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Yesterday’s lecture:

- very general algorithms applying to broad class of problems

- running time often unknown but expected to be significantly smaller than that of 

classical methods

- sometimes adapted to near-term and hybrid quantum computers 

Today’s lecture:

- algorithms that are more computer science–oriented and problem-specific

- precise running time guarantees and provable quantum advantages, but often 

moderate speedups

- require large-scale fault-tolerant quantum computers



Lecture 2

(Oracle-based)

Lecture 1

(Physics-inspired)

Quantum optimization algorithms

Variational quantum algorithms
- Variational Quantum Eigensolver (VQE) 

- Quantum Approximate Optimization 

Algorithm (QAOA)

Exact algorithms
- Quantum Phase Estimation (QPE)

- Quantum Adiabatic Algorithm (QAA)

Grover-type algorithms
- Quantum Minimum Finding

- Minimum Spanning Tree

Gradient computation

Monte-Carlo algorithms

- Linear programming

- Escaping Saddle Points



Quantum oracles



The algorithms presented in this lecture require a specific input-access 
model known as a quantum oracle.

We aim at minimizing the number of calls (= queries) to the oracle

An oracle is a unitary operator   that provides a way 
to evaluate a function on any superposition of values
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On classical computers, the oracle can only return a 
single value at a time i ↦ F(i)
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How many calls to the oracle are needed to 
solve a given problem on an unknown graph?

(Ex: Is the graph connected? What is the size of 
the maximum cut? Etc.)



Example: Bernstein–Vazirani algorithm

Bernstein–Vazirani problem: f : {0,1}d → {0,1}
x ↦ a1x1 + … + adxd mod 2

Oracle to

Compute (a1, …, ad)

Using a classical oracle

d queries

Using a quantum oracle

2 queries
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Grover-type algorithms



What it does: 
Search in the domain of an oracle if an element satisfies a given predicate

Classical algorithms may 
have to query all edges

Is there an edge 
containing vertex 3?
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Grover requires quadratically 
less queries to the oracle

Grover’s algorithm



Grover’s algorithm requires  quantum queries, where  
is the domain size of  and  the number of solutions.

∼ N/K N
F K = | I |

… and if so, return a uniform superposition over all the solution elements:

Grover’s algorithm

What it does: 
Search in the domain of an oracle if an element satisfies a given predicate

1
| I | ∑

i∈I

| i⟩ I = {i : Predicate(i, F(i)) = True}where



Quantum Minimum Finding



Finding the smallest element

If the function is completely arbitrary, the best possible 
classical algorithm is to evaluate all entries in time Nx f(x)
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How Grover’s algorithm can help here?

Set (x, y) = (1, f(1))

Prepare with Grover the superposition over all  satisfying  .x′ f(x′ ) < y

Update .(x, y) = (x′ , f(x′ ))

Repeat:

Sample  s.t. , uniformly at random, by measuring the state.x′ f(x′ ) < y
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If the function is completely arbitrary, the best possible 
classical algorithm is to evaluate all entries in time Nx f(x)
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Finding the smallest element

If the function is completely arbitrary, the best possible 
classical algorithm is to evaluate all entries in time N

Converges to the minimum in  stepslog N
The overall query complexity is .∼ N
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How Grover’s algorithm can help here?

Set (x, y) = (1, f(1))

Prepare with Grover the superposition over all  satisfying  .x′ f(x′ ) < y

Update .(x, y) = (x′ , f(x′ ))

Repeat:

Sample  s.t. , uniformly at random, by measuring the state.x′ f(x′ ) < y



000 - 3

001 - 4

010 - 4

011 - 5

100 - 2

101 - 3

110 - 3

111 - 3

Find an assignment that maximizes the number of 
satisfied clauses in a CNF formula

Example: MAX-SAT

f(x) = ¬x1 ∧ (x1 ∨ x2) ∧ (¬x1 ∨ x2) ∧ x3 ∧ (¬x1 ∨ ¬x2 ∨ ¬x3)

−f(x)x
(Built-in class 

PhaseOracle in Qiskit)
Compiles the formula into a quantum circuit that 
simulates the oracle Uf : |x⟩ |0⟩ ↦ |x⟩ | f(x)⟩

Quantum Minimum Finding finds a solution in time ∼ 2n

( number of variables)n =



Grover’s algorithm can help traverse 
regions of small spectral gaps in the 

adiabatic evolution

Provable running time of  

(for a small )

∼ 2(1−c)n

c < 1

Super-quadratic speedups

For some hard binary optimization 
problems encoded into Hamiltonians:



As a standalone optimization algorithm, this is often ineffective 
since the size  of the search space is typically enormousN
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Quantum Minimum Finding can find the minimum in a 
search space of size  by using  queriesN ∼ N

Finding the smallest element
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… but it can become useful when used as a subroutine 



Example: Minimum Spanning Tree



w 1
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w5 = 3

w 4
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w
6 =

5w 7
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w8 = 9
w 9

= 2

Number of vertices:  n = 7

Number of edges:  m = 9
Minimum

Weight: w1 + w3 + w4 + w6 + w7 + w8 = 26

Weight: w1 + w2 + w3 + w4 + w5 + w9 = 14

Find a spanning tree with minimum 
total edge weight
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w
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= 2

Number of vertices:  n = 7

Number of edges:  m = 9

Find a spanning tree with minimum 
total edge weight

Oracle
The oracle provides the vertices 

and weight of each edge
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Finding a minimum spanning tree in a graph 
with  vertices and  edgesn m

Number of classical queries

∼ m ∼ nm

Number of quantum queries

 if the graph is connectedn − 1 ≤ m ≤ n2
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Grow a spanning tree by adding the smallest-weight 
outgoing edge to each component of the current forest

Step 0

Borůvka's algorithm

Step 1 Step 2
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Each step consists of finding the -out-of-  edges of smallest 
weights that are outgoing from the  remaining trees.

k m
k

Step 0 Step 2Step 1

Borůvka's algorithm



Each step consists of finding the -out-of-  edges of smallest 
weights that are outgoing from the  remaining trees.

k m
k

Quantum speedup (Dürr et al.’2006)

Borůvka's algorithm

- Quantum minimum finding can find those edges using  quantum queries


- At the -th step of the algorithm, at most  connected components remain
∼ km

t n/2t

Overall complexity: ∼ nm + nm/2 + nm/4 + nm/8 ∼ nm

Quantum -minimum findingk



Other applications



Main tool: Minimum Finding

Examples of applications: 

- Minimum Spanning Tree

- Single Source Shortest Paths 



Main tool: Graph sparsification

Examples of applications: 

- Laplacian system solving

- Cut approximations



Main tool: Dynamic programming

Examples of applications: 

- Travelling Salesman Problem

- Minimum Set Cover



Main tools: Quantum walks, 
Backtracking, Branch-and-bound

Examples of applications: 

- Travelling Salesman Problem

- Ground states of spin models



Gradient computation



Gradient descent is an optimization method that explores the search space by 
making iterative steps in the direction where  decreases the fastestf

This works very well in convex optimization (converges to the minimum) 
but is also used in non-convex optimization (converges to local minima)

f : ℝd → ℝ

The fastest decreasing direction is given by the gradient (~ derivative) 
of the objective function

x(t+1) = x(t)− ∇f(x(t))∇f(x) = ( ∂f
∂x1

(x), …,
∂f
∂xd

(x))
Gradient stepGradient



Suppose    behaves locally as a linear function:f

Gradient computation

f : ℝd → ℝ ∇f(x) = ( ∂f
∂x1

(x), …,
∂f
∂xd

(x))

f(x) = a0 + a1x1 + … + adxd

How many evaluations of    to compute its gradient  ?f ∇f(x) = (a1, …, ad)

⋮

Number of classical queries: d + 1
f(b0) = a0 + a1b0,1 + … + adb0,d

f(b1) = a0 + a1b1,1 + … + adb1,d

f(bd) = a0 + a1bd,1 + … + adbd,d

System of  independent 
equations with unique solution 

d + 1

(a0, …, ad)

Number of quantum queries: 2

Jordan’s algorithm (2004)



Jordan’s algorithm

Compute the gradient of a linear function:  f(x) = a0 + a1x1 + … + adxd f : ℝd → ℝ

Reminiscent of the Bernstein–Vazirani problem:  f(x) = a1x1 + … + adxd mod 2 f : {0,1}d → {0,1}
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Phase encoding 
(Z gates)

Quantum 
query Uf

Inverse quantum 
query U−1

f

Hadamard 
transform H⊗d
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1
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1
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Quantum Fourier 
Transform

|∇f(x)⟩ |0⟩

Carefully chosen set 
of points G ⊂ ℝd

Two quantum queries to Uf

|a⟩ |0⟩ =



Jordan’s algorithm

For general functions  :f : ℝd → ℝ

Caveats: 

- requires to evaluate  with high precision

- may not be competitive against non-oracular classical methods (ex: automatic differentiation)

f

First-order approximation around current iterate:  
a0 a1 ad

Under sufficient smoothness assumptions (  is analytic and has bounded partial derivatives):f

( ∂f
∂x1

(x) ± ϵ, …,
∂f
∂xd

(x) ± ϵ)Estimate with ∼ d /ϵ quantum queries

f(x) ≈ f(x(t)) − ∇f(x(t))⊤ ⋅ x(t) + ∇f(x(t))1 ⋅ x1 + …+ ∇f(x(t))d ⋅ xd



Higher-order methods

Second-order methods: Use the Hessian matrix  (~ second-order derivative) as wellHf

Faster convergence rate compared to gradient descent

Harder to compute and requires more memory (matrix of size )d2

Example of application: interior point methods

Quantum speedups investigated by arXiv:1808.09266, arXiv:2311.03215, …



Monte-Carlo algorithms



Monte-Carlo algorithms rely on random sampling to make their decisions

(ex: stochastic optimization)

Quantum computers can sample certain distributions more efficiently 
than classical computers



Linear programming



Minimize a real-valued linear objective function subject to linear constraints

Linear programming

Convex optimization problem

x

y

x, y ≥ 0
2y ≥ − 3x + 4

y ≤ x + 2
Minimize 2x + y
s . t .

4y ≤ − x + 12
y ≥ 3x − 4 The coefficients of the LP 

are provided via an oracle

 variablesn = 2
 constraintsm = 4

Find an -approximate solution?ϵ

∼ n + m /ϵ2.5
Quantum solver

n + mAt least

Classical solvers



Linear programming can be reduced to a problem where:

Grigoriadis-Khachiyan’s algorithm

- The linear constraints are arranged into a skew-symmetric matrix:   A ∈ [−1,1]N×N

- The search space is the set of all probability vectors:             

- The goal is to find an   such that:                                           x ∈ Ω (Ax)i ≤ ϵ, ∀i

A = − A⊤

(Nash equilibrium: there exists  such that )x⋆ ∈ Ω Ax⋆ = (0,…,0)

Ω = {x ∈ [0,1]N, ∑i
xi = 1}



Grigoriadis-Khachiyan’s algorithm

x ∈ [0,1]N, ∑i
xi = 1

(Ax)i ≤ ϵ, ∀i

Find proba. vector

satisfying

where the entries  
are provided via an oracle

A ∈ [−1,1]N×N

Ansatz: Gibbs distribution
x ∝ eϵAu

where  is an integer-valued vectoru ∈ ℕN

Converges to a solution 
in  steps, 

each of cost
t ∼ log(N)/ϵ2

∼ N

The distribution leans toward 
the unsatisfied constraints

Set   and  t = 0 u(0) = (0,…,0)

Sample  from the Gibbs distribution i ∈ [N] x(t) ∝ eϵAu(t)

Increment the -th coordinate: i u(t+1) = u(t) + ei

Repeat:

Increment the time step: t = t + 1

x(0) = (1/N, …,1/N)



x ∈ [0,1]N, ∑i
xi = 1

(Ax)i ≤ ϵ, ∀i

Find proba. vector

satisfying

where the entries  
are provided via an oracle

A ∈ [−1,1]N×N

Ansatz: Gibbs distribution
x ∝ eϵAu

where  is an integer-valued vectoru ∈ ℕN

Set   and  t = 0 u(0) = (0,…,0)

Sample  from the Gibbs distribution i ∈ [N] x(t) ∝ eϵAu(t)

Increment the -th coordinate: i u(t+1) = u(t) + ei

Repeat:

Increment the time step: t = t + 1

x(0) = (1/N, …,1/N) Quantum speedup:

∝
N

∑
i=1

eϵAiu(t)/2 | i⟩Prepare and 
measure:

Cost per step:   queries∼ N

Quantum algorithm



x ∈ [0,1]N, ∑i
xi = 1

(Ax)i ≤ ϵ, ∀i

Find proba. vector

satisfying

where the entries  
are provided via an oracle

A ∈ [−1,1]N×N

Ansatz: Gibbs distribution
x ∝ eϵAu

where  is an integer-valued vectoru ∈ ℕN

Quantum state preparation of :∝ ∑
N

i=1
eϵAiu(t)/2 | i⟩

1

N ∑i
| i⟩

Prepare the uniform 
superposition

Apply a block-encoding  
of matrix  

U
eϵAu(t)/2

U( 1

N ∑i
| i⟩ |0⟩) = ( 1

N ∑i
eϵAiu(t)/2 | i⟩) |0⟩ + |…⟩ |0⊥⟩

Amplify the first part

1
… ∑i

eϵAiu(t)/2 | i⟩ |0⟩

Assuming maxi Aiu(t) = 0

Quantum algorithm



Quantum algorithm



Semidefinite programming

A similar (more involved) quantum algorithm applies to solving semidefinite programs

Minimize Tr(CX)
subject to X ∈ ℝ2n is positive semidefinite 

Tr(A1X) ≤ b1
Tr(A2X) ≤ b2
⋯

C, A1, A2, … ∈ ℝ2ngiven
b1, b2, … ∈ ℝ



Caveats of such LP/SDP quantum solvers: 


- poor scaling with precision 

- involved quantum circuits for arithmetic operations

- may perform worse than other classical algorithms on LP/SDP of interest

ϵ

Semidefinite programming

A similar (more involved) quantum algorithm applies to solving semidefinite programs

The core ingredient is Quantum Gibbs Sampling:

Prepare the density matrix (proportional to)  for a certain Hamiltonian eϵH(t) H(t)



Escaping Saddle Points



Saddle points

In continuous optimization,  is a critical point if the gradient is zerox ∈ ℝd ∇f(x) = 0

- Gradient descent stops progressing in this situation


- If the function is non-convex, critical points can be 
local minima, local maxima, or saddle points

y = x3 z = x2 − y2Techniques for escaping saddle points:


- Compute the Hessian (expansive)


- Add noise (random perturbation) to current position



Quantum algorithm

Cost: improved scaling with dimension  over classical methodsd

Quantum algorithm: Prepare  with Hamiltonian simulation and measure it to get  |ψ(t)⟩ x(t+1)

arXiv:2007.10253

ψ(0,x) ∝ exp( −∥x(t)−x∥2/σ2)

Kinetic 
operator

Potential 
operator

i
∂
∂t

ψ(t, x) = (−
1
2

Δ + f(x)) ψ(t, x)

Isotropic Gaussian distribution 
centered at current saddle point

Move into a random position obtained by solving the Schrödinger equation:

Under the initial condition:



ψ(0,x) ∝ exp( −∥x(t)−x∥2/σ2)

Kinetic 
operator

Potential 
operator

i
∂
∂t

ψ(t, x) = (−
1
2

Δ + f(x)) ψ(t, x)

Isotropic Gaussian distribution 
centered at current saddle point

Quantum algorithm

Move into a random position obtained by solving the Schrödinger equation:

Under the initial condition:

Why it works: Quadratic approximation of    at   :f x(t)

arXiv:2007.10253

f(x) ≈ f(x(t)) + ∇f(x(t))⊤ ⋅ (x − x(t)) +
1
2

(x − x(t))⊤ ⋅ Hf(xt) ⋅ (x − x(t))

 follows a multivariate Gaussian  that drifts toward 
the negative curvature region of    over time 

⇒ ψ(t, x) 𝒩(x(t), Σ(t))
f


