse quan’{um Hadamard
query U (Z gates) query Uf_ transform H®?¢



Jordan’s algorithm

d

— R

For general functions f: |

First-order approximation around current iterate:
a 4 a,

) & fx®) = VAT - xO 4 VAO), - xy + ot VAXD), - x,

Under sufficient smoothness assumptions ( f is analytic and has bounded partial derivatives):

of of
Estimate (—x +e, ..., —(x ie) ith ~ i
axl( ) axd( ) with \/;l/e quantum queries
Caveats:
- requires to evaluate f with high precision

- may not be competitive against non-oracular classical methods (ex: automatic differentiation)



Higher-order methods

Second-order methods: Use the Hessian matrix Hf (~ second-order derivative) as well

Q Faster convergence rate compared to gradient descent

Q Harder to compute and requires more memory (matrix of size d2)

Example of application: interior point methods

Quantum speedups investigated by arXiv:1808.09266, arXiv:2311.03215, ...



Monte-Carlo algorithms



Monte-Carlo algorithms rely on random sampling to make their decisions

(ex: stochastic optimization)

Quantum computers can sample certain distributions more efficiently

than classical computers



Linear programming



Linear programming

Minimize a real-valued linear objective function subject to linear constraints

Y Minimize 2x + y n = 2 variables

S. L.

X

Convex optimization problem

y<x+?2 m = 4 constraints

y2z3x—4 The coefficients of the LP
dy < —x+12 are provided via an oracle
2y > —3x+4

x,y >0

Find an e-approximate solution?

Quantum solver Classical solvers
~ \/n+m/€2'5 At least n + m




Grigoriadis-Khachiyan’s algorithm

Linear programming can be reduced to a problem where:

- The linear constraints are arranged into a skew-symmetric matrix: A € [—1,1]"V
A=—-A"
_ N _
- The search space is the set of all probability vectors: (2 = {x e [0,1]7, Z l.xi — 1}

- The goal is to find an x € €2 such that: (Ax);, < €,Vi

(Nash equilibrium: there exists x* € Q such that Ax* = (0,...,0))



Grigoriadis-Khachiyan’s algorithm

Find proba. vector x € [0,1]", ) x =1 Ansatz: Gibbs distribution
satisfying (Ax). < e,Vi

where the entries A € [— 1,17V
are provided via an oracle

Sett =0 and u'Y = (0,...,0) xP = (1/N,...,1/N)
Repeat:

Sample i € [N] from the Gibbs distribution x‘” o AU

Increment the i-th coordinate: 1" = 4 + ¢,

Increment the time step: t =1+ 1

X o eeAu

where u € N is an iInteger-valued vector

The distribution leans toward
the unsatisfied constraints

Converges to a solution
in t ~ log(N)/e? steps,
each of cost ~ N



Quantum algorithm

Find proba. vector x € [0,1]", ) x =1 Ansatz: Gibbs distribution

satisfying (Ax);, < e, Vi x o efAu

where the entries A € [— 1,17V
are provided via an oracle

where u € N is an iInteger-valued vector

Setr=0 and u'Y = (0,...,0) x® = (1/N, ...,1/N)
Repeat:

N

t 4, (D) .

Sample i € [N] from the Gibbs distribution x‘” o g€Au” Prepare and 2 eI | i)
=1

Quantum speedup:

, ' measure.
Increment the i-th coordinate: 1" = 4 + ¢,

Increment the time step: t =1+ 1 Cost per step: ~ \ﬁ\f queries




Quantum algorithm

Find proba. vector x € [0,1]", ) x =1 Ansatz: Gibbs distribution

satisfying (Ax);, < e, Vi x o efAu

where the entries A € [— 1,17V
are provided via an oracle

where u € N is an iInteger-valued vector

. N D
Quantum state preparation of « ) 1e€Ai’“‘()/2\l). Assuming max, Au® = 0
=
Prepare the uniform App|y =) b|ock-encoding [/ : :
superposition . U Y — 5 Amplify the first part

1

1 o
ﬁzim U(ﬁZJi)\O)) = (\/Z_vzieef‘iu“>/2\i>)\o>+\...)\oi> — 2, e 10 10)



Quantum algorithm

- - -Search...
= I'XIV > quant-ph > arXiv:1904.03180 Help | Ady = I'le > quant-ph > arXiv:2301.03763

Help | Adv

ShEL U Quantum Physics

[Submitted on 5 Apr 2019]

Quantum algorithms for zero-sum games

[Submitted on 10_Jan 2023]

Quantum Speedups for Zero-Sum Games via
Improved Dynamic Gibbs Sampling

Adam Bouland, Yosheb Getachew, Yujia Jin, Aaron Sidford, Kevin Tian

Joran van Apeldoorn, Andras Gilyén

We derive sublinear-time quantum algorithms for computing the Nash
equilibrium of two-player zero-sum games, based on efficient Gibbs sampling
methods. We are able to achieve speed-ups for both dense and sparse payoff
matrices at the cost of a mildly increased dependence on the additive error
compared to classical algorithms. In particular we can find €-approximate Nash _ _ _ _

e e S 3 ~ 35 _ standard quantum oracle for accessing the payoff matrix our algorithm runs in
equilibrium strategies in complexity O(y/m+ m/e’) and O(4/s/€’~) respectively,

a0 . =25 -3 : : N
where n X m is the size of the matrix describing the game and s is its sparsity. Sme O.(\/i’ﬁ—-F‘n g _ .+ E ) and_ o.utputs a classical represen.tatlon of the €
Our algorithms use the LP formulation of the problem and apply techniques apprOX|mat’e~Nash equilibrium. This improves upon the best prior quantum
developed in recent works on quantum SDP-solvers. We also show how to reduce runtime of O(y/m+ 0 - € ) obtained by [VAG19] and the classic

general LP-solving to zero-sum games, resulting in quantum LP-solvers that O((m +n) - €2) runtime due to [GK95] whenever € = Q((m + n)~!). We obtain

have complexities O(y/m+mYy>) and O(4/sy>~) for the dense and sparse access this result by designing new quantum data structures for efficiently sampling
models respectively, where v is the relevant "scale-invariant” precision parameter from a slowly-changing Gibbs distribution.

We give a quantum algorithm for computing an e-approximate Nash equilibrium
of a zero-sum game in a m X n payoff matrix with bounded entries. Given a




Semidefinite programming

A similar (more involved) quantum algorithm applies to solving semidefinite programs

Minimize Tr(CX)
subject to X € R2" is positive semidefinite

Tr(A;X) < b,
Tr(A,X) < b,

27’1

given C,A,A,,... €
b,b,,... € R




Semidefinite programming

A similar (more involved) quantum algorithm applies to solving semidefinite programs

The core ingredient is Quantum Gibbs Sampling:

) e€H(t)

Prepare the density matrix (proportional to for a certain Hamiltonian H®

Caveats of such LP/SDP quantum solvers:

- poor scaling with precision €

- Involved quantum circuits for arithmetic operations
- may perform worse than other classical algorithms on LP/SDP of interest



Escaping Saddle Points



Saddle points

In continuous optimization, x € R% s a critical point if the gradient is zero V fx) =0

- Gradient descent stops progressing in this situation

- If the function is non-convex, critical points can be

local minima, local maxima, or saddle points

Techniques for escaping saddle points: 3 o
- Compute the Hessian (expansive)

- Add noise (random perturbation) to current position



Quantum algorithm arXiv:2007.10253

Move into a random position obtained by solving the Schrodinger equation:

AN
ZEW(L .X) — (_5 + f(x)) l//(ta X)

Kinetic Potential
operator operator

Under the initial condition:
|sotropic Gaussian distribution

centered at current saddle point

w(0,x) o exp( —||x""—x]||*/6?)

Quantum algorithm: Prepare |w/(¢)) with Hamiltonian simulation and measure it to get x+D

Cost: improved scaling with dimension d over classical methods



Quantum algcrithm arXiv:2007.10253

Move into a random position obtained by solving the Schrodinger equation:

0 (L
i—y(t.) = (—5 + /00 y(e, )

Kinetic Potential
operator operator

Under the initial condition:
|sotropic Gaussian distribution

centered at current saddle point

w(0,x) o exp( —||x""—x]||*/6?)

Why it works: Quadratic approximation of f at x

1
f@) 2 fia®) + VA=) + = = 2T Hia') - (6 = x)

= y(t, x) follows a multivariate Gaussian 4/ (x\", X(¢)) that drifts toward
the negative curvature region of f over time
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