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Optimization is about finding elements 
that minimize a given objective

Project: L’Oréal 
Genome assembly from DNA fragments

Project: IFPEN 
Route planning problems

Project: ERC EMC2 
Quantum algorithms for 

ground state computation
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Project: RTE 
Maintenance of electrical installations

Project: La Poste 
Supply of empty containers

Exploration of a graphStable configuration 
of a molecule

Scheduling of 
concurrent tasks



Optimization is about finding elements 
that minimize a given objective

min
x∈Ω

f(x)
Objective functionSearch space of 

the problem

Value of element  x

Example: shortest path that 
connects all points

length of a given pathf =

f f≤ f≤

set of all valid pathsΩ =



How quantum computers may help 
in solving optimization problems?

• New types of algorithms based on the capabilities of quantum computers


• Example of optimization problems solved by such quantum algorithms


• Benefits and limitations compared to other optimization methods

Focus of this course



Discrete optimization

Terminology

Continuous optimization
Objective function supported 
over a discrete set of values

Objective function supported 
over a continuous set of values

x ∈ ℝ

f(x)f(x)

: all possible 
paths

x



Exact solution

Terminology

Approximate solution

∀x, f(x⋆) ≤ f(x) ∀x, f(x̃) ≤ f(x⋆) + ϵ

Find the minimum-value solution 
(or one of them if there are many)

Find a solution whose value is 
not too far from the minimum

x

f(x)

x⋆

ϵ

x̃



Convex function

Terminology

The entire graph is “visible” from any point

Non-convex function

Global minima = Local minima
Global minima ≠ Local minima∀t ∈ (0,1), f(tx + (1 − t)y) ≤ tf(x) + (1 − t)f(y)

(in the context of continuous optimization)



Great goal of quantum optimizers:

Find relevant optimization problems that can be 
solved much faster than with any classical algorithm

We are not there yet:
- Quantum optimization often lacks theoretical guarantees, or makes contrived assumptions


- Quantum advantages vanish under implementation overhead (ex: quantum error correction)


- New classical optimization methods fight back (ex: deep learning)

… but the field is emerging and first-gen quantum computers accelerate its development

optimistic



Lecture 2

(Oracle-based)

Lecture 1

(Physics-inspired)

Quantum optimization algorithms

Variational quantum algorithms
- Variational Quantum Eigensolver (VQE) 

- Quantum Approximate Optimization 

Algorithm (QAOA)

Exact algorithms
- Quantum Phase Estimation (QPE)

- Quantum Adiabatic Algorithm (QAA)

Grover-type algorithms
- Quantum Minimum Finding

- Minimum Spanning Tree

Gradient computation

Monte-Carlo algorithms

- Linear programming

- Escaping Saddle Points



Optimization as a physics problem



Hermitian H† = H

The Hamiltonian operator

Smallest eigenvalue  (lowest energy) and corresponding eigenvector  
(ground state) characterize the most stable configuration of the system

λ1 |v1⟩

Linear operator encoding the possible energy levels of a system

H ∈ ℂ2n×2n

Eigendecomposition: H = ∑
2n

i=1
λi |vi⟩

Stationary states: eigenvec. H |vi⟩ = λi |vi⟩

Energy levels: real eigenval. λ1 ≤ λ2 ≤ …



Hermitian H† = H

The Hamiltonian operator

A qubit in a magnetic field of angular frequency ω

Linear operator encoding the possible energy levels of a system

H ∈ ℂ2n×2n

Example:

H =
−

ℏω
2

0ℏω
2

0

: Dirac constantℏ
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|0⟩ |1⟩

|0⟩Eigenvectors: and |1⟩ (ground state)

Eigenvalues: ℏω
2

−
ℏω
2(energies)



The Hamiltonian operator
Ground state computation is an optimization problem:

objective function ~ f(x)

λ1 = ∥H |v1⟩∥ = min|v⟩∈ℂ2n:∥v∥=1∥H |v⟩∥

optimized element ~ x

How hard is it to optimize?

- Diagonalization is infeasible in general (matrix of exponential size)

- Optimization landscape is highly complicated (non-convex)


- … requires making additional assumptions on  (examples: next slide)H



Examples of more friendly Hamiltonians

-localk

H =
m

∑
j=1

Hj
Each  acts non-

trivially only on  qubits
Hj

k

Commuting

 commuteH1, …, Hm

Frustration-free

Ground state of  is also a 
ground state of each 

H
Hj

Stoquastic
Off-diagonal terms are 
real and non-positive

H =
-sparsek

Each row has at most  
non-zero entries 

k

H11 H12

H21

H2n1

⋮

H12n⋯

H2n2n⋯

⋮

Representation

H =
2n

∑
i=1

λi |vi⟩
Non-degenerate

Unique smallest 
eigenvalue λ1 < λ2

-gappedΔ
Large gap between first two 
eigenvalues  λ2 − λ1 > Δ

Structural properties 
of ground state

Complexity, area 
laws, … 

Easy to optimize classically!
arXiv:0806.1746



The Hamiltonian operator

How useful/general is it?

- Ground state reveals physical properties (electronic configurations, phases 

of matter…) exploited in quantum chemistry, condensed matter physics, etc.

- Lots of other optimization problems can be reduced to it

      Example (next slide): combinatorial optimization via QUBO Hamiltonian

Ground state computation is an optimization problem:

λ1 = ∥H |v1⟩∥ = min|v⟩∈ℂ2n:∥v∥=1∥H |v⟩∥



Example: The “QUBO” Hamiltonian

Max-Cut problem

Partition vertices of a graph into two parts that 
maximize number of edges between the two

Cut of value 3Cut of value 6

≥



Example: The “QUBO” Hamiltonian

Max-Cut problem

Partition vertices of a graph into two parts that 
maximize number of edges between the two

• Fundamental problem in discrete optimization

• NP-Hard

• Famous classical approximation algo. 

(Goemans-Williamson)
Cut of value 6



Example: The “QUBO” Hamiltonian

Max-Cut problem

Partition vertices of a graph into two parts that 
maximize number of edges between the two

How to encode it into a Hamiltonian?

Cut of value 6

x1 x2

x3

x4

x5 x6 x7

x8

min
x∈{−1,1}n ∑{i,j}∈Edge

−
1
4

(xi − xj)2Max-Cut = 

−1
+1

=∑{i,j}∈Edge
−

1
4

(Zi − Zj)2

Ising Hamiltonian
= ground state of

H =
x

x

0
0f(x)

f(x)



Example: The “QUBO” Hamiltonian

QUBO (Quadratic unconstrained binary optimization)

min
x∈{0,1}n

x⊤Qx = min
x∈{0,1}n ∑i,j

Qi,jxixj  symmetricQ ∈ ℝn×n

What other polynomials can be converted into Ising Hamiltonians?

Exercise: show that substituting  yields a Hermitian matrixxi ↦ (Id − Zi)/2



Example: The “QUBO” Hamiltonian
QUBO encompasses a lot of 

optimization problems
… but no guarantee in general 

that “QUBO” Hamiltonian is nice:

- small spectral gap

- long-range interactions

- lots an ancillae (higher dim.)

- …



The Hamiltonian operator

- … not clear yet how simulation relates to optimization

     Example (next parts): Quantum Phase Estimation, Adiabatic algorithm

Ground state computation is an optimization problem:

λ1 = ∥H |v1⟩∥ = min|v⟩∈ℂ2n:∥v∥=1∥H |v⟩∥

Why quantum computers may be useful here?

i
d |ψ(t)⟩

dt
= H |ψ(t)⟩ |ψ(1)⟩ = e−iH |ψ(0)⟩

- They can solve the Schrödinger equation at a much lower cost  than 
classical algorithms (for “friendly” )

SimH
H

Ham. simulation



Exact Algorithms



Quantum optimization algorithms that 
provably return the exact ground state 



Quantum Phase Estimation



e−iH

H

H

H

QFT−1

…

⋮

e−2iH e−4iH|vi⟩ |vi⟩

|λi ± ϵ⟩|0…0⟩

Hamiltonian simulation

Phase estimation circuit 
Allows computing energy levels of H

e− 1
ϵ iH

H

∥H∥ ≤ 1

Eigenvector:

Eigenvalue:

Cost: ∼ ϵ−1 × SimH



Energy levels 
(eigenvalues of )H

Lowest energy 
(ground state)

Higher energies 
(excited states)

λ1

λ2

⋮

Precision needed by Phase Estimation

Spectral gap Δ

Estimating the eigenvalues with 
precision  allows distinguishing 

ground state from excited states
ϵ < Δ

Problem: eigenstates are not 
known a priori, what input should 
be provided to Phase estimation?

Warm-starts
= states with best-possible 
overlap with ground state



General purpose quantum optimizer

|ψ(0)⟩ = ∑i
αi |vi⟩

Warm-start

(decomposition into eigenbasis of )H

∑i
αi |vi⟩ |λi ± Δ⟩

Quantum Phase Estimation

|v1⟩ |λ1 ± Δ⟩

Amplitude 
amplification

Cost: |⟨ψ(0) |v1⟩ |−1 × ∼ Δ−1 × SimH

Can provide the exact ground state

Few assumptions required (  gapped and efficiently simulatable)H
Requires complicated quantum circuits (long coherence time, error correction…)

Requires very good warm start (large overlap )⟨ψ(0) |v1⟩ Next part: relax 
this requirement



Quantum Adiabatic Algorithm



Bootstrapping an approximate ground state

If we slightly perturb a Hamiltonian, its ground state 
should remain approximately the same.

H0 H0 + δH1
Ground state 


|v1⟩
Ground state 
|v1⟩ ≈ |w1⟩

- Large overlap 

- Use  as a warm-start 

to prepare 

|⟨v1 |w1⟩ |
|v1⟩

|w1⟩

H0 + δH1 + δH2

- Large overlap 

- Use  as a warm-start 

to prepare 

|⟨w1 |u1⟩ |
|w1⟩

|u1⟩

Ground state 
|w1⟩ ≈ |u1⟩



Adiabatic Theorem (simplified)

If a system is initialized in the ground state of a Hamiltonian  that 
evolves slowly over time, then it remains in the instantaneous ground state.

H(t)

Slow



Adiabatic Theorem (simplified)

Slow

If a system is initialized in the ground state of a Hamiltonian  that 
evolves slowly over time, then it remains in the instantaneous ground state.

H(t)



Adiabatic Theorem (simplified)

Slow

If a system is initialized in the ground state of a Hamiltonian  that 
evolves slowly over time, then it remains in the instantaneous ground state.

H(t)



Adiabatic Theorem (simplified)

Slow

If a system is initialized in the ground state of a Hamiltonian  that 
evolves slowly over time, then it remains in the instantaneous ground state.

H(t)



Adiabatic Theorem (simplified)

Fast

If a system is initialized in the ground state of a Hamiltonian  that 
evolves slowly over time, then it remains in the instantaneous ground state.

H(t)



Adiabatic Theorem (simplified)

Fast

If a system is initialized in the ground state of a Hamiltonian  that 
evolves slowly over time, then it remains in the instantaneous ground state.

H(t)



Adiabatic Theorem (simplified)

If a system is initialized in the ground state of a Hamiltonian  that 
evolves slowly over time, then it remains in the instantaneous ground state.

H(t)

Time-dependent Hamiltonians:

- Eigenvalues and eigenvectors can also evolve over time


- Schrödinger equation has no analytical solution in general

i
d |ψ(t)⟩

dt
= H(vt) |ψ(t)⟩

evolution slowed-down at speed v ∈ (0,1]



Energy levels 
(eigenvalues of )H(t)

Assumption: no level crossings (nonzero energy gap  between 
ground and excited states throughout the evolution)

Δ

Lowest energy 
(ground state)

Higher energies 
(excited states)

Time evolution tt = 0

λ1(t)

λ2(t)

⋮

Energy spectrum of time-evolving Hamiltonian

Δ



Adiabatic Theorem (simplified)

If a system is initialized in the ground state of a Hamiltonian  that 
evolves slowly over time, then it remains in the instantaneous ground state.

H(t)

i
d |ψ(t)⟩

dt
= H(vt) |ψ(t)⟩

evolution slowed-down at speed v ∈ (0,1]

Minimum spectral gap: Δ = min
0≤t≤1

λ2(t) − λ1(t)

If  is the ground state of  and 


then the solution  to the Schrödinger eq. at  is -close to the ground state of .

|ψ(0)⟩ H(0) v ≲ Δ2 ⋅ ϵ ⋅ (∥ ·H(0)∥ + ∥ ·H(1)∥ + maxt ∥ ··H(t)∥2 + ∥ ·H(t)∥3/Δ)−1

|ψ(1)⟩ t = 1 ϵ H(1)

Cost: ∼ 1/v × SimH



: target Hamiltonian whose ground state is sought (ex: QUBO Hamiltonian)H1

Requirements: 

-  and  do not commute (or it leads to level crossings)


- Spectral gap  is large (allows fast evolution speed )


-  can be simulated efficiently (depends on hardware restrictions)

H0 H1

Δ v
H(t)

: starting Hamiltonian whose ground state is easy to prepare (ex: transverse field Hamiltonian)H0
H0 = − ∑i

Xi

H1 = − ∑i,i
(Zi − Zj)2

H(t) = (1 − t) H0 + t H1

: interpolating Hamiltonian with  and  (ex: line interpolation)H(t) H(0) = H0 H(1) = H1

Applying the Adiabatic Theorem



Applying the Adiabatic Theorem
Caveat 1: spectral gap  is often exponentially small or unknownΔ

Caveat 3: requires sustained coherence throughout the entire runtime

Adiabatic algorithm can also be run on digital, circuit-based computers 
(discretized adiabatic evolution, randomized evolutions, …)

Caveat 2: choice of Hamiltonian is constrained by type of analog quantum computer 

Example: 

Rydberg atom arrays (as used by Pasqal or QuEra) 

implement interactions corresponding to unit disk graphs



There are Hamiltonians with 
properties similar to those in 

QUBO optimization (stoquastic), 
for which the adiabatic 

algorithm is provably much 
faster than any classical 
optimization algorithm

… but these Hamiltonians are 
somewhat artificial



Variational quantum algorithms



Reduce the search space to a smaller region than can be efficiently 
explored using a combination of classical + quantum computing  



Variational Quantum Eigensolver

(VQE)



The variational method

Ground state computation is an optimization problem:

λ1 = ∥H |v1⟩∥ = min|v⟩∈ℂ2n:∥v∥=1∥H |v⟩∥

What if we use classical optimization solvers?
- Elements from the search space  can be difficult to store and 

manipulate on classical computers (exponential dimension)

- Objective function  can be hard to evaluate

|v⟩ ∈ ℂ2n

∥H |v⟩∥

Variational method: hybrid quantum-classical optimizers



Classical optimizer Quantum computer
Construct  and estimate 

 
|v⟩

∥H |v⟩∥ = ⟨v |H |v⟩
Select a candidate  with a 
concise classical description 

|v⟩

The evaluation of the objective function is 
delegated to a quantum computer

The classical optimizer refines its solution by making 
iterative calls to a quantum computer

Observable

The variational method

Expectation value



- Requires fewer quantum resources than full-fledged quantum 
algorithms


- A leading proposal for near-term quantum applications


- Tested in practice (ex: hybrid computing platform being 
installed at the French supercomputing center TGCC)


- Highly heuristic… but so is classical optimization on such 
problems

The variational method



How to represent the candidate states?

Variational Quantum Eigensolver

Classical optimizer Quantum computer
Construct  and estimate 

 
|v⟩

∥H |v⟩∥ = ⟨v |H |v⟩
Select a candidate  with a 
concise classical description 

|v⟩

Example (next part): the QAOA ansatz

(θ1, …, θN)
Classical parameters (N ≪ 2n)

|v(θ1, …, θN)⟩

Quantum state

Mapping should be easy to 
do on a quantum computer

Ansatz:



Classical optimizer Quantum computer
Construct  and 
estimate  

|v(θ1, …, θN)⟩
∥H |v(θ1, …, θN)⟩∥

Select parameters  (θ1, …, θN)

The energy estimation  could be performed using Quantum Phase Estimation, 

but this would make the algorithm unsuitable for near-term quantum architectures.

∥H |v⟩∥

Instead, we typically rely on random measurement strategies based on prior knowledge 

about  (ex: if  is a QUBO Hamiltonian, we can average multiple measurements in the 

standard basis)

H H

Energy estimation



Barren Plateaus

The choice of the variational ansatz is crucial in making the method succeed

Highly expressive ansätze (i.e., those spanning a large region of the original search 
space) are more likely to cause the classical optimizer to get stuck in local minima

For a given observable  over  qubits, all but an exponentially small fraction of the quantum 

states  have energy exponentially close to the average:  .


(i.e., the optimization landscape is nearly flat over a large sub-region)

H n

|v⟩ ∈ ℂ2n ∥H |v⟩∥ = Tr(H)/2n ± 2−Ω(n)

Phenomenon known as Barren Plateaus:



Quantum Approximate Optimization Algorithm 
(QAOA)



QAOA instantiates the Variational Quantum 
Eigensolver with an ansatz inspired by the 

Quantum Adiabatic Algorithm.



Recall: The adiabatic algorithm solves the Schrödinger equation .i
d |ψ(t)⟩

dt
= H(t) |ψ(t)⟩

Trotterized adiabatic evolution

Continuous-time Hamiltonian  can be approximated by a finite sequence:H(t)

for a sufficiently small time step  .δ ≪ 1H(0), H(δ), H(2δ), …, H(1)

δ → 0

By solving the corresponding sequence of Schrödinger equations,

|ψ(1)⟩ = e−iδH(1)…e−iδH(2δ)e−iδH(δ)e−iδH(0) |ψ(0)⟩

Goal: Understand what the ground state  looks like to derive an ansatz|ψ(1)⟩



Trotterized adiabatic evolution

δ → 0
|ψ(1)⟩ = e−iδH(1)…e−iδH(2δ)e−iδH(δ)e−iδH(0) |ψ(0)⟩

Suppose  is given by the line interpolation H(t) H(t) = (1 − t) H0+t H1

e−iδH( jδ) = e−iδ(1−jδ)H0−ijδ2H1 ≠ e−iδ(1−jδ)H0e−ijδ2H1 ,  don’t commuteH0 H1

= (e−iδ′ δ(1−jδ)H0e−ijδ′ δ2H1)1/δ′ 

δ′ → 0
Trotter formulas

Each unitary can be expanded as follows:



Trotterized adiabatic evolution

|ψ(1)⟩ =
1/δ

∏
j=0

(e−iδ′ δ(1−jδ)H0e−ijδ′ δ2H1)1/δ′ |ψ(0)⟩
δ → 0
δ′ → 0

Ground state is obtained by alternating small evolutions according to  or H0 H1

Putting everything together:

For any , there exists a depth  and a sequence of 
angles  such that,

ϵ ∈ (0,1) p
θ1, θ2, …, θ2p ∈ [0,2π]

|ψ(1)⟩ ≈ϵ e−iθ2pH0e−iθ2p−1H1⋯e−iθ3H1e−iθ2H0e−iθ1H1 |ψ(0)⟩



The QAOA ansatz
QAOA explores ansätze of the form:

|v(θ1, …, θp)⟩ = e−iθ2pH0e−iθ2p−1H1⋯e−iθ3H1e−iθ2H0e−iθ1H1 |ψ(0)⟩

where, typically,  is much smaller than what is required by Trotter approximation.p

Advantage over adiabatic algorithm: low-depth quantum circuits

Search space with  already encompass some interesting states:p = 1
Non-trivial approximate solutions 

to QUBO Hamiltonians

(ex: Max-Cut on 3-regular graphs)

Measurement distributions 
that cannot be efficiently 
classically sampled from

arXiv:1602.07674arXiv:1411.4028 arXiv:2411.04979

Significant speedups for certain 
Constraint Satisfaction Problems over 

best-known classical algorithms

… but provable speedups remain elusive and QAOA ansatz is harder to analyze for p > 1
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Lecture 1

(Physics-inspired)

Quantum optimization algorithms

Variational quantum algorithms
- Variational Quantum Eigensolver (VQE) 

- Quantum Approximate Optimization 

Algorithm (QAOA)

Exact algorithms
- Quantum Phase Estimation (QPE)

- Quantum Adiabatic Algorithm (QAA)

Grover-type algorithms
- Quantum Minimum Finding

- Minimum Spanning Tree

Gradient computation

Monte-Carlo algorithms

- Linear programming

- Escaping Saddle Points


