
Lecture 2

Optimization problems on
quantum computers

Quantum optimization algorithms using oracles

Materials: https://yassine-hamoudi.github.io/cemracs2025/

Yassine Hamoudi

https://yassine-hamoudi.github.io/cemracs2025/

https://yassine-hamoudi.github.io/cemracs2025/

https://yassine-hamoudi.github.io/cemracs2025/

Yesterday’s lecture:

- very general algorithms applying to broad class of problems

- running time often unknown but expected to be significantly smaller than that of

classical methods

- sometimes adapted to near-term and hybrid quantum computers

Today’s lecture:

- algorithms that are more computer science–oriented and problem-specific

- precise running time guarantees and provable quantum advantages, but often

moderate speedups

- require large-scale fault-tolerant quantum computers

Lecture 2

(Oracle-based)

Lecture 1

(Physics-inspired)

Quantum optimization algorithms

Variational quantum algorithms
- Variational Quantum Eigensolver (VQE)

- Quantum Approximate Optimization

Algorithm (QAOA)

Exact algorithms
- Quantum Phase Estimation (QPE)

- Quantum Adiabatic Algorithm (QAA)

Grover-type algorithms
- Quantum Minimum Finding

- Minimum Spanning Tree

Gradient computation

Monte-Carlo algorithms

- Linear programming

- Escaping Saddle Points

Quantum oracles

The algorithms presented in this lecture require a specific input-access
model known as a quantum oracle.

We aim at minimizing the number of calls (= queries) to the oracle

An oracle is a unitary operator that provides a way
to evaluate a function on any superposition of values

UFUnknown function

i F(i)
1

2

3

34

12

2

4 200

∑
i

αi | i⟩ |0⟩ ↦ ∑
i

αi | i⟩ |F(i)⟩UF :

On classical computers, the oracle can only return a
single value at a time i ↦ F(i)

Example

i F(i)
1
2
3

(1,2)
(2,5)
(1,4)

4 (3,4)

1

2

3

4

5
6

7

Function that enumerates the
edges of an unknown graph

5
6
7
8
9

(3,6)
(4,6)
(4,5)
(4,7)
(6,7)

How many calls to the oracle are needed to
solve a given problem on an unknown graph?

(Ex: Is the graph connected? What is the size of
the maximum cut? Etc.)

Example: Bernstein–Vazirani algorithm

Bernstein–Vazirani problem: f : {0,1}d → {0,1}
x ↦ a1x1 + … + adxd mod 2

Oracle to

Compute (a1, …, ad)

Using a classical oracle

d queries

Using a quantum oracle

2 queries

0 H H
H H

H H

0

0

0

0

0

⋮

⋮

⋮ ⋮

d

|0…0, 0…0⟩ 1
2d/2

2d−1

∑
x=0

|x, 0…0⟩ 1
2d/2

2d−1

∑
x=0

|x, f(x)⟩
1

2d/2

2d−1

∑
x=0

(−1) f(x) |x, f(x)⟩

Uf

d

Z

Z

Z

U−1
f

Example: Bernstein–Vazirani algorithm

1
2d/2

2d−1

∑
x=0

(−1) f(x) |x, 0,…,0⟩

|a1⟩

|a2⟩

|ad⟩

|0⟩
|0⟩

|0⟩

Grover-type algorithms

What it does:
Search in the domain of an oracle if an element satisfies a given predicate

Classical algorithms may
have to query all edges

Is there an edge
containing vertex 3?

Example
1

2

3

4

5
6

7

i F(i)
1
2
3

(1,2)
(2,5)
(1,4)

4 (3,4)
5
6
7
8
9

(3,6)
(4,6)
(4,5)
(4,7)
(6,7)

Grover requires quadratically
less queries to the oracle

Grover’s algorithm

Grover’s algorithm requires quantum queries, where
is the domain size of and the number of solutions.

∼ N/K N
F K = | I |

… and if so, return a uniform superposition over all the solution elements:

Grover’s algorithm

What it does:
Search in the domain of an oracle if an element satisfies a given predicate

1
| I | ∑

i∈I

| i⟩ I = {i : Predicate(i, F(i)) = True}where

Quantum Minimum Finding

Finding the smallest element

If the function is completely arbitrary, the best possible
classical algorithm is to evaluate all entries in time Nx f(x)

1
2
3
4
5
6
7

N = 8

6
2
9
8
3
1
8
4

How Grover’s algorithm can help here?

Set (x, y) = (1, f(1))

Prepare with Grover the superposition over all satisfying .x′ f(x′) < y

Update .(x, y) = (x′ , f(x′))

Repeat:

Sample s.t. , uniformly at random, by measuring the state.x′ f(x′) < y

Finding the smallest element

If the function is completely arbitrary, the best possible
classical algorithm is to evaluate all entries in time Nx f(x)

1
2
3
4
5
6
7
8

6
2
9
8
3
1
8
4

How Grover’s algorithm can help here?

Set (x, y) = (1, f(1))

Prepare with Grover the superposition over all satisfying .x′ f(x′) < y

Update .(x, y) = (x′ , f(x′))

Repeat:

Sample s.t. , uniformly at random, by measuring the state.x′ f(x′) < y

Finding the smallest element

If the function is completely arbitrary, the best possible
classical algorithm is to evaluate all entries in time N

Converges to the minimum in stepslog N
The overall query complexity is .∼ N

x f(x)
1
2
3
4
5
6
7
8

6
2
9
8
3
1
8
4

How Grover’s algorithm can help here?

Set (x, y) = (1, f(1))

Prepare with Grover the superposition over all satisfying .x′ f(x′) < y

Update .(x, y) = (x′ , f(x′))

Repeat:

Sample s.t. , uniformly at random, by measuring the state.x′ f(x′) < y

000 - 3

001 - 4

010 - 4

011 - 5

100 - 2

101 - 3

110 - 3

111 - 3

Find an assignment that maximizes the number of
satisfied clauses in a CNF formula

Example: MAX-SAT

f(x) = ¬x1 ∧ (x1 ∨ x2) ∧ (¬x1 ∨ x2) ∧ x3 ∧ (¬x1 ∨ ¬x2 ∨ ¬x3)

−f(x)x
(Built-in class

PhaseOracle in Qiskit)
Compiles the formula into a quantum circuit that
simulates the oracle Uf : |x⟩ |0⟩ ↦ |x⟩ | f(x)⟩

Quantum Minimum Finding finds a solution in time ∼ 2n

(number of variables)n =

Grover’s algorithm can help traverse
regions of small spectral gaps in the

adiabatic evolution

Provable running time of

(for a small)

∼ 2(1−c)n

c < 1

Super-quadratic speedups

For some hard binary optimization
problems encoded into Hamiltonians:

As a standalone optimization algorithm, this is often ineffective
since the size of the search space is typically enormousN

x f(x)
1
2
3
4

Quantum Minimum Finding can find the minimum in a
search space of size by using queriesN ∼ N

Finding the smallest element

5
6
7

N = 8

6
2
9
8
3
1
8
4

… but it can become useful when used as a subroutine

Example: Minimum Spanning Tree

w 1
=

1

w2 = 2

w3 = 4

w5 = 3

w 4
= 2

w
6 =

5w 7
= 5

w8 = 9
w 9

= 2

Number of vertices: n = 7

Number of edges: m = 9
Minimum

Weight: w1 + w3 + w4 + w6 + w7 + w8 = 26

Weight: w1 + w2 + w3 + w4 + w5 + w9 = 14

Find a spanning tree with minimum
total edge weight

w 1
=

1

w2 = 2

w3 = 4

w5 = 3

w 4
= 2

w
6 =

5w 7
= 5

w8 = 9
w 9

= 2

Number of vertices: n = 7

Number of edges: m = 9

Find a spanning tree with minimum
total edge weight

Oracle
The oracle provides the vertices

and weight of each edge
1

2

3

4

5
6

7

(1,2), 1

2

9

…

1
(2,5), 2

(6,7), 2

Finding a minimum spanning tree in a graph
with vertices and edgesn m

Number of classical queries

∼ m ∼ nm

Number of quantum queries

 if the graph is connectedn − 1 ≤ m ≤ n2

w 1
=

1

w2 = 2

w3 = 4

w5 = 3

w 4
= 2

w
6 =

5w 7
= 5

w8 = 9
w 9

= 2

Grow a spanning tree by adding the smallest-weight
outgoing edge to each component of the current forest

Step 0

Borůvka's algorithm

Step 1 Step 2

w 1
=

1

w2 = 2

w3 = 4

w5 = 3

w 4
= 2

w
6 =

5w 7
= 5

w8 = 9
w 9

= 2

Each step consists of finding the -out-of- edges of smallest
weights that are outgoing from the remaining trees.

k m
k

Step 0 Step 2Step 1

Borůvka's algorithm

Each step consists of finding the -out-of- edges of smallest
weights that are outgoing from the remaining trees.

k m
k

Quantum speedup (Dürr et al.’2006)

Borůvka's algorithm

- Quantum minimum finding can find those edges using quantum queries

- At the -th step of the algorithm, at most connected components remain
∼ km

t n/2t

Overall complexity: ∼ nm + nm/2 + nm/4 + nm/8 ∼ nm

Quantum -minimum findingk

Other applications

Main tool: Minimum Finding

Examples of applications:

- Minimum Spanning Tree

- Single Source Shortest Paths

Main tool: Graph sparsification

Examples of applications:

- Laplacian system solving

- Cut approximations

Main tool: Dynamic programming

Examples of applications:

- Travelling Salesman Problem

- Minimum Set Cover

Main tools: Quantum walks,
Backtracking, Branch-and-bound

Examples of applications:

- Travelling Salesman Problem

- Ground states of spin models

Gradient computation

Gradient descent is an optimization method that explores the search space by
making iterative steps in the direction where decreases the fastestf

This works very well in convex optimization (converges to the minimum)
but is also used in non-convex optimization (converges to local minima)

f : ℝd → ℝ

The fastest decreasing direction is given by the gradient (~ derivative)
of the objective function

x(t+1) = x(t)− ∇f(x(t))∇f(x) = (∂f
∂x1

(x), …,
∂f
∂xd

(x))
Gradient stepGradient

Suppose behaves locally as a linear function:f

Gradient computation

f : ℝd → ℝ ∇f(x) = (∂f
∂x1

(x), …,
∂f
∂xd

(x))

f(x) = a0 + a1x1 + … + adxd

How many evaluations of to compute its gradient ?f ∇f(x) = (a1, …, ad)

⋮

Number of classical queries: d + 1
f(b0) = a0 + a1b0,1 + … + adb0,d

f(b1) = a0 + a1b1,1 + … + adb1,d

f(bd) = a0 + a1bd,1 + … + adbd,d

System of independent
equations with unique solution

d + 1

(a0, …, ad)

Number of quantum queries: 2

Jordan’s algorithm (2004)

Jordan’s algorithm

Compute the gradient of a linear function: f(x) = a0 + a1x1 + … + adxd f : ℝd → ℝ

Reminiscent of the Bernstein–Vazirani problem: f(x) = a1x1 + … + adxd mod 2 f : {0,1}d → {0,1}

1
2d/2 ∑

x∈{0,1}d

|x⟩ |0⟩
1

2d/2 ∑
x

|x⟩ | f(x)⟩
1

2d/2 ∑
x

(−1) f(x) |x⟩ | f(x)⟩
1

2d/2 ∑
x

(−1) f(x) |x⟩ |0⟩

Phase encoding
(Z gates)

Quantum
query Uf

Inverse quantum
query U−1

f

Hadamard
transform H⊗d

|a⟩ |0⟩

1
|G |1/2 ∑

x

eif(x) |x⟩ |0⟩
1

|G |1/2 ∑
x∈G

|x⟩ |0⟩

Quantum Fourier
Transform

|∇f(x)⟩ |0⟩

Carefully chosen set
of points G ⊂ ℝd

Two quantum queries to Uf

|a⟩ |0⟩ =

Jordan’s algorithm

For general functions :f : ℝd → ℝ

Caveats:

- requires to evaluate with high precision

- may not be competitive against non-oracular classical methods (ex: automatic differentiation)

f

First-order approximation around current iterate:
a0 a1 ad

Under sufficient smoothness assumptions (is analytic and has bounded partial derivatives):f

(∂f
∂x1

(x) ± ϵ, …,
∂f
∂xd

(x) ± ϵ)Estimate with ∼ d /ϵ quantum queries

f(x) ≈ f(x(t)) − ∇f(x(t))⊤ ⋅ x(t) + ∇f(x(t))1 ⋅ x1 + …+ ∇f(x(t))d ⋅ xd

Higher-order methods

Second-order methods: Use the Hessian matrix (~ second-order derivative) as wellHf

Faster convergence rate compared to gradient descent

Harder to compute and requires more memory (matrix of size)d2

Example of application: interior point methods

Quantum speedups investigated by arXiv:1808.09266, arXiv:2311.03215, …

Monte-Carlo algorithms

Monte-Carlo algorithms rely on random sampling to make their decisions

(ex: stochastic optimization)

Quantum computers can sample certain distributions more efficiently
than classical computers

Linear programming

Minimize a real-valued linear objective function subject to linear constraints

Linear programming

Convex optimization problem

x

y

x, y ≥ 0
2y ≥ − 3x + 4

y ≤ x + 2
Minimize 2x + y
s . t .

4y ≤ − x + 12
y ≥ 3x − 4 The coefficients of the LP

are provided via an oracle

 variablesn = 2
 constraintsm = 4

Find an -approximate solution?ϵ

∼ n + m /ϵ2.5
Quantum solver

n + mAt least

Classical solvers

Linear programming can be reduced to a problem where:

Grigoriadis-Khachiyan’s algorithm

- The linear constraints are arranged into a skew-symmetric matrix: A ∈ [−1,1]N×N

- The search space is the set of all probability vectors:

- The goal is to find an such that: x ∈ Ω (Ax)i ≤ ϵ, ∀i

A = − A⊤

(Nash equilibrium: there exists such that)x⋆ ∈ Ω Ax⋆ = (0,…,0)

Ω = {x ∈ [0,1]N, ∑i
xi = 1}

Grigoriadis-Khachiyan’s algorithm

x ∈ [0,1]N, ∑i
xi = 1

(Ax)i ≤ ϵ, ∀i

Find proba. vector

satisfying

where the entries
are provided via an oracle

A ∈ [−1,1]N×N

Ansatz: Gibbs distribution
x ∝ eϵAu

where is an integer-valued vectoru ∈ ℕN

Converges to a solution
in steps,

each of cost
t ∼ log(N)/ϵ2

∼ N

The distribution leans toward
the unsatisfied constraints

Set and t = 0 u(0) = (0,…,0)

Sample from the Gibbs distribution i ∈ [N] x(t) ∝ eϵAu(t)

Increment the -th coordinate: i u(t+1) = u(t) + ei

Repeat:

Increment the time step: t = t + 1

x(0) = (1/N, …,1/N)

x ∈ [0,1]N, ∑i
xi = 1

(Ax)i ≤ ϵ, ∀i

Find proba. vector

satisfying

where the entries
are provided via an oracle

A ∈ [−1,1]N×N

Ansatz: Gibbs distribution
x ∝ eϵAu

where is an integer-valued vectoru ∈ ℕN

Set and t = 0 u(0) = (0,…,0)

Sample from the Gibbs distribution i ∈ [N] x(t) ∝ eϵAu(t)

Increment the -th coordinate: i u(t+1) = u(t) + ei

Repeat:

Increment the time step: t = t + 1

x(0) = (1/N, …,1/N) Quantum speedup:

∝
N

∑
i=1

eϵAiu(t)/2 | i⟩Prepare and
measure:

Cost per step: queries∼ N

Quantum algorithm

x ∈ [0,1]N, ∑i
xi = 1

(Ax)i ≤ ϵ, ∀i

Find proba. vector

satisfying

where the entries
are provided via an oracle

A ∈ [−1,1]N×N

Ansatz: Gibbs distribution
x ∝ eϵAu

where is an integer-valued vectoru ∈ ℕN

Quantum state preparation of :∝ ∑
N

i=1
eϵAiu(t)/2 | i⟩

1

N ∑i
| i⟩

Prepare the uniform
superposition

Apply a block-encoding
of matrix

U
eϵAu(t)/2

U(1

N ∑i
| i⟩ |0⟩) = (1

N ∑i
eϵAiu(t)/2 | i⟩) |0⟩ + |…⟩ |0⊥⟩

Amplify the first part

1
… ∑i

eϵAiu(t)/2 | i⟩ |0⟩

Assuming maxi Aiu(t) = 0

Quantum algorithm

Quantum algorithm

Semidefinite programming

A similar (more involved) quantum algorithm applies to solving semidefinite programs

Minimize Tr(CX)
subject to X ∈ ℝ2n is positive semidefinite

Tr(A1X) ≤ b1
Tr(A2X) ≤ b2
⋯

C, A1, A2, … ∈ ℝ2ngiven
b1, b2, … ∈ ℝ

Caveats of such LP/SDP quantum solvers:

- poor scaling with precision

- involved quantum circuits for arithmetic operations

- may perform worse than other classical algorithms on LP/SDP of interest

ϵ

Semidefinite programming

A similar (more involved) quantum algorithm applies to solving semidefinite programs

The core ingredient is Quantum Gibbs Sampling:

Prepare the density matrix (proportional to) for a certain Hamiltonian eϵH(t) H(t)

Escaping Saddle Points

Saddle points

In continuous optimization, is a critical point if the gradient is zerox ∈ ℝd ∇f(x) = 0

- Gradient descent stops progressing in this situation

- If the function is non-convex, critical points can be
local minima, local maxima, or saddle points

y = x3 z = x2 − y2Techniques for escaping saddle points:

- Compute the Hessian (expansive)

- Add noise (random perturbation) to current position

Quantum algorithm

Cost: improved scaling with dimension over classical methodsd

Quantum algorithm: Prepare with Hamiltonian simulation and measure it to get |ψ(t)⟩ x(t+1)

arXiv:2007.10253

ψ(0,x) ∝ exp(−∥x(t)−x∥2/σ2)

Kinetic
operator

Potential
operator

i
∂
∂t

ψ(t, x) = (−
1
2

Δ + f(x)) ψ(t, x)

Isotropic Gaussian distribution
centered at current saddle point

Move into a random position obtained by solving the Schrödinger equation:

Under the initial condition:

ψ(0,x) ∝ exp(−∥x(t)−x∥2/σ2)

Kinetic
operator

Potential
operator

i
∂
∂t

ψ(t, x) = (−
1
2

Δ + f(x)) ψ(t, x)

Isotropic Gaussian distribution
centered at current saddle point

Quantum algorithm

Move into a random position obtained by solving the Schrödinger equation:

Under the initial condition:

Why it works: Quadratic approximation of at :f x(t)

arXiv:2007.10253

f(x) ≈ f(x(t)) + ∇f(x(t))⊤ ⋅ (x − x(t)) +
1
2

(x − x(t))⊤ ⋅ Hf(xt) ⋅ (x − x(t))

 follows a multivariate Gaussian that drifts toward
the negative curvature region of over time

⇒ ψ(t, x) 𝒩(x(t), Σ(t))
f

